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DILATION OF PROJECTIVE ISOMETRIC
REPRESENTATION

ASSOCIATED WITH UNITARY MULTIPLIER

Man Kyu Im∗, Un Cig Ji∗∗, Young Yi Kim∗∗∗, and Su Hyung
Park∗∗∗∗

Abstract. For a unital ∗-subalgebra of the space La(X) of all ad-
jointable maps on a Hilbert B-module X with a C∗-algebra B, we
study unitary operator (in such algebra)–valued multiplier σ on a
normal, generating subsemigroup S of a group G with its exten-
sion to G. A dilation of a projective isometric σ–representation of
S is established as a projective unitary ρ–representation of G for
a suitable unitary operator (in some algebra)–valued multiplier ρ
associated with the multiplier σ which is explicitly constructed.

1. Introduction

In recent years, many authors have been studing the problem of ex-
tending (unit circle-valued) multipliers on a subsemigroup S of a group
G to multipliers on G, see [1], [2], [3], [8] and the references cited therein.
In particular, in [11], Murphy gave an elementary proof of the multiplier
extension theorem in [8] and studied a number of other extension the-
orems. Also, the author proved a more general dilation theorem than
that proved by Laca and Raeburn using Kolmogorov decompositions of
positive definite kernels. For the study of dilation theory, we refer to [4],
[7], [10]. In [6], we obtained extension theorems of unitary operator (in
a von Neumann subalgebra) valued multiplier with suitable motivation
and dilation theory.

In this paper, we study problems of extending multipliers and dila-
tion theory obtained in [6] to the case of a ∗-subalgebra of the space
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of all adjointable maps on a Hilbert C∗-module. Recently, in [5], the
author studied the dilations of projective σ−representations of a normal
generating subsemigroup of a group G with unit circle-valued multiplier.
Since Hilbert C∗-modules introduced by Kaplansky [12] is the general-
izations of Hilbert space by allowing the inner product to take values
in a C∗-algebra such study is natural. However, since several important
properties held in the case of Hilbert space are not to be held in the case
of Hilbert C∗−modules, it has to be handled carefully. For the more
study, we refer to [9].

The paper is organized as follows: In Section 2 we study unitary op-
erator (in a ∗-subalgebra of the space of all adjointable maps on Hilbert
C∗-module)–valued multipliers and its extension theorem. In Section 3
we recall the Kolmogorov decompositions of positive definite kernels in
[13] with connection to unitary operator–valued multipliers. In Section
4 we study the dilation theory.

2. Unitary multipliers

Let X and Y be right Hilbert B−modules with a C∗-algebra B. We
define La(X,Y) to be the set of adjointable bounded linear maps from X
into Y. For the notational convenience, we denote La(X,X) by La(X).
Then it is well-known that La(X) is a ∗−algebra, in fact, C∗−algebra.

Let S denote a semigroup with unity, i.e., S is a set with an associative
binary operation usually written multiplicatively and a unit element e.
A subsemigroup S of a group G is said to be normal, if xSx−1 ∈ S for
any x ∈ G. If for all x in G, there exist s, t ∈ S such that x = s−1t,
then we say that S generates G. A ∗-semigroup is a semigroup with an
involution ∗ : S 3 s 7→ s∗ ∈ S such that (st)∗ = t∗s∗ and (s∗)∗ = s for
all s, t ∈ S.

Let B be a C∗-algebra and X a Hilbert B-module. For a unital
∗−subalgebra A of La(X), let A′ be the commutant of A and A′′ = (A′)′
the double commutant of A.

The following definition of unitary operator valued multiplier is mo-
tivated by the definition in [6].

Definition 2.1. Let A be a unital ∗−subalgebra of La(X). The
U(A)−multiplier on a semigroup S is a U(Z(A))-valued map defined on
S × S satisfying that

(i) σ(s, e) = σ(e, s) = 1 for any s ∈ S;
(ii) σ(s, t)σ(st, u) = σ(s, tu)σ(t, u) for any s, t, u ∈ S,
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where Z(A) ≡ A∩A′ is the center of A and U(C) the group of all unitary
operators in a ∗−subalgebra C.

Definition 2.2. Let σ be a U(A)-multiplier on a semigroup S. A
map V : S 3 s 7→ Vs ∈ A is a projective isometric σ-representation of S
if for any s, t ∈ S

(i) Vs is an isometry and Ve = 1;
(ii) Vst = σ(s, t)VsVt.

If Vs is unitary for all s ∈ S, we say that V is a projective unitary σ-
representation of S. It is well–known that V is a projective isometric σ-
representation of a group S, then V is automatically a projective unitary
σ-representation, in fact, V ∗

s = σ(s−1, s)Vs−1 for all s ∈ S.

Remark 2.3. Let S be a semigroup and let σ a U(A′)-valued map
defined on S × S. If a map V : S → A satisfies conditions (i) and (ii) in
Definition 2.2, then σ becomes a U(Z(A))-valued map. In fact, for any
s, t ∈ S, σ(s, t) = V ∗

t V ∗
s Vst ∈ A.

Theorem 2.4. Let S be a normal, generating subsemigroup of a
group G and let σ a U(A)-multiplier on S. Then σ can be extended to
G as a U(A)-multiplier.

Proof. The proof is a simple modification of the proof of Theorem 2.8
in [6].

3. Kolmogorov decomposition and unitary multiplier

Let G be a (non-empty) set. A map K : G×G −→ La(X) is called a
kernel and the set of all such kernels is denoted byK(G;La(X)). A kernel
K ∈ K(G;La(X)) is said to be positive definite if for any positive integer
n ∈ N and g1, · · · , gn in G, the matrix (K(gi, gj))1≤i,j≤n is positive. Let
X′ be another Hilbert B-module and let V a map from G into La(X, X′).
Put

(3.1) K(g, h) = V (g)∗V (h), g, h ∈ X.

Then K is positive definite.
Let K ∈ K(G;La(X)). If there exists a Hilbert B-module X′, denoted

by XV , and a map V : G → La(X, XV ) such that (3.1) holds, then V is
called a Kolmogorov decomposition of K. If

(3.2) XV = LS{V (g)x | g ∈ G, x ∈ X},
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then V is said to be minimal. The right hand side of (3.2) is the closure
of the linear span of {V (g)x | g ∈ G, x ∈ X}. Two Kolmogorv decompo-
sition V and V ′ are said to be equivalent if there is a unitary mapping
U : XV → XV ′ such that V ′(g) = UV (g) for any g ∈ G.

Theorem 3.1 ([13]). Let K ∈ K(G;La(X)). The kernel has a Kol-
mogorov decomposition if and only if it is a positive definite kernel.

Theorem 3.2. Let K : G × G → A be a positive definite kernel
and V a minimal Kolmogorov decomposition of K. Then there exists a
*-homomorphism Φ : U(A′) → La(XV ) such that for any g ∈ G,

V (g)T = Φ(T )V (g), T ∈ U(A′).

Moreover, for each T ∈ U(A′), Φ(T ) is unitary on XV .

Proof. For the complete proof we refer to the proof of Theorem 3.2 in
[6]. Now we sketch the proof. For each T ∈ U(A′), we define a unitary
T̃ by

T̃ (V (g)x) = V (g)Tx, g ∈ G, x ∈ X.

Then by direct computation we see that for any T, S ∈ U(A′), g, h ∈ G
and x, y ∈ X

T̃ S(V (g)x) = T̃ S̃(V (g)x)

and

〈T̃ ∗(V (g)x), V (h)y〉XV
= 〈T̃ ∗V (g)x, V (h)y〉XV

.

Hence T̃ S = T̃ S̃ and T̃ ∗ = T̃ ∗ for any T, S ∈ U(A′). Now, define
a *-homomorphism Φ from U(A′) into La(XV ) by Φ(T ) = T̃ for T ∈
U(A′).

Theorem 3.3. Let S be a semigroup and Φ the *-homomorphism
given as in Theorem 3.2. For each U(A)−multiplier σ on S, Φ(σ) is
a U(N)-multiplier on S, where N is the unital ∗-algebra generated by
Φ(U(Z(A))) and Φ(σ)(s, t) = Φ(σ(s, t)) for any s, t ∈ S.

Proof. The proof is immediate since Φ is a ∗-homomorphism and σ
is a U(A)–multiplier.

Remark 3.4. Since ST = TS for any S, T ∈ Φ(U(Z(A))), the unital
∗-algebra N generated by Φ(U(Z(A))) is commutative.
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4. Dilation theory

Let S be a normal, generating subsemigroup of a group G. Let A
be a ∗−subalgebra of La(X) and σ a U(A)−multiplier on G. A map
W : G → A is σ-positive definite if the map K on G × G defined by
setting K(g, h) = σ(g−1, g)σ(g−1, h)∗Wg−1h is positive definite. We de-
fine a (minimal) Kolmogorov decomposition for W to be a (minimal)
Kolmogorov decomposition for K.

Theorem 4.1. Let σ be a U(A)−multiplier and W : G → A a σ-
positive definite map. There exist a Hilbert B-module X′, an operator
T ∈ La(X, X′) and a unitary Φ(σ)-representation U of G on X′ such
that Wg = T ∗UgT for any g ∈ G, where Φ is the ∗-homomorphism given
as in Theorem 3.2. Moreover, X′ is the closed linear span of the set⋃

g∈G UgT (X).

Proof. The proof is same as the proof of Theorem 4.1 in [6].

The projective unitary Φ(σ)-representation U is called a dilation of
W . If W is unital, i.e., We = 1, then T ∗T = T ∗UeT = We = 1. Thus T
is an isometry.

The following corollary is immediate by applying Theorem 4.1 with
the unital ∗−algebra A = La(X).

Corollary 4.2 ([5]). Let G be a group and let σ be a unit circle
valued multiplier of G. If a map W : G → La(X) is σ−positive definite,
then there exist a Hilbert B−module X′, T ∈ La(X, X′) and unitary
σ−representation U of G on X′ such that Wg = T ∗UgT for all g ∈ G.
Moreover, X′ is the closed linear span of

⋃
g∈G UgTX.

Theorem 4.3. Let σ be a U(A)-multiplier on G and let W : S → A a
projective isometric σ-representation with U(A)-multiplier σ on S. Then
there exists a unique extension W of W to G such that

(i) W gs = σ(g, s)W gWs for any g ∈ G and s ∈ S;

(ii) W
∗
g = σ(g−1, g)W g−1 for any g ∈ G.

Moreover, W is σ−positive definite.

Proof. For the proof, we refer to the proof of Theorem 4.4 in [6].

Theorem 4.4. Let σ be a U(A)-multiplier on G and let W : S → A
a projective isometric σ-representation with U(A)-multiplier σ on S.
Then there exist a Hilbert B-module X′, an isometry T ∈ La(X, X′) and
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a unitary Φ(σ)−representation U such that Ws = T ∗UsT for all s ∈ S.
Moreover, X′ is the closed linear span of the set

⋃
g∈G UgT (X).

Proof. By Theorem 4.3, the extension W of W to G is σ-positive
definite. Therefore, by applying Theorem 4.1, the proof is immediate.

The following corollary is immediate by applying Theorem 4.1 with
the unital ∗−algebra A = La(X).

Corollary 4.5 ([5]). Let S be a normal generating subsemigroup
of a group G and σ be a unit circle valued multiplier of G. If W : S →
La(X) is a projective isometric representation with the restriction of σ
to S as the associated multiplier, then there exist a Hilbert B−module
X′, an isometry T ∈ La(X,X′) and unitary σ−representation U of G on
X′ such that Ws = T ∗UsT for all s ∈ S. Moreover, X′ is the closed linear
span of ∪g∈GUgTX.

Proof. By applying Theorem 4.4 with the unital ∗−algebra A =
La(X), the proof is immediate.

Remark 4.6. If C∗−algebra B is given by C, then a Hilbert B−module
X becomes a Hilbert space and it can easily checked that La(X) is B(X).
Therefore, extension theorem of unitary operator valued multiplier and
dilation theorem of projective isometric representation in [6] can be con-
sidered as a special case of those in this paper.
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