• Title/Summary/Keyword: C.R.I

Search Result 2,874, Processing Time 0.044 seconds

SYMMETRICITY AND REVERSIBILITY FROM THE PERSPECTIVE OF NILPOTENTS

  • Harmanci, Abdullah;Kose, Handan;Ungor, Burcu
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.209-227
    • /
    • 2021
  • In this paper, we deal with the question that what kind of properties does a ring gain when it satisfies symmetricity or reversibility by the way of nilpotent elements? By the motivation of this question, we approach to symmetric and reversible property of rings via nilpotents. For symmetricity, we call a ring R middle right-(resp. left-)nil symmetric (mr-nil (resp. ml-nil) symmetric, for short) if abc = 0 implies acb = 0 (resp. bac = 0) for a, c ∈ R and b ∈ nil(R) where nil(R) is the set of all nilpotent elements of R. It is proved that mr-nil symmetric rings are abelian and so directly finite. We show that the class of mr-nil symmetric rings strictly lies between the classes of symmetric rings and weak right nil-symmetric rings. For reversibility, we introduce left (resp. right) N-reversible ideal I of a ring R if for any a ∈ nil(R), b ∈ R, being ab ∈ I implies ba ∈ I (resp. b ∈ nil(R), a ∈ R, being ab ∈ I implies ba ∈ I). A ring R is called left (resp. right) N-reversible if the zero ideal is left (resp. right) N-reversible. Left N-reversibility is a generalization of mr-nil symmetricity. We exactly determine the place of the class of left N-reversible rings which is placed between the classes of reversible rings and CNZ rings. We also obtain that every left N-reversible ring is nil-Armendariz. It is observed that the polynomial ring over a left N-reversible Armendariz ring is also left N-reversible.

ON A LIE RING OF GENERALIZED INNER DERIVATIONS

  • Aydin, Neset;Turkmen, Selin
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.827-833
    • /
    • 2017
  • In this paper, we define a set including of all $f_a$ with $a{\in}R$ generalized derivations of R and is denoted by $f_R$. It is proved that (i) the mapping $g:L(R){\rightarrow}f_R$ given by g (a) = f-a for all $a{\in}R$ is a Lie epimorphism with kernel $N_{{\sigma},{\tau}}$ ; (ii) if R is a semiprime ring and ${\sigma}$ is an epimorphism of R, the mapping $h:f_R{\rightarrow}I(R)$ given by $h(f_a)=i_{{\sigma}(-a)}$ is a Lie epimorphism with kernel $l(f_R)$ ; (iii) if $f_R$ is a prime Lie ring and A, B are Lie ideals of R, then $[f_A,f_B]=(0)$ implies that either $f_A=(0)$ or $f_B=(0)$.

STUDY OF THE ANNIHILATOR IDEAL GRAPH OF A SEMICOMMUTATIVE RING

  • Alibemani, Abolfazl;Hashemi, Ebrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.415-427
    • /
    • 2019
  • Let R be an associative ring with nonzero identity. The annihilator ideal graph of R, denoted by ${\Gamma}_{Ann}(R)$, is a graph whose vertices are all nonzero proper left ideals and all nonzero proper right ideals of R, and two distinct vertices I and J are adjacent if $I{\cap}({\ell}_R(J){\cup}r_R(J)){\neq}0$ or $J{\cap}({\ell}_R(I){\cup}r_R(I)){\neq}0$, where ${\ell}_R(K)=\{b{\in}R|bK=0\}$ is the left annihilator of a nonempty subset $K{\subseteq}R$, and $r_R(K)=\{b{\in}R|Kb=0\}$ is the right annihilator of a nonempty subset $K{\subseteq}R$. In this paper, we assume that R is a semicommutative ring. We study the structure of ${\Gamma}_{Ann}(R)$. Also, we investigate the relations between the ring-theoretic properties of R and graph-theoretic properties of ${\Gamma}_{Ann}(R)$. Moreover, some combinatorial properties of ${\Gamma}_{Ann}(R)$, such as domination number and clique number, are studied.

Design of Power Controller for Control Rod Drive Mechanism Control System (제어봉 구동장치 제어시스템용 전력함 설계)

  • Nam, J.H.;Lee, J.M.;Jung, S.H.;Shin, J.R.;Cheon, J.M.;Kim, C.K.;Kim, S.J.;Kweon, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2271-2273
    • /
    • 2003
  • Control Rod Control System(CRCS) is to control nuclear reaction of reactor by moving Control Rod Drive Mechanism(CRDM) with speed and direction signal from Reactor Regulating System(RRS). CRCS is made up of two parts : control cabinet and power cabinet. And this paper presents mainly power cabinet design for system reliability. To increase reliability of power cabinet, controller, power supply and communication line arc doubly designed and supervision and diagnosis function are applied.

  • PDF

ON SOME L1-FINITE TYPE (HYPER)SURFACES IN ℝn+1

  • Kashani, Seyed Mohammad Bagher
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.35-43
    • /
    • 2009
  • We say that an isometric immersed hypersurface x : $M^n\;{\rightarrow}\;{\mathbb{R}}^{n+1}$ is of $L_k$-finite type ($L_k$-f.t.) if $x\;=\;{\sum}^p_{i=0}x_i$ for some positive integer p < $\infty$, $x_i$ : $M{\rightarrow}{\mathbb{R}}^{n+1}$ is smooth and $L_kx_i={\lambda}_ix_i$, ${\lambda}_i\;{\in}\;{\mathbb{R}}$, $0{\leq}i{\leq}p$, $L_kf=trP_k\;{\circ}\;{\nabla}^2f$ for $f\;{\in}\'C^{\infty}(M)$, where $P_k$ is the kth Newton transformation, ${\nabla}^2f$ is the Hessian of f, $L_kx\;=\;(L_kx^1,\;{\ldots},\;L_kx^{n+1})$, $x=(x^1,\;{\ldots},\;x^{n+1})$. In this article we study the following(hyper)surfaces in ${\mathbb{R}}^{n+1}$ from the view point of $L_1$-finiteness type: totally umbilic ones, generalized cylinders $S^m(r){\times}{\mathbb{R}}^{n-m}$, ruled surfaces in ${\mathbb{R}}^{n+1}$ and some revolution surfaces in ${\mathbb{R}}^3$.

Preparation and Structure of $Re(NC_6F_5)(PPh_3)_2Cl_3 $ ($Re(NC_6F_5)(PPh_3)_2Cl_3 $화합물의 합성 및 구조)

  • 박병규;김영웅
    • Korean Journal of Crystallography
    • /
    • v.7 no.2
    • /
    • pp.113-119
    • /
    • 1996
  • Reaction of Re(O)(PPh3)2Cl3,I, with 2,3,4,5,6-pentafluoroaniline (C6F5NH2), produced Re(NC6F5)(PPh3)2Cl3, II. The product has been characterized by 1H-NMR, elemental analysis, and X-ray diffraction. II crystallizes in the orthorhombic system, space group Pna21 with cell parameters a=18.763Å, b=14.737(2)Å, c=16.707(3)Å, Z=4. Least-square refinement of the structure led to an R(wR2)factor of 0.0455(0.1148) for 3319 unique reflections of I > 2σ(I) and for 174 variables.

  • PDF

GENERALIZED DERIVATIONS ON SEMIPRIME RINGS

  • De Filippis, Vincenzo;Huang, Shuliang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1253-1259
    • /
    • 2011
  • Let R be a prime ring, I a nonzero ideal of R and n a fixed positive integer. If R admits a generalized derivation F associated with a derivation d such that c for all x, $y{\in}I$. Then either R is commutative or n = 1, d = 0 and F is the identity map on R. Moreover in case R is a semiprime ring and $(F([x,\;y]))^n=[x,\;y]$ for all x, $y{\in}R$, then either R is commutative or n = 1, $d(R){\subseteq}Z(R)$, R contains a non-zero central ideal and for all $x{\in}R$.

ON RADICALLY-SYMMETRIC IDEALS

  • Hashemi, Ebrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.339-348
    • /
    • 2011
  • A ring R is called symmetric, if abc = 0 implies acb = 0 for a, b, c ${\in}$ R. An ideal I of a ring R is called symmetric (resp. radically-symmetric) if R=I (resp. R/$\sqrt{I}$) is a symmetric ring. We first show that symmetric ideals and ideals which have the insertion of factors property are radically-symmetric. We next show that if R is a semicommutative ring, then $T_n$(R) and R[x]=($x^n$) are radically-symmetric, where ($x^n$) is the ideal of R[x] generated by $x^n$. Also we give some examples of radically-symmetric ideals which are not symmetric. Connections between symmetric ideals of R and related ideals of some ring extensions are also shown. In particular we show that if R is a symmetric (or semicommutative) (${\alpha}$, ${\delta}$)-compatible ring, then R[x; ${\alpha}$, ${\delta}$] is a radically-symmetric ring. As a corollary we obtain a generalization of [13].