• Title/Summary/Keyword: C*-algebra

Search Result 321, Processing Time 0.035 seconds

LEFT JORDAN DERIVATIONS ON BANACH ALGEBRAS AND RELATED MAPPINGS

  • Jung, Yong-Soo;Park, Kyoo-Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.151-157
    • /
    • 2010
  • In this note, we obtain range inclusion results for left Jordan derivations on Banach algebras: (i) Let $\delta$ be a spectrally bounded left Jordan derivation on a Banach algebra A. Then $\delta$ maps A into its Jacobson radical. (ii) Let $\delta$ be a left Jordan derivation on a unital Banach algebra A with the condition sup{r$(c^{-1}\delta(c))$ : c $\in$ A invertible} < $\infty$. Then $\delta$ maps A into its Jacobson radical. Moreover, we give an exact answer to the conjecture raised by Ashraf and Ali in [2, p. 260]: every generalized left Jordan derivation on 2-torsion free semiprime rings is a generalized left derivation.

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON C*-ALGEBRAS

  • Taghavi, Ali;Akbari, Aboozar
    • Korean Journal of Mathematics
    • /
    • v.26 no.2
    • /
    • pp.285-291
    • /
    • 2018
  • Let $\mathcal{A}$ be a unital $C^*$-algebra. It is shown that additive map ${\delta}:{\mathcal{A}}{\rightarrow}{\mathcal{A}}$ which satisfies $${\delta}({\mid}x{\mid}x)={\delta}({\mid}x{\mid})x+{\mid}x{\mid}{\delta}(x),\;{\forall}x{{\in}}{\mathcal{A}}_N$$ is a Jordan derivation on $\mathcal{A}$. Here, $\mathcal{A}_N$ is the set of all normal elements in $\mathcal{A}$. Furthermore, if $\mathcal{A}$ is a semiprime $C^*$-algebra then ${\delta}$ is a derivation.

ASCOLI'S THEOREM AND THE PURE STATES OF A C*-ALGEBRA

  • Mckennon, Kelly
    • Kyungpook Mathematical Journal
    • /
    • v.28 no.1
    • /
    • pp.23-34
    • /
    • 1988
  • A version of Ascoli's Theorem (equating compact and equicontinuous sets) is presented in the context of convergence spaces. This theorem and another, (involving equicontinuity) are applied to characterize compact subsets of quasi-multipliers of a $C^*$-algebra B, and to characterize the compact subsets of the state space of B. The classical Ascoli Theorem states that, for pointwise pre-compact families F of continuous functions from a locally compact space Y to a complete Hausdorff uniform space Z, equicontinuity of F is equivalent to relative compactness in the compact-open topology([4] 7.17). Though this is one of the most important theorems of modern analysis, there are some applications of the ideas inherent in this theorem which arc not readily accessible by direct appeal to the theorem. When one passes to so-called "non-commutative analysis", analysis of non-commutative $C^*$-algebras, the analogue of Y may not be relatively compact, while the conclusion of Ascoli's Theorem still holds. Consequently it seems plausible to establish a more general Ascoli Theorem which will directly apply to these examples.

  • PDF

COMPOSITION OPERATORS ON UNIFORM ALGEBRAS AND THE PSEUDOHYPERBOLIC METRIC

  • Galindo, P.;Gamelin, T.W.;Lindstrom, M.
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.1-20
    • /
    • 2004
  • Let A be a uniform algebra, and let $\phi$ be a self-map of the spectrum $M_A$ of A that induces a composition operator $C_{\phi}$, on A. It is shown that the image of $M_A$ under some iterate ${\phi}^n$ of \phi is hyperbolically bounded if and only if \phi has a finite number of attracting cycles to which the iterates of $\phi$ converge. On the other hand, the image of the spectrum of A under $\phi$ is not hyperbolically bounded if and only if there is a subspace of $A^{**}$ "almost" isometric to ${\ell}_{\infty}$ on which ${C_{\phi}}^{**}$ "almost" an isometry. A corollary of these characterizations is that if $C_{\phi}$ is weakly compact, and if the spectrum of A is connected, then $\phi$ has a unique fixed point, to which the iterates of $\phi$ converge. The corresponding theorem for compact composition operators was proved in 1980 by H. Kamowitz [17].

A NUMBER SYSTEM IN ℝn

  • Jeong, Eui-Chai
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.6
    • /
    • pp.945-955
    • /
    • 2004
  • In this paper, we establish a number system in $R^n$ which arises from a Haar wavelet basis in connection with decompositions of certain Cuntz algebra representations on $L^2$( $R^n$). Number systems in $R^n$ are also of independent interest [9]. We study radix-representations of $\chi$ $\in$ $R^n$: $\chi$:$\alpha$$_{ι}$ $\alpha$$_{ι-1}$$\alpha$$_1$$\alpha$$_{0}$$\alpha$$_{-1}$ $\alpha$$_{-2}$ … as $\chi$= $M^{ι}$$\alpha$$_{ι}$ $\alpha$+…M$\alpha$$_1$$\alpha$$_{0}$$M^{-1}$ $\alpha$$_{-1}$$M^{-2}$ $\alpha$$_{-2}$ +… where each $\alpha$$_{k}$ $\in$ D, and D is some specified digit set. Our analysis uses iteration techniques of a number-theoretic flavor. The view-point is a dual one which we term fractals in the large vs. fractals in the small,illustrating the number theory of integral lattice points vs. fractions.s vs. fractions.

UNITARY INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALG𝓛

  • JO, YOUNG SOO;KANG, JOO HO;PARK, DONGWAN
    • Honam Mathematical Journal
    • /
    • v.27 no.4
    • /
    • pp.649-654
    • /
    • 2005
  • Given operators X and Y acting on a separable complex Hilbert space ${\mathcal{H}}$, an interpolating operator is a bounded operator A such that AX = Y. We show the following: Let $Alg{\mathcal{L}}$ be a subspace lattice acting on a separable complex Hilbert space ${\mathcal{H}}$ and let $X=(x_{ij})$ and $Y=(y_{ij})$ be operators acting on ${\mathcal{H}}$. Then the following are equivalent: (1) There exists a unitary operator $A=(a_{ij})$ in $Alg{\mathcal{L}}$ such that AX = Y. (2) There is a bounded sequence {${\alpha}_n$} in ${\mathbb{C}}$ such that ${\mid}{\alpha}_j{\mid}=1$ and $y_{ij}={\alpha}_jx_{ij}$ for $j{\in}{\mathbb{N}}$.

  • PDF

DILATION OF PROJECTIVE ISOMETRIC REPRESENTATION ASSOCIATED WITH UNITARY MULTIPLIER

  • Im, Man Kyu;Ji, Un Cig;Kim, Young Yi;Park, Su Hyung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.367-373
    • /
    • 2007
  • For a unital *-subalgebra of the space $\mathcal{L}^a(X)$ of all adjointable maps on a Hilbert $\mathcal{B}$-module X with a $C^*$-algebra $\mathcal{B}$, we study unitary operator (in such algebra)-valued multiplier ${\sigma}$ on a normal, generating subsemigroup S of a group G with its extension to G. A dilation of a projective isometric ${\sigma}$-representation of S is established as a projective unitary ${\rho}$-representation of G for a suitable unitary operator (in some algebra)-valued multiplier ${\rho}$ associated with the multiplier ${\sigma}$ which is explicitly constructed.

  • PDF

THE STRUCTURE OF A CONNECTED LIE GROUP G WITH ITS LIE ALGEBRA 𝖌=rad(𝖌)⊕ 𝔰𝒍(2,𝔽)

  • WI, MI-AENG
    • Honam Mathematical Journal
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 1995
  • The purpose of this study is to construct the structure of the connected Lie group G with its Lie algebra $g=rad(g){\oplus}sl(2, \mathbb{F})$, which conforms to Stellmacher's [4] Pushing Up. The main idea of this paper comes from Stellmacher's [4] Pushing Up. Stelhnacher considered Pushing Up under a finite p-group. This paper, however, considers Pushing Up under the connected Lie group G with its Lie algebra $g=rad(g){\oplus}sl(2, \mathbb{F})$. In this paper, $O_p(G)$ in [4] is Q=exp(q), where q=nilrad(g) and a Sylow p-subgroup S in [7] is S=exp(s), where $s=q{\oplus}\{\(\array{0&*\\0&0}\){\mid}*{\in}\mathbb{F}\}$. Showing the properties of the connected Lie group and the subgroups of the connected Lie group with relations between a connected Lie group and its Lie algebras under the exponential map, this paper constructs the subgroup series C_z(G)

  • PDF

ON GENERALIZED JORDAN DERIVATIONS OF GENERALIZED MATRIX ALGEBRAS

  • Ashraf, Mohammad;Jabeen, Aisha
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.733-744
    • /
    • 2020
  • Let 𝕽 be a commutative ring with unity, A and B be 𝕽-algebras, M be a (A, B)-bimodule and N be a (B, A)-bimodule. The 𝕽-algebra 𝕾 = 𝕾(A, M, N, B) is a generalized matrix algebra defined by the Morita context (A, B, M, N, 𝝃MN, ΩNM). In this article, we study generalized derivation and generalized Jordan derivation on generalized matrix algebras and prove that every generalized Jordan derivation can be written as the sum of a generalized derivation and antiderivation with some limitations. Also, we show that every generalized Jordan derivation is a generalized derivation on trivial generalized matrix algebra over a field.

On Self-commutator Approximants

  • Duggal, Bhagwati Prashad
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • Let B(X) denote the algebra of operators on a complex Banach space X, H(X) = {h ${\in}$ B(X) : h is hermitian}, and J(X) = {x ${\in}$ B(X) : x = $x_1$ + $ix_2$, $x_1$ and $x_2$ ${\in}$ H(X)}. Let ${\delta}_a$ ${\in}$ B(B(X)) denote the derivation ${\delta}_a$ = ax - xa. If J(X) is an algebra and ${\delta}_a^{-1}(0){\subseteq}{\delta}_{a^*}^{-1}(0)$ for some $a{\in}J(X)$, then ${\parallel}a{\parallel}{\leq}{\parallel}a-(x^*x-xx^*){\parallel}$ for all $x{\in}J(X){\cap}{\delta}_a^{-1}(0)$. The cases J(X) = B(H), the algebra of operators on a complex Hilbert space, and J(X) = $C_p$, the von Neumann-Schatten p-class, are considered.