LEFT JORDAN DERIVATIONS ON BANACH ALGEBRAS AND RELATED MAPPINGS

Yong-Soo Jung* and Kyoo-Hong Park

ABSTRACT. In this note, we obtain range inclusion results for left Jordan derivations on Banach algebras: (i) Let δ be a spectrally bounded left Jordan derivation on a Banach algebra A. Then δ maps A into its Jacobson radical. (ii) Let δ be a left Jordan derivation on a unital Banach algebra A with the condition $\sup\{r(c^{-1}\delta(c)):c\in A \text{ invertible}\}<\infty$. Then δ maps A into its Jacobson radical.

Moreover, we give an exact answer to the conjecture raised by Ashraf and Ali in [2, p. 260]: every generalized left Jordan derivation on 2-torsion free semiprime rings is a generalized left derivation.

1. Introduction

Throughout this note, R will represent an associative ring with center Z(R) and we will write [a, b] for the commutator ab - ba. The Jacobson radical of R which is the intersection of all primitive ideals of R will be denoted by rad(R).

Recall that R is semiprime (resp. prime) if aRa=0 implies a=0 (resp. aRb=0 implies a=0 or b=0) and that R is semisimple if $rad(R)=\{0\}$. An additive mapping $\delta:R\to R$ is called a derivation (resp. $Jordan\ derivation$) if $\delta(ab)=a\delta(b)+\delta(a)b$ for all $a,b\in R$ (resp. $\delta(a^2)=a\delta(a)+\delta(a)a$ for all $a\in A$). Obviously, every derivation is a Jordan derivation. The converse, in general, is not true. Brešar [4] proved that every Jordan derivation on a 2-torsion free semiprime ring is a derivation.

An additive mapping $d: R \to R$ is said to be a left Jordan derivation or Jordan left derivation (resp. left derivation) if $d(a^2) = 2ad(a)$ for all $a \in R$ (resp. d(ab) = ad(b) + bd(a) for all $a, b \in R$). Brešar, Vukman ([7], [17]), Deng [8] and Ashraf et al. [1] studied left Jordan derivations and left derivations on prime rings and semiprime rings, which are in a close connection with so-called commuting mappings.

Received November 9, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 46H99, 47B47, 16N60.

Key words and phrases. (generalized) left Jordan derivation, (generalized) left derivation, derivation, spectral boundedness, Jacobson radica.

^{*}This work was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-313-C00045).

Now let us introduce some principal results concerning derivations and related mappings in Banach algebra theory. The non-commutative Singer-Wermer conjecture states that if δ is a linear derivation on a Banach algebra A such that $[\delta(a), a] \in rad(A)$ for all $a \in A$, then $\delta(A) \subseteq rad(A)$. This is equivalent to the fact that all primitive ideals of A are invariant under δ [9]. There is some evidence for the validity of the conjecture [16]. It is known to be true if δ is continuous ([7], [10]) or if A is commutative [15], while the classical Singer-Wermer theorem [14] is affirmative if both hypotheses are satisfied. Also, as one of noncommutative versions of the Singer-Wermer theorem (for example, [9]), Brešar and Vukman [7] proved that every continuous linear left derivation on a Banach algebra A maps A into rad(A). And they raised the problem whether the above conclusion holds for any continuous linear left Jordan derivation [7]. In case A is commutative, the problem is equivalent to the classical Singer-Wermer theorem.

In Section 2, we improve the results in [13] as non-commutative versions of the Singer-Wermer theorem. Moreover, in Section 3, we give an exact answer to a conjecture raised by Ashraf and Ali [2] and investigate the spectral boundedness of generalized left derivations.

2. Range inclusion results for left Jordan derivations

Definition 2.1. Let A and B be Banach algebras. A linear mapping $T: A \to B$ is called *spectrally bounded* if there is $M \ge 0$ such that $r(T(a)) \le Mr(a)$ for all $a \in A$. If r(T(a)) = r(a) for all $a \in A$, we say that T is a *spectral isometry*. If r(a) = 0, then a is called *quasinilpotent*. (Herein, $r(a) = \lim_{n \to \infty} ||a^n||^{\frac{1}{n}}$ denotes the *spectral radius* of the element a).

Remark 2.2. Brešar and Mathieu [6] showed that if δ is a linear derivation on a unital Banach algebra A, then the three conditions ' δ is spectrally bounded', ' $\sup\{r(c^{-1}\delta(c))|c\in A \text{ invertible}\} < \infty$ ' and ' $\delta(A)\subseteq rad(A)$ ' are equivalent each other.

We proved the following results concerning left Jordan derivations in [13] motivated by the Brešar and Mathieu's results in Remark 2.2:

- (i) Every spectrally bounded left Jordan derivation δ on a Banach algebra A such that $[\delta(a), a] \in rad(A)$ for all $a \in A$, maps A into rad(A).
- (ii) Every linear left Jordan derivation δ on a unital Banach algebra A with the condition $\sup\{r(c^{-1}\delta(c)): c \in A \text{ invertible}\} < \infty$ such that $[\delta(a), a] \in rad(A)$ for all $a \in A$, maps A into rad(A).

Here we obtain our main results without the condition $[\delta(a), a] \in rad(A)$ for all $a \in A$.

Theorem 2.3. Let A be a Banach algebra. If δ is a spectrally bounded left Jordan derivation on A, then we have $\delta(A) \subseteq rad(A)$.

Proof. Let $r(\delta(a)) \leq Mr(a)$ for some $M \geq 0$ and all $a \in A$. Since the canonical epimorphism $\pi: A \to A/rad(A)$ is a spectral isometry, it follows from [7, Proposition 1.1(1°)] that

$$\begin{split} r(2a\delta(b)) &= r(\delta(ab+ba)-2b\delta(a)) \\ &= r(\pi(\delta(ab+ba)-2b\delta(a))) \\ &= r(\pi(\delta(ab+ba)-\pi(2b\delta(a))) \\ &= r(\pi(\delta(ab+ba))) \\ &= r(\delta(ab+ba)) \\ &\leq Mr(ab+ba) = 0, \ a \in A, \ b \in rad(A). \end{split}$$

Therefore we obtain that $r(a\delta(b)) = 0$ for all $a \in A$ and $b \in rad(A)$ and so Proposition 1 in [3, p. 126] tells us that $\delta(rad(A)) \subseteq rad(A)$. Then we can define a linear left Jordan derivation $\bar{\delta}$ on the semisimple Banach algebra A/rad(A) by $\bar{\delta}(a+rad(A)) = \delta(a) + rad(A)$ for all $a \in A$. Hence, from [19, Theorem 4], we conclude that $\bar{\delta} = 0$, i.e., $\delta(A) \subseteq rad(A)$. This completes the proof of the theorem.

Theorem 2.4. Let A be a unital Banach algebra. If δ is a linear left Jordan derivation on A with the condition $\sup\{r(c^{-1}\delta(c)): c \in A \text{ invertible}\} < \infty$, then we have $\delta(A) \subseteq rad(A)$.

Proof. Let $\pi: A \to A/rad(A)$ be the canonical epimorphism. Let

$$s = \sup\{r(c^{-1}d(c)) : c \in A \text{ invertible}\} < \infty.$$

We claim that $\delta(rad(A)) \subseteq rad(A)$. Given $c \in rad(A)$, we have $(1+c)^{-1} = 1 - c(1+c)^{-1} \in 1 + rad(A)$ and hence

$$\begin{split} r((1+c)^{-1}d(1+c)) &= r((1-c(1+c)^{-1})\delta(c)) \\ &= r(\delta(c)-c(1+c)^{-1}\delta(c)) \\ &= r(\pi(\delta(c)-c(1+c)^{-1}\delta(c))) \\ &= r(\pi(\delta(c))-\pi(c(1+c)^{-1}\delta(c))) \\ &= r(\pi(\delta(c))) \\ &= r(\delta(c)). \end{split}$$

By the assumption, it follows that $r(d(c)) \le s < \infty$ for all $c \in rad(A)$, hence r(d(c)) = 0 for all $c \in rad(A)$. It follows from [7, Proposition 1.1(1°)] that

$$r(2a\delta(b)) = r(\delta(ab + ba) - 2b\delta(a))$$

$$= r(\pi(\delta(ab + ba) - 2b\delta(a)))$$

$$= r(\pi(\delta(ab + ba) - \pi(2b\delta(a)))$$

$$= r(\pi(\delta(ab + ba)))$$

$$= r(\delta(ab + ba)) = 0, \ a \in A, \ b \in rad(A).$$

Therefore we see that $r(a\delta(b)) = 0$ for all $a \in A$ and $b \in rad(A)$, and so $\delta(rad(A)) \subseteq rad(A)$, as claimed. The remainder follows the same fashion as in the proof of Theorem 2.3. Hence we obtain $\delta(A) \subseteq rad(A)$. This completes the proof.

3. Spectrally boundedness of generalized left derivations and generalized left Jordan derivations on semiprime rings

An additive mapping $f:R\to R$ is called a generalized derivation (resp. generalized Jordan derivation) if there exists a derivation $\delta:R\to R$ (resp. a Jordan derivation $\delta:R\to R$) such that $f(ab)=af(b)+\delta(a)b$ holds for all $a,b\in R$ (resp. $f(a^2)=af(a)+\delta(a)a$ holds for all $a\in R$). The concept of generalized derivation has been introduced by Brešar [5]. Jing and Lu [11] proved that every generalized Jordan derivation on 2-torsion free prime ring is a generalized derivation. In case when R is semiprime, they conjectured that the result above may be still true, and Vukman [18] proved the conjecture.

An additive mapping $g: R \to R$ is called a generalized left derivation (resp. generalized left Jordan derivation) if there exists a left derivation $d: R \to R$ (resp. a left Jordan derivation $d: R \to R$) such that g(ab) = ag(b) + bd(a) holds for all $a, b \in R$ (resp. $g(a^2) = ag(a) + ad(a)$ holds for all $a \in R$).

Brešar and Mathieu [6, Theorem 2.8] obtained a necessary and sufficient condition for a generalized derivation to be spectrally bounded on a unital Banach algebra:

Let $f = \tau_t + \delta$ be a generalized derivation with t = f(1) associated with a derivation δ on a unital Banach algebra A, where τ_t is a left multiplication by t. The following conditions are equivalent.

- (i) f is spectrally bounded.
- (ii) Both τ_t and δ are spectrally bounded.

Let R be a ring. It is easy to prove that $g: R \to R$ is a generalized left derivation if and only if g is of the form $g = \lambda + d$, where $\lambda: R \to R$ is a right centralizer and $d: R \to R$ is a left derivation. If R contains a unit element, then it is easy to see that g is a of the form $g = \mu_k + d$, where μ_k is a right multiplication by $k = \lambda(1)$. We here apply the Brešar and Mathieu's result above to arbitrary spectrally bounded generalized left derivations.

Theorem 3.1. Let $g = \mu_k + d$ be a generalized left derivation with $k = \lambda(1)$ on a unital Banach algebra A. The following conditions are equivalent.

- (i) g is spectrally bounded.
- (ii) Both μ_k and d are spectrally bounded.

Proof. Let $\pi: A \to A/rad(A)$ be the canonical epimorphism. Suppose that both μ_k and d are spectrally bounded. By [12, Theorem 3.12], $d(A) \subseteq rad(A)$

whence

$$r(g(a)) = r(\mu_k(a) + d(a))$$

$$= r(\pi(\mu_k(a) + d(a)))$$

$$= r(\pi(ak + \pi(d(a))))$$

$$= r(\pi(ak))$$

$$= r(ak) \le Mr(a)$$

for some $M \geq 0$ and all $a \in A$. Hence g is spectrally bounded.

Conversely, suppose that g is spectrally bounded. It suffices to show that d is spectrally bounded. For then, since we know that $d(A) \subseteq rad(A)$ by [12, Theorem 3.12] and that r(ak) = r(g(a)) for all $a \in A$ as the above relation, it follows that μ_k is spectrally bounded with the same constant as g.

From the relation

$$r(ad(b)) = r(d(ab) - bd(a))$$

$$= r(g(ab) - abk - bd(a))$$

$$= r(\pi(g(ab) - abk - bd(a)))$$

$$= r(\pi(g(ab)) - \pi(abk) - \pi(bd(a)))$$

$$= r(\pi(g(ab)))$$

$$= r(g(ab)) \le Mr(ab) = 0$$

for some $M \geq 0$ and for all $a \in A$ and $b \in rad(A)$, we arrive at

$$r(ad(b)) = 0$$

for all $a \in A$ and $b \in rad(A)$ which implies that

$$d(rad(A)) \subseteq rad(A)$$
.

Since every left derivation on semisimple Banach algebras is zero by [12, Corollary 3.7], the induced derivation on the semisimple Banach algebra A/rad(A) yields $d(A) \subseteq rad(A)$. Therefore, d is spectrally bounded by [12, Theorem 3.12].

An additive mapping $\lambda: R \to R$ is called a left (resp. right) centralizer if $\lambda(ab) = \lambda(a)b$ (resp. $\lambda(ab) = a\lambda(b)$) holds for all $a, b \in R$. An additive mapping $\lambda: R \to R$ is called left (resp. right) Jordan centralizer if $\lambda(a^2) = \lambda(a)a$ (resp. $\lambda(a^2) = a\lambda(a)$) holds for all $a \in R$.

Obviously, every left (resp. right) centralizer is a left (resp. right) Jordan centralizer. Zalar has proved the following fact.

Lemma 3.2 ([20, Proposition 1.4]). Let R be a 2-torsion free semiprime ring. If $\lambda : R \to R$ is a left (resp. right) Jordan centralizer, then λ is a left (resp. right) centralizer.

Recently, Ashraf and Ali [2] proved that every generalized left Jordan derivation on prime rings is a generalized left derivation. In [2], they also conjectured that every generalized left Jordan derivation on semiprime rings may be a generalized left derivation. Finally, we give an exact answer to this conjecture:

Theorem 3.3. Let R be a 2-torsion free semiprime ring. If $g: R \to R$ is a generalized left Jordan derivation, then g is a generalized derivation.

Proof. Suppose that there exists $d:R\to R$ is a left Jordan derivation such that

$$g(a^2) = ag(a) + ad(a)$$

is fulfilled for all $a \in R$. Let us denote g - d by λ . Using the relation above, we get

$$\lambda(a^2) = g(a^2) - d(a^2)$$

$$= ag(a) + ad(a) - 2ad(a)$$

$$= a(g(a) - d(a))$$

$$= a\lambda(a)$$

for all $a \in R$. We have therefore $\lambda(a^2) = a\lambda(a)$ for all $a \in R$. In other words, λ is a right Jordan centralizer of R. Since R is a 2-torsion free semiprime ring, it follows from [19, Theorem 2] and Lemma 3.2 that $d: R \to R$ is a derivation such that $d(R) \subseteq Z(R)$ and λ is a right centralizer of R, respectively. Since we know that $g = \lambda + d$, we see that the equality g(ab) = ag(b) + d(a)b holds for all $a, b \in R$. That is, we conclude that g is a generalized derivation. The proof of the theorem is complete.

References

- [1] M. Ashraf, On Jordan left derivations of Lie ideals in prime rings, Southeast Asian Bull. Math. 25 (2001), no. 3, 379–382.
- [2] M. Ashraf and S. Ali, On generalized Jordan left derivations in rings, Bull. Korean Math. Soc. 45 (2008), no. 2, 253–261.
- [3] F. F. Bonsall and J. Duncan, *Complete Normed Algebras*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80. Springer-Verlag, New York-Heidelberg, 1973.
- [4] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1003–1006.
- [5] _____, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), no. 1, 89-93.
- [6] M. Brešar and M. Mathieu, Derivations mapping into the radical. III, J. Funct. Anal. 133 (1995), no. 1, 21–29.
- [7] M. Brešar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990), no. 1, 7–16.
- [8] Q. Deng, On Jordan left derivations, Math. J. Okayama Univ. 34 (1992), 145-147
- [9] M. Mathieu, Where to find the image of a derivation, Functional analysis and operator theory (Warsaw, 1992), 237–249, Banach Center Publ., 30, Polish Acad. Sci., Warsaw, 1994.
- [10] M. Mathieu and G. J. Murphy, Derivations mapping into the radical, Arch. Math. (Basel) 57 (1991), no. 5, 469–474.

- [11] W. Jing and S. Lu, Generalized Jordan derivations on prime rings and standard operator algebras, Taiwanese J. Math. 7 (2003), no. 4, 605–613.
- [12] Y.-S. Jung, On left derivations and derivations of Banach algebras, Bull. Korean Math. Soc. 35 (1998), no. 4, 659–667.
- [13] ______, Some results on Jordan left derivations in Banach algebras, Commun. Korean Math. Soc. 14 (1999), no. 3, 513–519.
- [14] I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260–264.
- [15] M. P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. (2) 128 (1988), no. 3, 435–460.
- [16] _____, Primitive ideals and derivations on noncommutative Banach algebras, Pacific J. Math. 159 (1993), no. 1, 139–152.
- [17] J. Vukman, Jordan left derivations on semiprime rings, Math. J. Okayama Univ. 39 (1997), 1–6.
- [18] ______, A note on generalized derivations of semiprime rings, Taiwanese J. Math. 11 (2007), no. 2, 367–370.
- [19] ______, On left Jordan derivations of rings and Banach algebras, Aequationes Math. **75** (2008), no. 3, 260–266.
- [20] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32 (1991), no. 4, 609–614.

YONG-SOO JUNG
DEPARTMENT OF MATHEMATICS
SUN MOON UNIVERSITY
CHUNGNAM 336-708, KOREA
E-mail address: ysjung@sunmoon.ac.kr

KYOO-HONG PARK
DEPARTMENT OF MATHEMATICS EDUCATION
SEOWON UNIVERSITY

E-mail address: parkkh@seowon.ac.kr

Chungbuk 361-742, Korea