DILATION OF PROJECTIVE ISOMETRIC REPRESENTATION ASSOCIATED WITH UNITARY MULTIPLIER

Man Kyu Im*, Un Cig Ji**, Young Yi Kim***, and Su Hyung Park****

ABSTRACT. For a unital *-subalgebra of the space $\mathfrak{L}^a(X)$ of all adjointable maps on a Hilbert \mathfrak{B} -module X with a C^* -algebra \mathfrak{B} , we study unitary operator (in such algebra)–valued multiplier σ on a normal, generating subsemigroup S of a group G with its extension to G. A dilation of a projective isometric σ -representation of S is established as a projective unitary ρ -representation of G for a suitable unitary operator (in some algebra)–valued multiplier ρ associated with the multiplier σ which is explicitly constructed.

1. Introduction

In recent years, many authors have been studing the problem of extending (unit circle-valued) multipliers on a subsemigroup S of a group G to multipliers on G, see [1], [2], [3], [8] and the references cited therein. In particular, in [11], Murphy gave an elementary proof of the multiplier extension theorem in [8] and studied a number of other extension theorems. Also, the author proved a more general dilation theorem than that proved by Laca and Raeburn using Kolmogorov decompositions of positive definite kernels. For the study of dilation theory, we refer to [4], [7], [10]. In [6], we obtained extension theorems of unitary operator (in a von Neumann subalgebra) valued multiplier with suitable motivation and dilation theory.

In this paper, we study problems of extending multipliers and dilation theory obtained in [6] to the case of a *-subalgebra of the space

Received September 3, 2007.

²⁰⁰⁰ Mathematics Subject Classification: 47A20, 43A35, 46L10.

Key words and phrases: Hilbert module, unitary multiplier, isometric multiplier representation, dilation.

 $^{^{\}ast\ast}$ This work was supported by the research grant of the Chungbuk National University in 2007.

of all adjointable maps on a Hilbert C^* -module. Recently, in [5], the author studied the dilations of projective σ -representations of a normal generating subsemigroup of a group G with unit circle-valued multiplier. Since Hilbert C^* -modules introduced by Kaplansky [12] is the generalizations of Hilbert space by allowing the inner product to take values in a C^* -algebra such study is natural. However, since several important properties held in the case of Hilbert space are not to be held in the case of Hilbert C^* -modules, it has to be handled carefully. For the more study, we refer to [9].

The paper is organized as follows: In Section 2 we study unitary operator (in a *-subalgebra of the space of all adjointable maps on Hilbert C^* -module)-valued multipliers and its extension theorem. In Section 3 we recall the Kolmogorov decompositions of positive definite kernels in [13] with connection to unitary operator-valued multipliers. In Section 4 we study the dilation theory.

2. Unitary multipliers

Let \mathfrak{X} and \mathfrak{Y} be right Hilbert \mathfrak{B} —modules with a C^* -algebra \mathfrak{B} . We define $\mathcal{L}^a(\mathfrak{X},\mathfrak{Y})$ to be the set of adjointable bounded linear maps from \mathfrak{X} into \mathfrak{Y} . For the notational convenience, we denote $\mathcal{L}^a(\mathfrak{X},\mathfrak{X})$ by $\mathcal{L}^a(\mathfrak{X})$. Then it is well-known that $\mathcal{L}^a(\mathfrak{X})$ is a *-algebra, in fact, C^* -algebra.

Let S denote a semigroup with unity, i.e., S is a set with an associative binary operation usually written multiplicatively and a unit element e. A subsemigroup S of a group G is said to be *normal*, if $xSx^{-1} \in S$ for any $x \in G$. If for all x in G, there exist $s,t \in S$ such that $x = s^{-1}t$, then we say that S generates G. A *-semigroup is a semigroup with an involution $*: S \ni s \mapsto s^* \in S$ such that $(st)^* = t^*s^*$ and $(s^*)^* = s$ for all $s,t \in S$.

Let \mathfrak{B} be a C^* -algebra and \mathfrak{X} a Hilbert \mathfrak{B} -module. For a unital *-subalgebra \mathfrak{A} of $\mathcal{L}^a(\mathfrak{X})$, let \mathfrak{A}' be the commutant of \mathfrak{A} and $\mathfrak{A}'' = (\mathfrak{A}')'$ the double commutant of \mathfrak{A} .

The following definition of unitary operator valued multiplier is motivated by the definition in [6].

DEFINITION 2.1. Let \mathfrak{A} be a unital *-subalgebra of $\mathcal{L}^a(\mathfrak{X})$. The $\mathcal{U}(\mathfrak{A})$ -multiplier on a semigroup S is a $\mathcal{U}(Z(\mathfrak{A}))$ -valued map defined on $S \times S$ satisfying that

- (i) $\sigma(s, e) = \sigma(e, s) = 1$ for any $s \in S$;
- (ii) $\sigma(s,t)\sigma(st,u) = \sigma(s,tu)\sigma(t,u)$ for any $s,t,u \in S$,

where $Z(\mathfrak{A}) \equiv \mathfrak{A} \cap \mathfrak{A}'$ is the center of \mathfrak{A} and $\mathcal{U}(\mathfrak{C})$ the group of all unitary operators in a *-subalgebra \mathfrak{C} .

DEFINITION 2.2. Let σ be a $\mathcal{U}(\mathfrak{A})$ -multiplier on a semigroup S. A map $V: S \ni s \mapsto V_s \in \mathfrak{A}$ is a projective isometric σ -representation of S if for any $s, t \in S$

- (i) V_s is an isometry and $V_e = 1$;
- (ii) $V_{st} = \sigma(s, t)V_sV_t$.

If V_s is unitary for all $s \in S$, we say that V is a projective unitary σ -representation of S. It is well–known that V is a projective isometric σ -representation of a group S, then V is automatically a projective unitary σ -representation, in fact, $V_s^* = \sigma(s^{-1}, s)V_{s^{-1}}$ for all $s \in S$.

REMARK 2.3. Let S be a semigroup and let σ a $\mathcal{U}(\mathfrak{A}')$ -valued map defined on $S \times S$. If a map $V : S \to \mathfrak{A}$ satisfies conditions (i) and (ii) in Definition 2.2, then σ becomes a $\mathcal{U}(Z(\mathfrak{A}))$ -valued map. In fact, for any $s,t \in S$, $\sigma(s,t) = V_t^*V_s^*V_{st} \in \mathfrak{A}$.

THEOREM 2.4. Let S be a normal, generating subsemigroup of a group G and let σ a $\mathcal{U}(\mathfrak{A})$ -multiplier on S. Then σ can be extended to G as a $\mathcal{U}(\mathfrak{A})$ -multiplier.

Proof. The proof is a simple modification of the proof of Theorem 2.8 in [6]. $\hfill\Box$

3. Kolmogorov decomposition and unitary multiplier

Let G be a (non-empty) set. A map $K: G \times G \longrightarrow \mathcal{L}^a(\mathfrak{X})$ is called a kernel and the set of all such kernels is denoted by $\mathcal{K}(G; \mathcal{L}^a(\mathfrak{X}))$. A kernel $K \in \mathcal{K}(G; \mathcal{L}^a(\mathfrak{X}))$ is said to be positive definite if for any positive integer $n \in \mathbb{N}$ and g_1, \dots, g_n in G, the matrix $(K(g_i, g_j))_{1 \leq i,j \leq n}$ is positive. Let \mathfrak{X}' be another Hilbert \mathfrak{B} -module and let V a map from G into $\mathcal{L}^a(\mathfrak{X}, \mathfrak{X}')$. Put

(3.1)
$$K(g,h) = V(g)^*V(h), \qquad g, h \in \mathfrak{X}.$$

Then K is positive definite.

Let $K \in \mathcal{K}(G; \mathcal{L}^a(\mathfrak{X}))$. If there exists a Hilbert \mathfrak{B} -module \mathfrak{X}' , denoted by \mathfrak{X}_V , and a map $V: G \to \mathcal{L}^a(\mathfrak{X}, \mathfrak{X}_V)$ such that (3.1) holds, then V is called a *Kolmogorov decomposition* of K. If

(3.2)
$$\mathfrak{X}_V = \overline{LS\{V(g)x \mid g \in G, x \in \mathfrak{X}\}},$$

then V is said to be *minimal*. The right hand side of (3.2) is the closure of the linear span of $\{V(g)x \mid g \in G, x \in \mathfrak{X}\}$. Two Kolmogorv decomposition V and V' are said to be *equivalent* if there is a unitary mapping $U: \mathfrak{X}_V \to \mathfrak{X}_{V'}$ such that V'(g) = UV(g) for any $g \in G$.

THEOREM 3.1 ([13]). Let $K \in \mathcal{K}(G; \mathcal{L}^a(\mathfrak{X}))$. The kernel has a Kolmogorov decomposition if and only if it is a positive definite kernel.

THEOREM 3.2. Let $K: G \times G \to \mathfrak{A}$ be a positive definite kernel and V a minimal Kolmogorov decomposition of K. Then there exists a *-homomorphism $\Phi: \mathcal{U}(\mathfrak{A}') \to \mathcal{L}^a(\mathfrak{X}_V)$ such that for any $g \in G$,

$$V(g)T = \Phi(T)V(g), \qquad T \in \mathcal{U}(\mathfrak{A}').$$

Moreover, for each $T \in \mathcal{U}(\mathfrak{A}')$, $\Phi(T)$ is unitary on \mathfrak{X}_V .

Proof. For the complete proof we refer to the proof of Theorem 3.2 in [6]. Now we sketch the proof. For each $T \in \mathcal{U}(\mathfrak{A}')$, we define a unitary \tilde{T} by

$$\tilde{T}(V(g)x) = V(g)Tx, \qquad g \in G, \quad x \in \mathfrak{X}.$$

Then by direct computation we see that for any $T, S \in \mathcal{U}(\mathfrak{A}'), g, h \in G$ and $x, y \in \mathfrak{X}$

$$\widetilde{TS}(V(g)x) = \widetilde{T}\widetilde{S}(V(g)x)$$

and

$$\langle \widetilde{T^*}(V(g)x), V(h)y \rangle_{\mathfrak{X}_V} = \langle \tilde{T}^*V(g)x, V(h)y \rangle_{\mathfrak{X}_V}.$$

Hence $\widetilde{TS} = \widetilde{T}\widetilde{S}$ and $\widetilde{T^*} = \widetilde{T}^*$ for any $T, S \in \mathcal{U}(\mathfrak{A}')$. Now, define a *-homomorphism Φ from $\mathcal{U}(\mathfrak{A}')$ into $\mathcal{L}^a(\mathfrak{X}_V)$ by $\Phi(T) = \widetilde{T}$ for $T \in \mathcal{U}(\mathfrak{A}')$.

THEOREM 3.3. Let S be a semigroup and Φ the *-homomorphism given as in Theorem 3.2. For each $\mathcal{U}(\mathfrak{A})$ -multiplier σ on S, $\Phi(\sigma)$ is a $\mathcal{U}(\mathfrak{N})$ -multiplier on S, where \mathfrak{N} is the unital *-algebra generated by $\Phi(\mathcal{U}(Z(\mathfrak{A})))$ and $\Phi(\sigma)(s,t) = \Phi(\sigma(s,t))$ for any $s,t \in S$.

Proof. The proof is immediate since Φ is a *-homomorphism and σ is a $\mathcal{U}(\mathfrak{A})$ -multiplier.

REMARK 3.4. Since ST = TS for any $S, T \in \Phi(\mathcal{U}(Z(\mathfrak{A})))$, the unital *-algebra \mathfrak{N} generated by $\Phi(\mathcal{U}(Z(\mathfrak{A})))$ is commutative.

4. Dilation theory

Let S be a normal, generating subsemigroup of a group G. Let \mathfrak{A} be a *-subalgebra of $\mathcal{L}^a(\mathfrak{X})$ and σ a $\mathcal{U}(\mathfrak{A})$ -multiplier on G. A map $W: G \to \mathfrak{A}$ is σ -positive definite if the map K on $G \times G$ defined by setting $K(g,h) = \sigma(g^{-1},g)\sigma(g^{-1},h)^*W_{g^{-1}h}$ is positive definite. We define a (minimal) Kolmogorov decomposition for W to be a (minimal) Kolmogorov decomposition for K.

THEOREM 4.1. Let σ be a $\mathcal{U}(\mathfrak{A})$ -multiplier and $W: G \to \mathfrak{A}$ a σ positive definite map. There exist a Hilbert \mathfrak{B} -module \mathfrak{X}' , an operator $T \in \mathcal{L}^a(\mathfrak{X},\mathfrak{X}')$ and a unitary $\Phi(\sigma)$ -representation U of G on \mathfrak{X}' such that $W_q = T^*U_qT$ for any $g \in G$, where Φ is the *-homomorphism given as in Theorem 3.2. Moreover, \mathfrak{X}' is the closed linear span of the set $\bigcup_{g\in G} U_g T(\mathfrak{X}).$

Proof. The proof is same as the proof of Theorem 4.1 in [6].

The projective unitary $\Phi(\sigma)$ -representation U is called a dilation of W. If W is unital, i.e., $W_e = 1$, then $T^*T = T^*U_eT = W_e = 1$. Thus T is an isometry.

The following corollary is immediate by applying Theorem 4.1 with the unital *-algebra $\mathfrak{A} = \mathcal{L}^a(\mathfrak{X})$.

COROLLARY 4.2 ([5]). Let G be a group and let σ be a unit circle valued multiplier of G. If a map $W: G \to \mathcal{L}^a(\mathfrak{X})$ is σ -positive definite, then there exist a Hilbert \mathfrak{B} -module \mathfrak{X}' , $T \in \mathcal{L}^a(\mathfrak{X}, \mathfrak{X}')$ and unitary σ -representation U of G on \mathfrak{X}' such that $W_q = T^*U_qT$ for all $g \in G$. Moreover, \mathfrak{X}' is the closed linear span of $\bigcup_{g \in G} U_g T \mathfrak{X}$.

THEOREM 4.3. Let σ be a $\mathcal{U}(\mathfrak{A})$ -multiplier on G and let $W: S \to \mathfrak{A}$ a projective isometric σ -representation with $\mathcal{U}(\mathfrak{A})$ -multiplier σ on S. Then there exists a unique extension \overline{W} of W to G such that

- $\begin{array}{ll} \text{(i)} \ \ \overline{W}_{gs} = \sigma(g,s) \overline{W}_g W_s \ \text{for any} \ g \in G \ \text{and} \ s \in S; \\ \text{(ii)} \ \ \overline{W}_g^* = \sigma(g^{-1},g) \overline{W}_{g^{-1}} \ \text{for any} \ g \in G. \end{array}$

Moreover, \overline{W} is σ -positive definite.

Proof. For the proof, we refer to the proof of Theorem 4.4 in [6].

THEOREM 4.4. Let σ be a $\mathcal{U}(\mathfrak{A})$ -multiplier on G and let $W: S \to \mathfrak{A}$ a projective isometric σ -representation with $\mathcal{U}(\mathfrak{A})$ -multiplier σ on S. Then there exist a Hilbert \mathfrak{B} -module \mathfrak{X}' , an isometry $T \in \mathcal{L}^a(\mathfrak{X}, \mathfrak{X}')$ and a unitary $\Phi(\sigma)$ -representation U such that $W_s = T^*U_sT$ for all $s \in S$. Moreover, \mathfrak{X}' is the closed linear span of the set $\bigcup_{g \in G} U_gT(\mathfrak{X})$.

Proof. By Theorem 4.3, the extension \overline{W} of W to G is σ -positive definite. Therefore, by applying Theorem 4.1, the proof is immediate.

The following corollary is immediate by applying Theorem 4.1 with the unital *-algebra $\mathfrak{A} = \mathcal{L}^a(\mathfrak{X})$.

COROLLARY 4.5 ([5]). Let S be a normal generating subsemigroup of a group G and σ be a unit circle valued multiplier of G. If $W: S \to \mathcal{L}^a(\mathfrak{X})$ is a projective isometric representation with the restriction of σ to S as the associated multiplier, then there exist a Hilbert \mathfrak{B} -module \mathfrak{X}' , an isometry $T \in \mathcal{L}^a(\mathfrak{X},\mathfrak{X}')$ and unitary σ -representation U of G on \mathfrak{X}' such that $W_s = T^*U_sT$ for all $s \in S$. Moreover, \mathfrak{X}' is the closed linear span of $\bigcup_{g \in G} U_gT\mathfrak{X}$.

Proof. By applying Theorem 4.4 with the unital *-algebra $\mathfrak{A} = \mathcal{L}^a(\mathfrak{X})$, the proof is immediate.

REMARK 4.6. If C^* -algebra \mathfrak{B} is given by \mathbb{C} , then a Hilbert \mathfrak{B} -module \mathfrak{X} becomes a Hilbert space and it can easily checked that $\mathcal{L}^a(\mathfrak{X})$ is $\mathfrak{B}(\mathfrak{X})$. Therefore, extension theorem of unitary operator valued multiplier and dilation theorem of projective isometric representation in [6] can be considered as a special case of those in this paper.

References

- [1] W. B. Arveson: An addition formula for the index of semigroups of endomorphisms of B(H), Pacific J. Math. 137 (1989), 19-36.
- [2] P. R. Chernoff: Extensions and triviality of multipliers on subsemigroups of the reals, Semigroup Forum 41 (1990), 237-244.
- [3] H. Dinh: Multipliers on subsemigroups of the real line, Proc. Amer. Math. Soc. 117 (1993), 783-788.
- [4] D. E. Evans and J. T. Lewis: *Dilations of Irreversible Evolutions in Algebraic Quantum Theory*, Comm. Dublin Inst. Adv. Studies Ser. **A24** (1977).
- [5] J. S. Heo: Hilbert C*-modules and Projective representations associated with multipliers, J. Math. Anal. Appl. 331 (2007), 499-505.
- [6] U. C. Ji and Y. Y. Kim and S. H. Park: Unitary multiplier and dilation of projective isometric representation, J. Math. Anal. Appl. 336 (2007), 399–410.
- [7] M. Laca: From endomorphisms to automorphisms and back: dilations and full corners, J. London Math. Soc. **61** (2000), 893-904.
- [8] M. Laca and I. Raeburn: Extending multipliers from semigroups, Proc. Amer. Math. Soc. 123 (1995), 355-362.

- [9] E. C. Lance: "Hilbert C^* -Modules", Cambridge Univ. Press, 1995.
- [10] N. S. Larsen and I. Raeburn: Representations of Hecke algebras and dilations of semigroup crossed products, J. London. Math. Soc. 66 (2002), 198-212.
- [11] G. J. Murphy: Extensions of multipliers and dilations of projective isometric representations, Proc. Amer. Math. Soc. 125 (1997), 121-127.
- [12] I. Kaplansky: Modules over operator algebras, Amer. J. Math. 75 (1953), 839-858
- [13] G. J. Murphy: Positive definite kernels and Hilbert C^* -modules, Proc. Edinb. Math. Soc. **40** (1997), 367-374.

*

Department of Mathematics Hannam University Taejon 306-791, Republic of Korea E-mail: mki@hnu.kr

**

Department of Mathematics Research Institute of Mathematical Finance Chungbuk National University Cheongju 361-763, Republic of Korea E-mail: uncigji@cbucc.chungbuk.ac.kr

Department of Mathematics Chungbuk National University Cheongju 361-763, Republic of Korea E-mail: kimyy@chungbuk.ac.kr

Department of Mathematics Chungbuk National University Cheongju 361-763, Republic of Korea E-mail: shpark05@chungbuk.ac.kr