DOI QR코드

DOI QR Code

ON SOME L1-FINITE TYPE (HYPER)SURFACES IN ℝn+1

  • Published : 2009.01.31

Abstract

We say that an isometric immersed hypersurface x : $M^n\;{\rightarrow}\;{\mathbb{R}}^{n+1}$ is of $L_k$-finite type ($L_k$-f.t.) if $x\;=\;{\sum}^p_{i=0}x_i$ for some positive integer p < $\infty$, $x_i$ : $M{\rightarrow}{\mathbb{R}}^{n+1}$ is smooth and $L_kx_i={\lambda}_ix_i$, ${\lambda}_i\;{\in}\;{\mathbb{R}}$, $0{\leq}i{\leq}p$, $L_kf=trP_k\;{\circ}\;{\nabla}^2f$ for $f\;{\in}\'C^{\infty}(M)$, where $P_k$ is the kth Newton transformation, ${\nabla}^2f$ is the Hessian of f, $L_kx\;=\;(L_kx^1,\;{\ldots},\;L_kx^{n+1})$, $x=(x^1,\;{\ldots},\;x^{n+1})$. In this article we study the following(hyper)surfaces in ${\mathbb{R}}^{n+1}$ from the view point of $L_1$-finiteness type: totally umbilic ones, generalized cylinders $S^m(r){\times}{\mathbb{R}}^{n-m}$, ruled surfaces in ${\mathbb{R}}^{n+1}$ and some revolution surfaces in ${\mathbb{R}}^3$.

Keywords

References

  1. L. J. Alias and N. Gurbuz, An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures, Geom. Dedicata 121 (2006), 113-127. https://doi.org/10.1007/s10711-006-9093-9
  2. B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics, 1. World Scientific Publishing Co., Singapore, 1984.
  3. B. Y. Chen, A report on submanifolds of finite type, Soochow J. Math. 22 (1996), no. 2, 117-337.
  4. B. Y. Chen, F. Dillen, L. Verstraelen, and L. Vrancken, Ruled surfaces of finite type, Bull. Austral. Math. Soc. 42 (1990), no. 3, 447-453. https://doi.org/10.1017/S0004972700028616
  5. B. Y. Chen and S. Ishikawa, On classification of some surfaces of revolution of finite type, Tsukuba J. Math. 17 (1993), no. 1, 287-298. https://doi.org/10.21099/tkbjm/1496162145
  6. B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, 103. Academic Press, Inc., New York, 1983.

Cited by

  1. SURFACES IN $\mathbb{E}^3$ WITH L1-POINTWISE 1-TYPE GAUSS MAP vol.50, pp.3, 2013, https://doi.org/10.4134/BKMS.2013.50.3.935
  2. Some Integral Formulas for the (r+ 1)th Mean Curvature of a Closed Hypersurface vol.2012, 2012, https://doi.org/10.1155/2012/784028
  3. Classifications of Canal Surfaces with L1-Pointwise 1-Type Gauss Map vol.83, pp.1, 2015, https://doi.org/10.1007/s00032-015-0233-2
  4. On Some -Finite-Type Euclidean Hypersurfaces vol.2012, 2012, https://doi.org/10.5402/2012/591296
  5. Quadric hypersurfaces of L r -finite type vol.54, pp.2, 2013, https://doi.org/10.1007/s13366-012-0118-2
  6. On some L 1-finite type Euclidean surfaces vol.38, pp.2, 2013, https://doi.org/10.1007/s40306-013-0021-4
  7. CLASSIFICATIONS OF HELICOIDAL SURFACES WITH L1-POINTWISE 1-TYPE GAUSS MAP vol.50, pp.4, 2013, https://doi.org/10.4134/BKMS.2013.50.4.1345
  8. HYPERSURFACES IN 𝕊4THAT ARE OF Lk-2-TYPE vol.53, pp.3, 2016, https://doi.org/10.4134/BKMS.b150401
  9. Surfaces in $$\mathbb {S}^3$$ S 3 of $$L_1$$ L 1 -2-Type 2018, https://doi.org/10.1007/s40840-016-0423-2
  10. Rotational hypersurfaces with $L_r$-pointwise 1-type Gauss map vol.36, pp.3, 2018, https://doi.org/10.5269/bspm.v36i3.31263