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ASCOLI'S THEOREM AND THE PURE STATES OF A C*-ALGEBRA
By Kelly Mckennon

Abstract: A version of Ascoli’'s Theorem (equating compact and equicontinuous
sets) is presented in the context of convergence spaces. This theorem and
another, (involving equicontinuity) are applied to characterize compact subsets
of quasi-multipliers of a C*-algebra B, and to characterize the compact subsets
of the state space of B.

The classical Ascoli Theorem states that, for pointwise pre-compact families
F of continuous functions from a locally compact space ¥ to a complete Haus-
dorff uniform space Z, equicontinuity of F is equivalent to relative compactness
in the compact-open topology([4] 7.17). Though this is one of the most impor-
tant theorems of modern analysis, there are some applications of the ideas
inherent in this theorem which are not readily accessible by direct appeal to
the theorem. When one passes to so-called “non-commutative analysis”, analysis
of non-commutative C*-algebras, the analogue of ¥ may not be relatively
compact, while the conclusion of Ascoli's Theorem still holds. Consequently it
seems plausible to™ establish a more general Ascoli Theorem which will
directly apply to these examples. ®

1. PT-Classes

Many theorems of a topological nature in analysis are more readily stated
in terms of convergent sequences or nets, rather than in terms of the more
“basic” notions of open and closed sets. In fact, certain types of convergence
in some important thorems (such as “almost everywhere convergence”) may
not even be convergence relative to some topology. This has prompted the
study of “convergence spaces” (see [1], [2], and [3] for instance). However
the axiomatic treatment of “convergence spaces” seems to have been for the most
part in terms of filters instead of nets. The notion of a “convergence space” is
just as simple as that of a topological space, it is necessary for statement of

(1) Mathematics Subject Classification, Primary 46L05, secondary 54A20.

(2) To understand the examples of this paper it will help it the reader has had some
experience with the fundamental parts of the theories of locally convex spaces and
C*-algebras as in [7] and[8].
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the general Ascoli Theorem, and so we shall set down a formulation of the
axioms and basic facts concerning “convergent spaces” in terms of nets.

Let S be a set and #” the class of all nets in S. For s=S, the singleton (s}
has only one binary relation relative to which {s} is a directed set—we write s
for the net sending s<{s) to s. For nets x|D—S and y| E—S we write x\Vy for
the net whose domain is the product directed set NX<XDxXE and which sends
(n,d,e)=EN><DXE to x; or y, depending as # is odd or even.

A subclass 8 of #” will be called a PT-class (psendo-topological class) if
the following axioms hold:

(1) 5=.8 for all s=S;

(2) x\Vy=.8 whenever x,y<.8 have a common subnet;

(3) x=.#" is a member of .8 if and only if each subnet of x has a subnet
belonging to .J.

It is a direct consequence of (3) that

(4) a subnet of a member of .8 also belongs to 5.

We say that .8 is Hausdorff if, for all a, =S,

(5) a=b whenever a\/b=.5.

Let .8 be a PT-class. If cach net in S has a subnet belonging to .8 we say
that .8 is precompact. Let A be a subset of S. Then the class S(A4) of all nets
in A belonging to .8 is evidently a PT-class for A, and is Hausdorff if .5 is.
We shall say that A is precompact if .5(A) is. We say that A is dense in S if
to each x=.5 there exists y=.8(A) such that xVy=.5.

If [xV/5] belongs to .8 for x&.8 and s=S, we say that x converges to s (or s is
a limit of x) and write x—J—'s. If each x&.8 has a limit, we say that .§ is
complete. 1f 8(A) is complete for ACS, we say that A is complete. A complete
precompact set is said to be compact. Thus a compact set is one in which each
net has a subnet with a limit.

New let S and T have PT-classes .5 and .9 respectively. Then a function f|S
—T is said to be continuous if fox= whenever x&.8. It is elementary to check
that precompact sets and compact sets are preserved by continuous functions.

A PT-class .8 will be called a T-class if it is closed under the formation of

“upper diagonal nets”. More precisely, let m|D—S be a net belonging to S and
suppose that, for each d&D, s(“')[E(d)HS is a net such that S(d)deCz?(l €.,
s@DZom). Let H=D(X E(&)) be the product directed set and define s| H—s

=
by letting s, ,)-55(4) for all (d,»=H. If sVm belongs to .8 for each such
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construction, then a PT-class .8 is called a T-class.
Let .8 be a T-class. Then, for ACS, it is evident that 5(A4) is a T-class as
well.

EXAMPLE L. 1. topological space. Let S be a set with a topology ¢ and let vt
be the class of all nets which converge in S relative to o. We shall say that .8
is the T-class induced by ¢. That . satisfies the axioms of a PT-class is ele-
mentary. That .8 actually is a T-class follows from [4] 2.9. The notions of
density, compactness, limit, and continuity are the same as the corresponding
topological notions. Note however that, for ACS, .8(4) is the PT-class induced
by the relative topology on A only if A is closed. It is true that a subset A4 of
S is compact relative to ¢ if and only if it is compact relative to S(A).

EXAMPLE 1.2. uniform space. Let S be a uniform space with uniformity Q.
Then the T-class induced by Q is the class .8 of all Cauchy nets in S®. For
ACS it is evident that 8(A4) is the T-class induced by the relativization of @
to A. The notions of precompactness and completeness are the same relative to
& as to Q.

EXAMPLE. 1.3. continuous convergence. Let ¥ and Z be sets with PT-struc-
tures & and Z respectively. Let F be a set and ¢|FXY—Z a function. For
a=F and b<Y we define the functions ap and ¢b by

ap|Y2y—ady=¢(a,y), ¢b|F=x—29b=¢(x,b).
We shall say that ¢ is a dual mapping if a¢ is continuous for all =Y. Suppose
¢ is such. The continuous convergence PT-class c}f¢(F) consists of all nets z in
F such that x¢yeZ for every y=&. For ACF we write (}*9,(:1) for (g¢(F)) (A).

2. First Ascoil Theorem

Let ¢, F,Y,Z,cy4(F), ¥, and Z be as in Example 1.3 of the preceding section.
Let in addition Z be a uniform space, and suppose that 2Z is the T-class induced
by the uniformity on Z. We say that ACF is an E-sef if, for each y|D—Y
belonging to % and each U in the uniformity on Z, there exists ¢&D such that
(agy,, ady,)EU for all a=A and all d,e=c. It is elementary to check that,
when % is the T-class induced by some topology on Y, then ACF is an E-set
if and only it {eg : e=A4) is equicontinuous. For ACF, we write A¢ for the

(3) Since a uniform space S has a completion €, it is easily seen that S=&(S) where €
is the T-class an € induced by the topology and €. Thus # actually is a T-class.
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family {ag : a=A4).
THEOREM 2.1. Let ACF be such that Agy is precompact for all &Y. Then
A is oz j(A)-precompact if and only if A is an E-set.

PROOF. Suppose first that 4 is an E-set, and let x be a net in A. Since Agy
is precompact for each y=Y¥, it follows from Tychonov's Theorem that there
is a subnet a|D—A of x such that ag¢y is Cauchy in Z for each y&Y¥Y. Let
y|E=Y be a net belonging to ¥, p be a continuous pseudo-metric on Z, and
€>0. Since A is an E-set, there exists s&E such that

(6) plady,, apy,)<e/2 for all a=A and t=s.

Choose ¢&D such that plex,dy,, o py,)<e/2 for all d=¢; thus (6) yields, for
t=s and d=c,

ey, ady)=pla,by, a;by)+pla,by, ady) e
Hence ey is Cauchy in Z, and so a member of Z. Thus A4 is ¢ s(A)-precompact.

Now suppose that A is ¢ s(A)-precompact, and assume that A is not an E-
set. Then there exist a continuous pseudo-metric p on Z and a net y|E—Y
belonging to & such that to cach s=E corresponds some m(s)=s and acA
such that

™ P(a’s‘?s}’s, a3¢ym(sj)>s‘

Since A4 is gy¢(A)—prccompact, the net | E—A defined by (7) has a subnet
=gz 4(A). Thus xgy is Cauchy, which violates (7). Hence A is an E-set. Q.E.D.

EXAMPLE 2.2, classical Ascoli Theorem for locally compact spaces. Let ¥ be
a locally compact topological space and & the induced T'-class. Let Z be a
complete uniform space, and let ¥ be the family of all continuous Z-valued
functions on Y. Let f@y=f(y) for all f=F and y=Y. It is elementary to check
that g7 4(F) is the T-class induced by the compact-open topology on F; and
that, for ACF, g74(A) is precompact if and only if A is relatively compact
relative to the compact-open topology. Thus Theorem 1 yields the following
classical theorem.

COROLLARY 2.3. Let ACF be such that {f(y) : f=A] is precompact for all
y=Y. Then A is relatively compact (with respect to the compact-open topology)
if and only if A is equicontinuous

EXAMPLE 2.4. Let B be a C*-algebra, which we may (and shall) regard as

a subalgebra of its bidual (or enveloping W -algebra) B”. Let Q be the set of
all x=B” such that ex<b=B for all a,b=B (that is, Q is the set of quasi-
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multipliers of B). The quasi-strict uniformily is that induced by the family of
all semi-norms Q=x—|a"xall, where a runs through B. Let B’ be the dual of
B (so B” is the dual of B’). Let ¥ be the unit sphere of B, and let & be the
T-class induced on ¥ relative to the relativization of the weak-" topology
o(B’,B) to ¥. Let Z be the field of complex numbers and Z the T-class
induced by the usual uniformity on Z. Let F::Q and define ¢|FxX¥Y—Z be
letting féy=y(f) for all (f,y)SFxY.

COROLLARY 2.5. Let ACF be norm-bounded. Then A is relatively compact
relative to the quasi-strict topology if and only if A is equicontinuous on Y.

PROOF. We first note that, for each y&Y, Agy is bounded, and thus
precompact in Z. Furthermore, since the closed balls in F about 0 (relative to
the norm || | on B”) are complete for the quasi-strict uniformity ([5] Theorem
3), it follows that A is relatively compact relative to the quasi-strict topology
if and only if A is precompact for the quasi-strict uniformity. Consequently
Corollary 1.2 will follow from Theorem 1 once it has been established that
7 4(A) is the T-class # induced by the relativization of the quasi-strict unifor-
mity to A.

That #¢z,(A) follows from [5] Theorem 7. Assume that there exists | D—
A belonging to gz4(A) but not to &#. By replacing a with fa if necessary, we
may (and shall) assume that a is Hermitian. Since a&##, there exist =B and
€0 such that to each d=D corresponds m(d)=d satisfying

®) ) 167 b= @, gyl €.
Since cach b"(ad—afm(d))b is Hermitian, there exists a state f,&Y such that
9 £ (ay =i )D =107 (ay—ex, )0l ([7] 3.2.27)

From Alaoglu’s Theorem follows that f|D—Y has a subnet # which converges
to some % in the unit ball of B’ relative to the weak-" topology ¢(B’, B). Let
s=sup (x| : x=A} and let >0 be arbitrary. Choose a positive unit vector »
in B such that 60— S—rfr—. Hence, for cach d=D, |B(a,—a,, ) bv—b)]
=7 so that
(10) £y (6% (@t y =y g )OO | Z | £ (57 Caty— @,y DB | = 0.
From (9), (10), and the Cauchy-Schwarz inequality for positive functionals
follows
16% Coty = pay)bll == | 4 (b Catg— et 47)00) |
= [£a (b *(ay—a V) D1 V21 ,(0P1 12
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<IFI 2117 Caty =ty 6112 1 £, o)
= 1% (g = tuay)bll- L2 @125

19
/&

hence (8) yields
1/2
(1—%) =f,D.
Consequently we have
1/2
(1- 4 =acs

Six‘xyce J was arbitrary, and [2*|=1, it follows that |h|=1. Thus k=¥ and so
h——h. Since aE‘ogﬁ(A), we have agh=Z. But this is inconsistent with (9) and
(8)! It follows that (f¢(A)C.Q. Hence qé(A)=R. Q.E. D.

COROLLARY 2.6. Let ACF be norm-bounded. Then A is relatively compact
relative to the quasi-strict topology if and only if A is equicontinuous on the
family of states in B” (relative to o(B’, B)).

PROOF. Same as for Corollary 1.2.
3. Sharpening equicontinuity

It is sometimes useful to know that equicontinuity on a smaller set implies
equicontinuity on a larger.

THEOREM Let F and W be a dual pair of Hausdorff locally convex I[inear
topological spaces, with scalar field Z and canonical bilinear form <{,>. Let Y
be a subset of W such that

(7) the closed convex hull [Y] of Y[ {0) equalsre%”rY:

(i7) the balanced hull [[Y]] of [Y] is radial; '

i) YN I([IY]]=¢ for all r>1.

Let SCY satisfy

(iv) [Y]=I[S] is compact;
and let .3 be the T-class for S induced by the topology on Y (relativized from
W). Let ¢ be the restriction of <, to F XY and ¢ be the restriction of <,> to
FXS. Let ACF satisfy

(v) s=sup {|<{x, )| : x€A, 1EY) <oo;

(vi) A is an E-set (relative to ¢).

Then A¢ is equicontinuous on Y.

PROOF. Assume A¢ is not equicontinuous on Y. Then there exist a net
x| D’'=Y convergent to some k<Y, a net «|D’—A, and some &>0 such that
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(11 Iy, kz>—<ety, ky|>3e for all dED".

From (v), (vi), and Theorem 1 follows that ¢z4(A) is precompact; thus there
exists a function m|D—D’ such that aem is a subnet of a belonging to gy-(A).

We claim that, for each b&D,

(12) 1< @y = ®mey Emeey | € for some c,d,e=b.

Assume that the claim is false. Then there exists 4&D such that

(13) [ty = Xmeeyr Emeuy?| <€ for all d,c,w=b.

Since xem converges to &, it follows from (13) that
(14) [<@pugay=Cm(cy #71 <€ for all d,c=b.
Let w=b be such that [{a,, s, Kpen—k>| <ei then (11) yields
e <I<@pmewyr Emeuwy = PN < |<Qpipy = Xy #1
1y ™ Xy Koy H oy Ky =21 =
(by (14) and (13)) et+ete=3e.
This is absurd, which establishes (12).

From (12) follows that there exists a cofinal subset H of the product directed
set DD and a subnet k|H—Y of & such that l(am(d)—am(c), h(a.'c)ﬂze for
all (¢,d)=H. Thus, defining the net x| H—F by letting (e dY=%m(dy ™ Em(c) for
all (¢,d)=H, we obtain

(15) |{x,. k>|>¢e for all e=H.

FFrom (ii), (iii), and the Hahn-Banach Theorem follows that there exists a
linear functional f|W—Z such that

(16) f(R)=1=sup(|f(&)| : b=[[Y]]}.

Let Y° be the absolute polar of ¥ relative to the dual pair consisting of F and
W. Then Y° is also the polar of [[¥]] and there exists a sequence w|N—Y"
such that

an |Cage &= FR)| <= for all neN
n

([8] 1.5). From (16), (17), and the fact that Y°=[[Y]]", (18) <w,, A>>>1—

—la—and |[{w,, ¢)|=1 for all zEN, c=[[Y]].
n

Let € be the family of all functions g|4(g)—1[0,1] such that the domain 4(g)
is a finite subset of S and }__.,' )g(y) 1. For g=& we shall write g’ for the

element E’)g()’) -y of [Y] From (iv) follows that for each d=H, there

exists a net g ?|G(d)—C such that (g )" converges to h,; hence by (15) there
exists y(d)=G(d) such that
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(19 <2 (@21>%- for all £27(@).
Let G be the Cartesmn product of H with the product X G(d), and define
g|G—& by lettmg £, ,)_(g drce)y for all (d,y)=G. By [4] 2 9, it follows that
(20) g’ converges to & in W.
Let =N satisfy
(2D n_>6s/e.
From (18) and (20) follows that there exists e(#)=G such that

(22) <, g,’>l>1—:—2 for all 1=e(n).

Let ¢c=H be arbitrary and let redéoG(d) be as in (19). The set M= {(n, v)E
NXG:n>6s/e, v=(c,7), and v=e(n)) is cofinal in the product directed set
NG and so is a directed set. For y=(n,2)EM, define B(v)={yc4(g,) : [(w,,
y)I(l-—;—]. I'(v)=4(g.)/B(v), and r(u)EIE%(;) g.(y). We have, from (22)
and (18),

- DYpd | <
1 2 < 23: )I<cu,,, g,,(y)y>l+yé2ﬁb_)l<w,,. g, 1<

y=B(v
1

(1-7), 3, 8+ = 8.9

=(1-) - P+ A-r)=1- L) ;
consequently
(23) r(w) <~ for all vEM, v=(n,2).

From (v) we see that, for all (d,¢c)=H and y&S,
(24) I<%¢q, ey Y=gy W+ Ky ¥2=2s.
For v=(n,v)=M with v=_w,7)=G, we have

" =| , =
%‘)gz(y) [<x,, I I_r( &,(»X<x,, I

I{x,. &,/7|— g,,(y) [{x,, wI=

(by (19) and (24))

2T£—25-r(u)2

(by (23) and (21))
2 e _ e,
3 a9
consequently, there exists y &I'(v) such that
(25) Kz, y.0|>¢€/3

B
3
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By the definition of I'(v), we have
(26) [<@pe 301Z1—1- for all y=(r, IEM.

From (iv) follows that there exists a function p|P—M such that ye<p is a
subnet of ¥ with a limit 6=[¥]. From (26) follows that, for each n -6s/e,
[{w,, yﬂp,\l‘él-—% eventually; hence

(27 [0y BY =11,
Assume b2Y. By (iii) there exists /=]0,1[ and ¢<=Y such that b=¢c. Then, for
n>6s/e+(1—1)7Y, (27) yields

[wp =10, BIzF-(1-L)>Fa-a-1=1
which violates (18). It follows that & is in ¥, and so yep belongs to the
T-class .5.

Since « < m belongs to g;,(A). the net sending each (d,p)=D <P to X 3P0 p)
= Cpmay Yppy i Cauchy in Z. Consequently the net sending each (e, p)=H < P
to (%, ¥y ﬁ)> converges to 0 in Z. In particular, there exists e¢;=H and p,=P
such that

(28) [<x, ¥ypy2) <&/3 for all e=ey and p=p,
Choosing p=p, such that w=e, where p(p)=(n,v) and v=(w,7), (28) becomes
(29) [<x 00 Fpe py2 | <E/3.

But (29) and (25) are inconsistent. Consequently A¢ is equicontinuous on Y.
Q.E.D.

EXAMPLE 3.2. Let B,B’,B”,Q,Z, and Z be as in Example 2.4. Let P be the
family of pure states on B, and K the family of states.

COROLLARY 3.3. Let ACQ be norm-bounded. The following are equivelent:

(i) A is relatively compact in the quasi-sirict topology;

(ii) for each net f in P which o(B’, B)-converges to some f=K, a(f) converges
to a(f) uniformly for e=A.

PROOF. Let W=B’, endowed with the weak topology ¢(B’,Q). Let S=P,
Y=K, and let F=Q. Note that [K] is the set of all positive functionals in
the unit ball of B” and that [[K]] is a subset of the closed unit ball of B’
That conditions (i), (ii), (iii), and (v) of Theorem 3.1 hold is evident. It
follows from Alaoglu’s Theorem that [K] is o(B’, B)-compact. Since SlJ{0)
is the set of extreme points for [K], the Krein-Milman Theorem implies that
the convex hull of S/ {0} is dense in [K] relative to the topology ¢(B’, B).
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Thus, condition (iv) of Theorem 3.1 holds.

It follows from Theorem 3.1 that (ii) is equivalent to (30) 4 is equicontinuous
on K relative to ¢(B’, B). That (30) is equivalent to (i), follows from Corollary
2.6. Q.E.D.

EXAMPLE 3.4, Let B, B’, B”, E, Z, and K be as in Example 2.4. In general
Q may not be an algebra, but the set M= {x&B” : xB|) Bx—B] of all multipliers
of B constitutes a sub C*-algebra of B”. For each ¢=B, let n, be the seminorm
on M’.

n,(x)=llex|+|xa| for all x&M.
The strict uniformity is that induced by the family (z,:e=B] of seminorms—
we write £ for the corresponding topology.

We note that, on the unit ball M| of M,

(31) « is metrizible if B is separable;

(32) x is the compact-open topology if B is the family C,(X) of all con-
tinuous, complex-valued functions vanishing at oo on a Hausdorff locally
compact space X.

LEMMA 3.5. Let F=K and let Y be a subset of M containing a multiple of
an approximate identity x for B such that |x|—1. Let Y be the T-class on Y
induced by k. Let ¢|F XY —Z be defined by ¢(f,x)=x(f) for all f=F and x=
Y. Then (}f¢(F) s the T-class R induced by the relativization of o(B’, B) to F.

PROOF. That .S?C(.-;pi(F) follows from [6] Theorem 3.5. That c}¢(F)C.ﬂ
follows from the proof of [5] Theorem 8. Q.E.D.

LEMMA 3.6. The group U of unitary elements of M is closed relative to the
topology k.

PROOF. Let g be a net in U x-convergent to some z#=M, and let x&=B be
arbitrary. Then
lae* ux— x| = ™ — O uzell + 1 Cu— el + | ¥ px— x| =
2% 2™ (= )l + | (e — )2 +-0-0
and, analogously wa” x—x=0 as well. Thus «*w=wuu" is the identity and so
€U Q.E.D.

COROLLARY. 3.7. Let B be a separable C"-algebra. Let U be the group of
unitary elements of M. The following are equivalent:
(1) A is a relatively compact subset of K relative to the relativization of o(B’,
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B) to K
(if) for each net pu in U convergent to some u=U relalive to the strict topology
k, u(f) converges to u(f) uniformly for f=A.

PROOF. Since B is separable, there exists a commutative sub C™-algebra C
of B and a sequence x of positive unit vectors in C such that x is an approxi-
mate identity for B: that is, x converges to the identity d of B relative to «.
Let N={x&M : xCUCx_C} and let Ny=M;I1N. Let X be the set of non-zero
algebra homomorphisms of C into Z and ~ |[N—C(X) the extended Gelfand
Transform: #(@)=d(x) for all x=C, ¢=X.

Claim: the restriction of * to N, is a homomorphism when N, bears r and
the image bears the compact open topology. In fact, the continuity of ™ is a
simple consequence of the Gelfond Theory. Suppose @ is a net in N, such that
@ converges to @ in the compact open topology (for ¢=N;). Let b&B and >0
be arbitrary. Choose #&N such that [|b—bx,| +|b—x,b] <e/8. Then

n(a—a)=|b(a—a)|(a—a)b| =l (b—bx,)(a—a)l
+lbx,(a—a)l +(a—a)(b—x,b)|+|[(a—a)x,bl =
6—bx,| « la—all+8] - |z, (a—a)l|+|(ax—a)l - [b—2,bl
+l(a—a)x, |l - bl =e/4+|8] - |2, (@—a)
+e/d+((@—a)x,| - 18l
which is less that € eventually. Hence a x-converges to @, so “|N, is a
homomorphism.

The set L={x, : n=N} U {d} is the range of a convergent sequence, and so is
x-compact. Thus L is compact in C(X) relative to the compact-open topology.
By corollary 2.3, L is equicontinuous. Let 4 be the unit circle of the complex
plane. Since the map 4x<[0,1/2]=(z, I)—-(z-l-t)(1+;':t)_1 is continuous, it
follows that the family {(z+f)(1+zf) "L f -—%i, z=d} is equicontinuous, and
hence relatively compact in the compact-open topology. Thus the set

Sz{(z+*%-x,,)(1+%—zx,,)_l :n=N, z=4) is a k-relatively compact subset of U.

It is known that the restriction of x to M agrees the Mackey Topology (M,
B") ([9] Theorem 1 and Corollary 2.3). It follows from Krein's Theorem
([8] 11.5) that the closed colnvex hull [S] of SU (0} is k-compact. Let F=K.
Let W be the linear span in M of the closed balanced hull of [S], endowed
with the relativization of x. Let ¥ be the set of all ¥=([S] such that rax=:[S]
for all #>>0. Then the closed balanced hull [[Y]] of ¥ is a subset of M.
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That conditions (i), (i), (ii), (iv) and (v) of Theorem 3.1 hold is evident.
1t follows from Theorem 3.1 and Lemma 3.6 that (8.7, ii) implies that 4 is
equicontinuous on Y.

For each nEN, Let ruE[';—, 1] be maximal such that »,x,=[Y]. Let 7,, be

a convergent subsequence of # with limit re[%.' 1]. Then r,x, r-converges

mem

to rd and 7,x,, is a sequence in Y.

Consequently
(33) Y contains a multiple of an approximate identity

7 n

%, for B.

It follows from (33), Lemma 3.5, and Theorem 2.1 that (3.7, i) is equiva-
lent to

(340) A is equicontinuous on Y.
It follows from Theorem 3.1 and Lemma 3.6 that (34) is equivalent to (3.7.
ii). Q.E.D.
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