DOI QR코드

DOI QR Code

COMPOSITION OPERATORS ON UNIFORM ALGEBRAS AND THE PSEUDOHYPERBOLIC METRIC

  • Galindo, P. (Departamento de Analisis Matematico Universidad de Valencia) ;
  • Gamelin, T.W. (Department of Mathematics UCLA) ;
  • Lindstrom, M. (Department of Mathematics Abo Akademi University)
  • Published : 2004.01.01

Abstract

Let A be a uniform algebra, and let $\phi$ be a self-map of the spectrum $M_A$ of A that induces a composition operator $C_{\phi}$, on A. It is shown that the image of $M_A$ under some iterate ${\phi}^n$ of \phi is hyperbolically bounded if and only if \phi has a finite number of attracting cycles to which the iterates of $\phi$ converge. On the other hand, the image of the spectrum of A under $\phi$ is not hyperbolically bounded if and only if there is a subspace of $A^{**}$ "almost" isometric to ${\ell}_{\infty}$ on which ${C_{\phi}}^{**}$ "almost" an isometry. A corollary of these characterizations is that if $C_{\phi}$ is weakly compact, and if the spectrum of A is connected, then $\phi$ has a unique fixed point, to which the iterates of $\phi$ converge. The corresponding theorem for compact composition operators was proved in 1980 by H. Kamowitz [17].

Keywords

References

  1. Proc. Amer. Math. Soc. v.90 A reflexive space of holomorphic functions in infinitely many variables R.Alencar;R.Aron;S.Dineen https://doi.org/10.2307/2044483
  2. Canad. J. Math. v.47 Weak-star continuous analytic functions R.Aron;B.Cole;T.Gamelin https://doi.org/10.4153/CJM-1995-035-1
  3. Studia Math. v.123 Compact homomorphisms between algebras of analytic functions R.Aron;P.Galindo;M.Lindstrom
  4. Trans. Math. Soc. v.314 A uniform algebra of analytic functions on a Banach space T.K.Carne;B.Cole;T.Gamelin https://doi.org/10.2307/2001402
  5. LNM 1363 Tsirelson's Space P.Casazza;T.Shura
  6. Holomorphy and Calculus in Normed Spaces S.Chae
  7. Amer. J. Math. v.94 Linear extension operators for spaces and algebras of functions A.Davie https://doi.org/10.2307/2373598
  8. The Schwarz Lemma S.Dineen
  9. Monatsh. Math. v.128 Gleason parts and weakly compact homomorphisms between uniform Banach algebras P.Galindo;M.Lindstrom https://doi.org/10.1007/s006050050048
  10. Proc. Amer. Math. Soc. v.128 Weakly compact composition operators between algebras of bounded analytic functions P.Galindo;M.Lindstrom;R.Ryan https://doi.org/10.1090/S0002-9939-99-05196-5
  11. Amer. Math. Soc. Uniform Algebras, second edition T.Gamelin
  12. Approximation Theory Uniform algebras on plane sets T.Gamelin;G.G.Lorentz(ed.)
  13. Recent Progress in Functional Analysis Homomorphisms of uniform algebras T.Gamelin;Bierstedt(ed.)(et al.)
  14. Amer. J. Math. v.92 Distinguished homomorphisms and fiber algebras T.Gamelin;J.Garnett https://doi.org/10.2307/2373334
  15. Bounded Analytic Functions J.Garnett
  16. Advances in Holomorphy Schwarz-Pick systems of pseudometrics for domains in normed linear spaces L.Harris;J.Barroso(ed.)
  17. Pacific J. Math. v.89 Compact endomorphisms of Banach algebras H.Kamowitz https://doi.org/10.2140/pjm.1980.89.313
  18. Proc. Amer. Math. Soc. v.107 Compact endomorphisms of Banach algebras Ⅱ H.Kamowitz;S.Scheinberg;D.Wortman https://doi.org/10.2307/2047832
  19. Dissertation, Karlsruhe Kompakte multiplikative Operatoren auf uniformen Algebren U.Klein
  20. Math. Ann. v.163 Zur abstrakten Theorie der analytischen Funktionen Ⅱ H.Konig https://doi.org/10.1007/BF02052482
  21. Tokyo J. Math. v.4 Compact homomorphisms on function algebras S.Ohno;J.Wada https://doi.org/10.3836/tjm/1270215742
  22. Monatsh. Math. v.121 Some results about the spectrum of commutative Banach algebras under the weak topology and applications A.Ulger https://doi.org/10.1007/BF01308725

Cited by

  1. Fredholm composition operators on algebras of analytic functions on Banach spaces vol.258, pp.5, 2010, https://doi.org/10.1016/j.jfa.2009.10.020
  2. Interpolating sequences on uniform algebras vol.48, pp.2-4, 2009, https://doi.org/10.1016/j.top.2009.11.009
  3. Quasicompact and Riesz endomorphisms of Banach algebras vol.225, pp.2, 2005, https://doi.org/10.1016/j.jfa.2005.04.002