Seo, Mi-Kyung;Yun, Ji-Sook;Han, Jung-Won;Tak, Ji-Young;Kim, Hye-Won;Park, Sung-Min
Journal of the Institute of Electronics Engineers of Korea SD
/
v.46
no.11
/
pp.77-83
/
2009
In this paper, a selective feedback low-noise amplifier (LNA) has been realized in a $0.18{\mu}m$ CMOS technology to cover a number of wireless multi-standards. By exploiting notch filter, the SF-LNA demonstrates the measured results of the power gain (S21) of 11.5~13dB and the broadband input/output impedance matching of less than -10dB within the frequency bands of 820~960MHz and 1.5~2.5GHz, respectively. The chip dissipates 15mW from a single 1.8V supply, and occupies the area of $1.17\times1.0mm^2$.
Journal of electromagnetic engineering and science
/
v.14
no.2
/
pp.61-67
/
2014
This paper presents a zero-IF CMOS RF receiver, which supports three channel bandwidths of 5/10/40MHz for LTE-Advanced systems. The receiver operates at IMT-band of 2,500 to 2,690MHz. The simulated noise figure of the overall receiver is 1.6 dB at 7MHz (7.5 dB at 7.5 kHz). The receiver is composed of two parts: an RF front-end and a baseband circuit. In the RF front-end, a RF input signal is amplified by a low noise amplifier and $G_m$ with configurable gain steps (41/35/29/23 dB) with optimized noise and linearity performances for a wide dynamic range. The proposed baseband circuit provides a -1 dB cutoff frequency of up to 40MHz using a proposed wideband OP-amp, which has a phase margin of $77^{\circ}$ and an unit-gain bandwidth of 2.04 GHz. The proposed zero-IF CMOS RF receiver has been implemented in $0.13-{\mu}m$ CMOS technology and consumes 116 (for high gain mode)/106 (for low gain mode) mA from a 1.2 V supply voltage. The measurement of a fabricated chip for a 10-MHz 3G LTE input signal with 16-QAM shows more than 8.3 dB of minimum signal-to-noise ratio, while receiving the input channel power from -88 to -12 dBm.
Journal of the Institute of Electronics Engineers of Korea SD
/
v.43
no.10
s.352
/
pp.1-9
/
2006
In this paper, a couple of 10Gb/s transimpedance amplifiers are realized in a 0.18um standard CMOS technology for optical communication applications. First, the voltage-mode inverter TIA(I-TIA) exploits inverter input configuration to achieve larger effective gm, thus reducing the input impedance and increasing the bandwidth. I-TIA demonstrates $56dB{\Omega}$ transimpedance gain, 14GHz bandwidth for 0.25pF photodiode capacitance, and -16.5dBm optical sensitivity for 0.5A/W responsivity, 9dB extinction ration and $10^{-12}$ BER. However, both its inherent parasitic capacitance and the package parasitics deteriorate the bandwidth significantly, thus mandating very judicious circuit design. Meanwhile, the current-mode RGC TIA incorporates the regulated cascade input configuration, and thus isolates the large input parasitic capacitance from the bandwidth determination more effectively than the voltage-mode TIA. Also, the parasitic components give much less impact on its bandwidth. RGC TIA provides $60dB{\Omega}$ transimpedance gain, 10GHz bandwidth for 0.25pF photodiode capacitance, and -15.7dBm optical sensitivity for 0.5A/W responsivity, 9dB extinction ration and $10^{-12}$ BER. Main drawback is the power dissipation which is 4.5 times larger than the I-TIA.
Kim Shinhoo;Kim Yunjeong;Youn Jaeyoun;Lim Shin-ll;Kang Sung-Mo;Kim Suki
The Journal of Korean Institute of Communications and Information Sciences
/
v.30
no.1A
/
pp.104-112
/
2005
Some design techniques for high speed and low power pipelined 8-bit ADC are described. To perform high-speed operation with relatively low power consumption, open loop architecture is adopted, while closed loop architecture (with MDAC) is used in conventional pipeline ADC. A distributed track and hold amplifier and a cascading structure are also adopted to increase the sampling rate. To reduce the power consumption and the die area, the number of amplifiers in each stage are optimized and reduced with proposed zero-crossing point generation method. At 500-MHz sampling rate, simulation results show that the power consumption is 210mW including digital logic with 1.8V power supply. And the targeted ADC achieves ENOB of about 8-bit with input frequency up to 200-MHz and input range of 1.2Vpp (Differential). The ADC is designed using a $0.18{\mu}m$ 6-Metal 1-Poly CMOS process and occupies an area of $900{\mu}m{\times}500{\mu}m$
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.15
no.5
/
pp.335-342
/
2022
In this paper, a single-bit 3rd-order feedforward delta sigma modulator is proposed for audio applications. The proposed modulator is based on a class-C inverter for low voltage and power applications. For the high-precision requirement, the class-C inverter with regulated cascode structure increases its DC gain and acts as a low-voltage subthreshold amplifier. The proposed Class-C inverter-based modulator is designed and simulated in 180-nm CMOS process. With no performance loss and a low supply voltage compatibility, the proposed class-C inverter-based switched-capacitor modulator achieves high power efficiency. This design achieves an signal-to-noise-and-distortion ratio (SNDR) of 93.9 dB, an signal-to-noise ratio (SNR) of 108 dB, an spurious-free dynamic range (SFDR) of 102 dB, and a dynamic range (DR) of 102 dB at a signal bandwidth of 20 kHz and a sampling frequency of 4 MHz, while only using 280 μW of power consumption from a 0.8-V power supply.
This paper presents an SRAM which uses the technique to equalize the internal cell node by adding an NMOS transistor. Accordingly, the write driver operates rapidly in a differential current of bit lines, and the operation speed of SRAM improves. An SRAM was implemented with a memory cell, a sense amplifier and a write driver. The SRAM obtained the performance of 18% power reduction and improvement of 56% operation speed. And Power delay product was reduced with 63%. The proposed SRAM was designed based on a 0.35um 1P4M CMOS technology.
Journal of the Institute of Electronics Engineers of Korea SD
/
v.48
no.1
/
pp.14-21
/
2011
A 10b 500MS/s $0.13{\mu}m$ CMOS ADC is proposed for 4G wireless communication systems such as a LTE-Advanced and SDR The ADC employs a calibration-free single-channel folding architecture for low power consumption and high speed conversion rate. In order to overcome the disadvantage of high folding rate, at the fine 7b ADC, a cascaded folding-interpolating technique is proposed. Further, a folding amplifier with the folded cascode output stage is also discussed in the block of folding bus, to improve the bandwidth limitation and voltage gain by parasitic capacitances. The chip has been fabricated with $0.13{\mu}m$ 1P6M CMOS technology, the effective chip area is $1.5mm^2$. The measured results of INL and DNL are within 2.95LSB and l.24LSB at 10b resolution, respectively. The SNDR is 54.8dB and SFDR is 63.4dBc when the input frequency is 9.27MHz at sampling frequency of 500MHz. The ADC consumes 150mW($300{\mu}W/MS/s$) including peripheral circuits at 500MS/s and 1.2V(1.5V) power supply.
Journal of the Institute of Electronics Engineers of Korea SD
/
v.45
no.3
/
pp.77-85
/
2008
This work proposes a 12b 130MS/s 108mW $1.8mm^2$ 0.18um CMOS ADC for high-quality video systems such as TFT-LCD displays and digital TVs requiring simultaneously high resolution, low power, and small size at high speed. The proposed ADC optimizes power consumption and chip area at the target resolution and sampling rate based on a three-step pipeline architecture. The input SHA with gate-bootstrapped sampling switches and a properly controlled trans-conductance ratio of two amplifier stages achieves a high gain and phase margin for 12b input accuracy at the Nyquist frequency. A signal-insensitive 3D-fully symmetric layout reduces a capacitor and device mismatch of two MDACs. The proposed supply- and temperature- insensitive current and voltage references are implemented on chip with a small number of transistors. The prototype ADC in a 0.18um 1P6M CMOS technology demonstrates a measured DNL and INL within 0.69LSB and 2.12LSB, respectively. The ADC shows a maximum SNDR of 53dB and 51dB and a maximum SFDR of 68dB and 66dB at 120MS/s and 130MS/s, respectively. The ADC with an active die area of $1.8mm^2$ consumes 108mW at 130MS/s and 1.8V.
Park, Hyung-Gu;Kim, Hongjin;Lee, Dong-Soo;Yu, Chang-Zhi;Ku, Hyunchul;Lee, Kang-Yoon
JSTS:Journal of Semiconductor Technology and Science
/
v.13
no.4
/
pp.272-281
/
2013
This paper presents low power frequency shift keying (FSK) transmitter using all digital PLL (ADPLL) for smart utility network (SUN). In order to operate at low-power and to integrate a small die area, the ADPLL is adopted in transmitter. The phase noise of the ADPLL is improved by using a fine resolution time to digital converter (TDC) and digitally controlled oscillator (DCO). The FSK transmitter is implemented in $0.18{\mu}m$ 1-poly 6-metal CMOS technology. The die area of the transmitter including ADPLL is $3.5mm^2$. The power consumption of the ADPLL is 12.43 mW. And, the power consumptions of the transmitter are 35.36 mW and 65.57 mW when the output power levels are -1.6 dBm and +12 dBm, respectively. Both of them are supplied by 1.8 V voltage source. The frequency resolution of the TDC is 2.7 ps. The effective DCO frequency resolution with the differential MOS varactor and sigma-delta modulator is 2.5 Hz. The phase noise of the ADPLL output at 1.8 GHz is -121.17 dBc/Hz with a 1 MHz offset.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2013.10a
/
pp.726-729
/
2013
In this paper, low power and high slew rate CMOS rail to rail input/output opamp applicable for ouput buffer amp, in LCD source driver IC, is proposed. Proposed op-amp, is realized the characteristics of low power consumption and high slew rate adding the newly designed control stage of class-B to the conventional output stage of class-AB. From the simulation results, we know that the proposed opamp buffer can drive a 1000pF capacitive load with a 6.5V/us slew-rate, while drawing only the the power consumption of 1.19mW from 3.3V power supply.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.