References
- L. J. Alias and N. Gurbuz, An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures, Geom. Dedicata 121 (2006), 113-127. https://doi.org/10.1007/s10711-006-9093-9
- B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics, 1. World Scientific Publishing Co., Singapore, 1984.
- B. Y. Chen, A report on submanifolds of finite type, Soochow J. Math. 22 (1996), no. 2, 117-337.
- B. Y. Chen, F. Dillen, L. Verstraelen, and L. Vrancken, Ruled surfaces of finite type, Bull. Austral. Math. Soc. 42 (1990), no. 3, 447-453. https://doi.org/10.1017/S0004972700028616
- B. Y. Chen and S. Ishikawa, On classification of some surfaces of revolution of finite type, Tsukuba J. Math. 17 (1993), no. 1, 287-298. https://doi.org/10.21099/tkbjm/1496162145
- B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, 103. Academic Press, Inc., New York, 1983.
Cited by
-
SURFACES IN
$\mathbb{E}^3$ WITH L1-POINTWISE 1-TYPE GAUSS MAP vol.50, pp.3, 2013, https://doi.org/10.4134/BKMS.2013.50.3.935 - Some Integral Formulas for the (r+ 1)th Mean Curvature of a Closed Hypersurface vol.2012, 2012, https://doi.org/10.1155/2012/784028
- Classifications of Canal Surfaces with L1-Pointwise 1-Type Gauss Map vol.83, pp.1, 2015, https://doi.org/10.1007/s00032-015-0233-2
- On Some -Finite-Type Euclidean Hypersurfaces vol.2012, 2012, https://doi.org/10.5402/2012/591296
- Quadric hypersurfaces of L r -finite type vol.54, pp.2, 2013, https://doi.org/10.1007/s13366-012-0118-2
- On some L 1-finite type Euclidean surfaces vol.38, pp.2, 2013, https://doi.org/10.1007/s40306-013-0021-4
- CLASSIFICATIONS OF HELICOIDAL SURFACES WITH L1-POINTWISE 1-TYPE GAUSS MAP vol.50, pp.4, 2013, https://doi.org/10.4134/BKMS.2013.50.4.1345
- HYPERSURFACES IN 𝕊4THAT ARE OF Lk-2-TYPE vol.53, pp.3, 2016, https://doi.org/10.4134/BKMS.b150401
- Surfaces in $$\mathbb {S}^3$$ S 3 of $$L_1$$ L 1 -2-Type 2018, https://doi.org/10.1007/s40840-016-0423-2
- Rotational hypersurfaces with $L_r$-pointwise 1-type Gauss map vol.36, pp.3, 2018, https://doi.org/10.5269/bspm.v36i3.31263