• Title/Summary/Keyword: CMOS Receiver

Search Result 222, Processing Time 0.025 seconds

A 150-Mb/s CMOS Monolithic Optical Receiver for Plastic Optical Fiber Link

  • Park, Kang-Yeob;Oh, Won-Seok;Ham, Kyung-Sun;Choi, Woo-Young
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • This paper describes a 150-Mb/s monolithic optical receiver for plastic optical fiber link using a standard CMOS technology. The receiver integrates a photodiode using an N-well/P-substrate junction, a pre amplifier, a post amplifier, and an output driver. The size, PN-junction type, and the number of metal fingers of the photodiode are optimized to meet the link requirements. The N-well/P-substrate photodiode has a 200-${\mu}m$ by 200-${\mu}m$ optical window, 0.1-A/W responsivity, 7.6-pF junction capacitance and 113-MHz bandwidth. The monolithic receiver can successfully convert 150-Mb/s optical signal into digital data through up to 30-m plastic optical fiber link with -10.4 dBm of optical sensitivity. The receiver occupies 0.56-$mm^2$ area including electrostatic discharge protection diodes and bonding pads. To reduce unnecessary power consumption when the light is not over threshold or not modulating, a simple light detector and a signal detector are introduced. In active mode, the receiver core consumes 5.8-mA DC currents at 150-Mb/s data rate from a single 3.3 V supply, while consumes only $120{\mu}W$ in the sleep mode.

A 2.3-2.7 GHz Dual-Mode RF Receiver for WLAN and Mobile WiMAX Applications in $0.13{\mu}m$ CMOS (WLAN 및 Mobile WiMAX를 위한 2.3-2.7 GHz 대역 이중모드 CMOS RF 수신기)

  • Lee, Seong-Ku;Kim, Jong-Sik;Kim, Young-Cho;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.3
    • /
    • pp.51-57
    • /
    • 2010
  • A dual-mode direct conversion receiver is developed in $0.13\;{\mu}m$ RF CMOS process for IEEE 802.11n based wireless LAN and IEEE 802.16e based mobile WiMAX application. The RF receiver covers the frequency band between 2.3 and 2.7 GHz. Three-step gain control is realized in LNA by using current steering technique. Current bleeding technique is applied to the down-conversion mixer in order to lower the flicker noise. A frequency divide-by-2 circuit is included in the receiver for LO I/Q differential signal generation. The receiver consumes 56 mA at 1.4 V supply voltage including all LO buffers. Measured results show a power gain of 32 dB, a noise figure of 4.8 dB, a output $P_{1dB}$ of +6 dBm over the entire band.

3-Gb/s 60-GHz Link With SiGe BiCMOS Receiver Front-End and CMOS Mixed-Mode QPSK Demodulator

  • Ko, Min-Su;Kim, Du-Ho;Rucker, Holger;Choi, Woo-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.256-261
    • /
    • 2011
  • We demonstrate 3-Gb/s wireless link using a 60-GHz receiver front-end fabricated in $0.25-{\mu}m$ SiGe:C bipolar complementary metal oxide semiconductor (BiCMOS) and a mixed-mode quadrature phase-shift keying (QPSK) demodulator fabricated in 60-nm CMOS. The 60-GHz receiver consists of a low-noise amplifier and a down-conversion mixer. It has the peak conversion gain of 16 dB at 62 GHz and the 3-dB intermediate-frequency bandwidth of 6 GHz. The demodulator using 1-bit sampling scheme can demodulate up to 4.8-Gb/s QPSK signals. We achieve successful transmission of 3-Gb/s data in 60 GHz through 2-m wireless link.

A CMOS IR-UWB RFIC for Location Based Systems (위치 기반 시스템을 위한 CMOS IR-UWB RFIC)

  • Lee, Jung Moo;Park, Myung Chul;Eo, Yun Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.67-73
    • /
    • 2015
  • This paper presents a fully integrated 3 - 5 GHz IR-UWB(impulse radio ultra-wide band) RFIC for Location based system. The receiver architecture adopts the energy detection method and for high speed sampling, the equivalent time sampling technique using the integrated DLL(delay locked loop) and 4 bit ADC. The digitally synthesized UWB impulse generator with low power consumption is also designed. The designed IR-UWB RFIC is implemented on $0.18{\mu}m$ CMOS technology. The receiver's sensitivity is -85.7 dBm and the current consumption of receiver and transmitter is 32 mA and 25.5 mA respectively at 1.8 V supply.

Design of 250-Mbps 10-Channel CMOS Optical Receiver Away for Parallel Optical Interconnection (병렬 광 신호 전송을 위한 250-Mbps 10-채널 CMOS 광 수신기 어레이의 설계)

  • Kim, Gwang-O;Choe, Jeong-Yeol;No, Seong-Won;Im, Jin-Eop;Choe, Jung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.6
    • /
    • pp.25-34
    • /
    • 2000
  • This paper describes design of a 250-Mbps 10-channel optical receiver array for parallel optical interconnection with the general-purpose CMOS technology The optical receiver is one of the most important building blocks to determine performance of the parallel optical interconnection system. The chip in CMOS technology makes it possible to implement the cost-effective system also. Each data channel consists of analog front-end including the integrated photo-detector and amplifier chain, digital block with D-FF and off-chip driver. In addition, the chip includes PLL (Phase-Lock Loop) for synchronous data recovery. The chip was fabricated in a 0.65-${\mu}{\textrm}{m}$ 2-poly, 2-metal CMOS technology. Power dissipation of each channel is 330㎽ for $\pm$2.5V supply.

  • PDF

A 950 MHz CMOS RF frequency synthesizer for CDMA wireless transceivers (CDMA 이동 통신 단말기용 950 MHz CMOS RF 주파수 합성기)

  • 김보은;김수원
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.7
    • /
    • pp.18-27
    • /
    • 1997
  • A CMOS 950 MHz frequency synthesizer is designed and fabricated in a 0.8.mu.m standard CMOS process for IS-95-A CDMA mobile communication transceivers To utilize a CMOS ring VCO in a CDMA wireless communication receisver, we employed a QDC (quasi-direct conversion) receiver architecture for CDMA applications. Realized RF frequency synthesizer used as the RF local oscillator for a QDC receiver exhibits a phase noise of -92 dBc/Hz at 885kHz offset from the 950.4 MHz carrier, which complies with IS-95-A CDMA specification. It has a rms jitter of 23.7 ps, and draws 30mA from a 5V supply. Measured I/Q phase error of the 950.4 output signals is 0.7 degree.

  • PDF

A 3.6/4.8 mW L1/L5 Dual-band RF Front-end for GPS/Galileo Receiver in $0.13{\mu}m$ CMOS Technology (L1/L5 밴드 GPS/Galileo 수신기를 위한 $0.13{\mu}m$ 3.6/4.8 mW CMOS RF 수신 회로)

  • Lee, Hyung-Su;Cho, Sang-Hyun;Ko, Jin-Ho;Nam, Il-Ku
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.421-422
    • /
    • 2008
  • In this paper, CMOS RF front-end circuits for an L1/L5 dual-band global positioning system (GPS)/Galileo receiver are designed in $0.13\;{\mu}m$ CMOS technology. The RF front-end circuits are composed of an RF single-to-differential low noise amplifier, an RF polyphase filter, two down-conversion mixers, two transimpedance amplifiers, a IF polyphase filter, four de-coupling capacitors. The CMOS RF front-end circuits provide gains of 43 dB and 44 dB, noise figures of 4 dB and 3 dB and consume 3.6 mW and 4.8 mW from 1.2 V supply voltage for L1 and L5, respectively.

  • PDF

Optimization of Low Power CMOS Baseband Analog Filter-Amplifier Chain for Direct Conversion Receiver

  • Lee, Min-Kyung;Kwon, Ick-Jin;Lee, Kwy-Ro
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.168-173
    • /
    • 2004
  • A low power CMOS receiver baseband analog circuit based on alternating filter and gain stage is reported. For the given specifications of the baseband analog block, optimum allocation of the gain, IIP3 and NF of the each block was performed to minimize current consumption. The fully integrated receiver BBA chain is fabricated in $0.18\;{\mu}m$ CMOS technology and IIP3 of 30 dBm with a gain of 55 dB and noise figure of 31 dB are obtained at 4.86 mW power consumption.

A 5-Gb/s CMOS Optical Receiver with Regulated-Cascode Input Stage for 1.2V Supply (1.2V 전원전압용 RGC 입력단을 갖는 5-Gb/s CMOS 광 수신기)

  • Tak, Ji-Young;Kim, Hye-Won;Shin, Ji-Hye;Lee, Jin-Ju;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.3
    • /
    • pp.15-20
    • /
    • 2012
  • This paper presents a 5-Gb/s optical receiver circuit realized in a $0.13-{\mu}m$ CMOS technologies for the applications of high-speed digital interface. Exploiting modified RGC input stage at the front-end transimpedance amplifier, interleaving active feedback and source degeneration techniques at the limiting amplifier, the proposed optical receiver chip demonstrates the measured results of $72-dB{\Omega}$ transimpedance gain, 4.7-GHz bandwidth, and $400-mV_{pp}$differential output voltage swings up to the data rate of 5-Gb/s. Also, the chip dissipates 66mW in total from a single 1.2-V supply, and occupies the area of $1.6{\times}0.8mm^2$.

Design of a 2.4-GHz Fully Differential Zero-IF CMOS Receiver Employing a Novel Hybrid Balun for Wireless Sensor Network

  • Chang, Shin-Il;Park, Ju-Bong;Won, Kwang-Ho;Shin, Hyun-Chol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.143-149
    • /
    • 2008
  • A novel compact model for a five-port transformer balun is proposed for the efficient circuit design of hybrid balun. Compared to the conventional model, the proposed model provides much faster computation time and more reasonable values for the extracted parameters. The hybrid balun, realized in $0.18\;{\mu}m$ CMOS, achieves 2.8 dB higher gain and 1.9 dB lower noise figure than its passive counterpart only at a current consumption of 0.67 mA from 1.2 V supply. By employing the hybrid balun, a differential zero-IF receiver is designed in $0.18\;{\mu}m$ CMOS for IEEE 802.15.4 ZigBee applications. It is composed of a differential cascode LNA, passive mixers, and active RC filters. Comparative investigations on the three receiver designs, each employing the hybrid balun, a simple transformer balun, and an ideal balun, clearly demonstrate the advantages of the hybrid balun in fully differential CMOS RF receivers. The simulated results of the receiver with the hybrid balun show 33 dB of conversion gain, 4.2 dB of noise figure with 20 kHz of 1/f noise corner frequency, and -17.5 dBm of IIP3 at a current consumption of 5 mA from 1.8 V supply.