Browse > Article
http://dx.doi.org/10.4134/JKMS.2004.41.6.945

A NUMBER SYSTEM IN ℝn  

Jeong, Eui-Chai (Department of Mathematics Chung-Ang University)
Publication Information
Journal of the Korean Mathematical Society / v.41, no.6, 2004 , pp. 945-955 More about this Journal
Abstract
In this paper, we establish a number system in $R^n$ which arises from a Haar wavelet basis in connection with decompositions of certain Cuntz algebra representations on $L^2$( $R^n$). Number systems in $R^n$ are also of independent interest [9]. We study radix-representations of $\chi$ $\in$ $R^n$: $\chi$:$\alpha$$_{ι}$ $\alpha$$_{ι-1}$$\alpha$$_1$$\alpha$$_{0}$$\alpha$$_{-1}$ $\alpha$$_{-2}$ … as $\chi$= $M^{ι}$$\alpha$$_{ι}$ $\alpha$+…M$\alpha$$_1$$\alpha$$_{0}$$M^{-1}$ $\alpha$$_{-1}$$M^{-2}$ $\alpha$$_{-2}$ +… where each $\alpha$$_{k}$ $\in$ D, and D is some specified digit set. Our analysis uses iteration techniques of a number-theoretic flavor. The view-point is a dual one which we term fractals in the large vs. fractals in the small,illustrating the number theory of integral lattice points vs. fractions.s vs. fractions.
Keywords
C*-algebra; radix-representation; representation of c*-algebra; wavelet basis; fractal;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Ola Bratteli and P. E. T. Jorgensen, Isometries, shifts, Cuntz algebras multiresolution wavelet analysis of scale N, Integral Equ. Operator Theory 28 (1997), 382-443.   DOI
2 O. Bratteli, P. E. T. Jorgensen, and G. L. Price, Endomorpism of B(H), Proceedings of Symposia in prime Mathematics 59 (1996), 93–138.
3 Joachim Cuntz, Simple $C^{\ast}$-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173–185.   DOI
4 Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math. 61 (1992).
5 K. Grochenig and W. R. Madych, Multiresolution analysis, Haar bases, and self-similar tilings of $R^n$, IEEE Trans. Inform. Theory 38 (1992), 556–568.   DOI   ScienceOn
6 Eui-Chai Jeong, Irreducible representations of the cuntz algebra $O_n$, Proc. Amer. Math. Soc. 127 (1999), 3582–3590.   DOI   ScienceOn
7 Donald E. Knuth, The art of computer programming: Vol. 2: Seminumerical algorithms, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass., 1969.
8 M. Laca, Endomorphisms of B(H) and Cuntz algebras, J. Operator Theory 30 (1993), 85–180.
9 J. C. Lagarias and Yang Wang, Integral self-affine tiles in $R^n$, II: Lattice tilings, J. Fourier Anal. Appl. 3 (1997), 83–102.   DOI
10 A. M. Odlyzko, non-negative digit sets, Proc. London Math. Soc. 37 (1978), no. 3, 213–229.   DOI
11 B. M. Stewart, Theory of Numbers, The Macmillan Co., New York, 1964.
12 Christoph Bandt, Self-similar sets V: Integer matrices and fractal tilings of $R^n$, Proc. Amer. Math. Soc. 112 (1991), 549–562.   DOI
13 Ola Bratteli and P. E. T. Jorgensen, Iterated function system and permutation representations of the Cuntz algebra, Mem. Amer. Math. Soc., to appear.