THE STRUCTURE OF A CONNECTED LIE GROUP G WITH ITS LIE ALGEBRA $g = rad(g) \oplus \mathfrak{sl}(2, \mathbb{F})$

MI-AENG WI

Dept. of Mathematics Kansas state University,
Graduate teaching assistant(graduated from Chonbuk National University).

1. Abstract

The purpose of this study is to construct the structure of the connected Lie group G with its Lie algebra $\mathfrak{g}=rad(\mathfrak{g})\oplus\mathfrak{sl}(2,\mathbb{F})$, which conforms to Stellmacher's [4] Pushing Up. The main idea of this paper comes from Stellmacher's [4] Pushing Up. Stellmacher considered Pushing Up under a finite p-group. This paper, however, considers Pushing Up under the connected Lie group G with its Lie algebra $\mathfrak{g}=rad(\mathfrak{g})\oplus\mathfrak{sl}(2,\mathbb{F})$. In this paper, $O_p(G)$ in [4] is $Q=\exp(\mathfrak{q})$, where $\mathfrak{q}=nilrad(\mathfrak{g})$ and a Sylow p-subgroup S in [7] is $S=\exp(\mathfrak{s})$, where $\mathfrak{s}=\mathfrak{q}\oplus\left\{\begin{pmatrix}0&*\\0&0\end{pmatrix}\mid *\in\mathbb{F}\right\}$.

Showing the properties of the connected Lie group and the subgroups of the connected Lie group with relations between a connected Lie group and its Lie algebras under the exponential map, this paper constructs the subgroup series $C_Z(G) < Z < Q < G$ and shows [M,Q]=1, where M is the maximal semisimple connected subgroup of G.

In this paper, we usually denote Lie algebras by lowercase German letters.

2. Main Hypothesis

Part I: Assume that G is a connected Lie group over $\mathbb{F}(=\mathbb{R},\mathbb{C})$. Let \mathfrak{g} is the Lie algebra of G. Assume that $\mathfrak{g} = rad(\mathfrak{g}) \oplus \mathfrak{sl}(2,\mathbb{F})$.

When, by Theorem 3.18.13 in [5], Levi-decomposition gives that G = RM,

where R = rad(G) and M is the maximal semisimple connected subgroup of G.

Received March 5, 1995.

Part II: Assume that G is a subgroup of a group $H = \langle G, N_H(S) \rangle$, where H is generated by G and $N_H(S)$, and $N_H(S)$ is the normalizer of S in H. Also $N_H(S)$ induces a Lie group automorphisms of S.

We estabilish notations as follows.

Let $\mathfrak{s}_{\mathfrak{o}}$ is the subalgebra of $\mathfrak{sl}(2,\mathbb{F})$ given by $\left\{ \begin{pmatrix} 0 & * \\ 0 & 0 \end{pmatrix} | * \in \mathbb{F} \right\}$.

 $egin{aligned} & \mathfrak{q} = nilrad(\mathfrak{g}) \ & \mathfrak{s} = \mathfrak{q} \oplus \mathfrak{s}_o \ & S_o = \exp(\mathfrak{s}_o) \ & S = \exp(\mathfrak{s}) \ & Q = \exp(\mathfrak{q}) \ & \mathfrak{m} = ext{the Lie algebra of } M & \cong \mathfrak{sl}(2,\mathbb{F}). \end{aligned}$

m =the Lie algebra of $M = \mathfrak{sl}(2, \mathbb{F})$.

Put $G_o = QM$.

Now, we want to replace G by G_o in main hypothesis.

LEMMA 2.1. $G = N_G(S) G_o$, where $N_G(S)$ is the normalizer of S in G.

Proof. We have that G/Q is reductive and that $R/Q \leq G/Q$ is the radical of G/Q.

However, the radical of a reductive group is in the center. Thus $R/Q \leq Z(G/Q)$ and so $[R,S] \leq Q \leq S$. Hence $R \leq N_G(S)$. We then have $G = RM \leq N_G(S)G_o$.

Therefore, $G = N_G(S)G_o$.

Next, we need to show that G_o is connected. Since M and Q are connected Lie groups, $G_o = MQ$ is a connected Lie group by Bourbaki in [1]. Now, we have that the Lie algebra of G_o is $\mathfrak{q} \oplus \mathfrak{m}$ and $G = N_G(S) G_o$ in Lemma 2.1. Thus $H = \langle G, N_H(S) \rangle = \langle N_G(S)G_o, N_H(S) \rangle = \langle G_o, N_H(S) \rangle$. Hence the main hypothesis is satisfied by G_o in place of G. Also, if G_o satisfies the conclusion of main theorem, then so dose G. Therefore we assume that $G = G_o$.

Also, $\mathfrak{g}=\mathfrak{q}\oplus\mathfrak{sl}(2,\mathbb{F})$ as $\exp(\mathfrak{g})\geq\exp(\mathfrak{q}\oplus\mathfrak{m})\geq\langle\exp(\mathfrak{q}),\exp(\mathfrak{m})\rangle=QM=G.$

Therefore we have,

PRPPOSITION 2.2. G = QM and $g = q \oplus \mathfrak{sl}(2, \mathbb{F})$.

3. The Structure of Z(Q)

In this section, we will construct the structure of the center of Q.

We quote the following Lemma from proposition 3.26 in [6].

LEMMA 3.1. Let G and H be connected Lie groups, and let $\phi: G \to H$ be a homomorphism. Then ϕ is a covering map if and only if $d\phi: G_e \to H_e$ is an isomorphism.

LEMMA 3.2. M is a covering group of $PSL(2, \mathbb{F})$.

Proof. We know the M is a connected Lie group with a Lie algebra $\mathfrak{sl}(2,\mathbb{F})$ by the definition. Now, $\mathrm{SL}(2,\mathbb{F})$ is a covering group of $\mathrm{PSL}(2,\mathbb{F})$ as $\mathrm{SL}(2,\mathbb{F}) \to \mathrm{PSL}(2,\mathbb{F})$ is a natural homomorphism with discrete kernel $\{\pm I\}$ and is continuous, where $I=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Hence, the Lie algebra of $\mathrm{SL}(2,\mathbb{F})$ is isomorphic to the Lie algebra of $\mathrm{PSL}(2,\mathbb{F})$ by Lemma 3.1. Thus the Lie algebra of $\mathrm{PSL}(2,\mathbb{F})$ is $\mathfrak{sl}(2,\mathbb{F})$.

Let M^* denote the universial covering group of $PSL(2, \mathbb{F})$. Then M^* is the unique (up to isomorphism) simply connected Lie group with its Lie algebra $\mathfrak{sl}(2, \mathbb{F})$. Now M is a connected Lie group with Lie algebra $\mathfrak{sl}(2, \mathbb{F})$. So M^* is the universial cover of M.

Thus we have the following diagram:

$$M^*$$
 \longrightarrow M^*
 $covering$
 $M^*/D = \mathrm{PSL}(2,\mathbb{F}) \longleftarrow M = M^*/D^*$

Here D^* , D discete normal subgroups of M^* .

We need to prove that $D^* \leq D$. If so, then

$$PSL(2,\mathbb{F}) = M^*/D \cong (M^*/D^*)/(D/D^*) = M/(D/D^*).$$

Since D/D^* is discrete normal in M, M is a covering group of $PSL(2, \mathbb{F})$.

To prove the claim that $D^* \leq D$: note that DD^* is normal in M^* .

We have $M^*/DD^* \cong (M^*/D)/(DD^*/D) = PSL(2, \mathbb{F})/(DD^*/D)$.

Since $PSL(2, \mathbb{F})$ is simple, (DD^*/D) is either 1 or $PSL(2, \mathbb{F})$.

If $DD^*/D = 1$, then $D^* \leq D$ as desired.

Suppose $PSL(2, \mathbb{F}) = DD^*/D$. Then $PSL(2, \mathbb{F}) = DD^*/D \cong D^*/(D^* \cap D)$ is discrete.

It is not the case.

Put Z = Z(Q).

Then Z is a connected Lie subgroup of G by cor.3.6.4 in [5] and cor.3.50 (a) in [6].

LEMMA 3.3. Let g be an abelian Lie algebra and let G be an additive group of g.

Then g is a Lie algebra of G and exp: $g \rightarrow G$ is an identity.

Proof. Since G is an abelian vector space, G is a Lie group.

For any $a \in G$, let $\phi_a : F \to G$ be a 1-parameter subgroup of G by $t \mapsto ta$. Then let X_a be the unique invariant vector field on G whose value at identity e is $X_a(e) = d\phi_a(\frac{d}{dt}|_0)$.

By definition, this means that for any $c \in G$ and any $f \in C^{\infty}(G)$, we have $X_a(c) = dl_c(X_a(e))$ where $l_c : G \to G$ is a translation by c, i.e., $l_c(b) = b + c$, and we thus have $X_a(c)(f) = \frac{d}{dt}|_0(f \circ l_c \circ \phi_a)$.

We want to show that $X_a(c)$ is the directional derivative at c, in the direction a.

Fix a coordinate function $(x_i)_{i=1}^n$ for G, and take $a=(a_1,\cdots,a_n)$. Put $\zeta=l_c\circ\phi_a$.

Then the chain rule gives

$$X_a(c)(f) = \frac{d}{dt}|_{0}(f \circ \zeta) = \sum_{n=1}^{n} \frac{\partial f}{\partial x_i}(\zeta(0)) \zeta_i'(0)$$

where $\zeta(t) = (\zeta_1(t), \cdots, \zeta_n(t)) = (c_i + ta_i)_{i=1}^n$.

Thus, $X_a(c)(f) = \sum_{i=1}^n a_i \frac{\partial f}{\partial x_i}(c)$, and so that $X_a(c)$ is the directional derivative at c, in the direction a.

We now show that any invariant vector field X on G is of the form X_a for some a.

Indeed, it is enough to show that $X(e) = X_a(e)$ for some a.

Now, simply take $a = (X(e)(x_1), \dots, X(e)(x_n))$, where x_i is the i^{th} coordinate function $G \to \mathbb{F}$.

Then X(e) and $X_a(e)$ agree on all polynomial maps f, and since these are dense in $\mathcal{C}^{\infty}(G)$, we get $X = X_a$.

Define $\lambda: \mathfrak{g} \to L(G)$ by $a \mapsto X_a$, where L(G) is a Lie algebra of G. As we have just now shown, λ is surjective. Also, λ is linear. Indeed, we have $X_{a+b} = X_a + X_b$ and $X_{ca} = c \ X_a$. Evidently, the directional derivative $X_a(e)$ is zero if and only if a = 0, so λ is an isomorphism of vector spaces. In order to show that λ is an isomorphism of Lie algebras, we need only observe that L(G) is abelian; ([X,Y](e)) f = 0 for any $X = X_a, Y = X_b$. For this it suffices to let f be a coordinate function. The fact that L(G) is abelian then reduces to the commutativity of multiplication in \mathbb{F} .

We now identify \mathfrak{g} with L(G) via λ . Notice that exp: $L(G) \to G$ is given by $X_a \mapsto \phi_a(1) = a$, so under the above identification, we have $\exp=\operatorname{id}: \mathfrak{g} \to G$.

PROPOSITION 3.4. $Z = C_Z(G) \oplus W$, where W is a G-invariant subgroup of $Z, W \cong \mathbb{F}^n$ for some n and G acts linearly on W.

Proof. We have that Z is a connected Lie group. Hence, Z has a simply connected universial covering group Z^* . Then Z^* is a simply connected abelian group by Corollary 3.50 (b) in [6] and so $Z^* \cong \mathbb{F}^n$ for some n. Let $\pi: Z^* \to Z$ be a covering map.

Then $L(Z^*)\cong L(Z)$ by Lemma 3.1. By Lemma 3.3, we have $L(Z^*)=Z^*$. Now, we have a commutative diagram by 3.46 (6) in [6]:

where \mathfrak{a}_{σ} is an inner automorphism of G given by conjugation by σ . Then $\exp|_{Z^*} = \pi$ is G - equivariant by the commutative diagram. i.e., $\exp|_{Z^*}(z^*g) = \pi(z^*g) = g^{-1}(\pi(z^*))g = g^{-1}(\exp|_{Z^*}(z^*))g$, for $g \in G$ and $z^* \in Z^*$.

Now, set $Ker(\pi) = D$.

Then we have D is a G-invariant.

Note that G acts linearly on Z^* via Ad, see (*).

Since the only continuous action of a connected Lie group on a discrete set is trivial, M centralizes D. Then Weyl's Theorem says that $Z^* = C_{Z^*}(M) \oplus W$ for some M-invariant subspace W of Z^* . Hence $D \leq C_{Z^*}(M)$.

So,
$$Z = Z^*/D = (C_{Z^*}(M) \oplus W)/D = (C_{Z^*}(M) + D)/D \oplus (W+D)/D = C_Z(M) \oplus W'$$
,

where $W' = (W+D)/D \cong W/(W \cap D) = W$ as $W \cap D = 1$. Identify W with W'. Then $Z = C_Z(M) \oplus W$.

Since G = QM and Q centralizes Z, we have $Z = C_Z(G) \oplus W$.

4. Main Theorem

DEFINITION 4.1. O(G) denotes the subgroup of G generated by semisimple subgroups of G.

Then we have the following lemma:

LEMMA 4.2.

(1) G/O(G) is nilpotent.

(2) If N is a normal subgroup of G such that G/N is nilpotent, then $N \geq O(G)$.

Proof. (1) By the definition of O(G), O(G) is generated by all M^x for $x \in G$ and hence G = QO(G).

Thus $G/O(G) \cong Q$ is nilpotent.

(2) Suppose N is normal of G such that G/N is nilpotent. Assume that N < O(G).

Then $G/N \geq O(G)N/N \cong O(G)/(N \cap O(G))$ is not nilpotent, a contradiction.

Thus $N \geq O(G)$.

LEMMA 4.3.
$$S = QS_o$$
 and $S_o \cap Q = 1$.

Proof. By the definition of S, $S = \exp(\mathfrak{s}) = \exp(\mathfrak{q} \oplus \mathfrak{s}_o)$.

Clearly, $QS_o \leq S$. Conversely, we have QS_o is a connected Lie group by Bourbaki in [1]. Let X be a corresponding Lie algebra of QS_o under exp: $\mathfrak{g} \to G$.

Then $S=\exp(\mathfrak{s})=\exp(\mathfrak{q}\oplus\mathfrak{s}_o)\leq \exp(X)=QS_o$. Thus $S=QS_o$.

Now, we have a cimmutative diagram:

$$\mathfrak{sl}(2,\mathbb{F}) \xrightarrow{\exp_1} M$$

$$\downarrow^{\pi}$$

$$\mathfrak{sl}(2,\mathbb{F}) \xrightarrow{\exp_2} \mathrm{PSL}(2,\mathbb{F})$$

So, we have $\pi \circ \exp_1 = \exp_2$ and if $A = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \in \mathfrak{s}_o$, then $exp_2(A)$ is

the image of $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ in $PSL(2, \mathbb{F})$.

Hence we have $\pi(S_o) = \left\{ \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} | * \in \mathbb{F} \right\}$ and so

$$\exp_2|_{\mathbf{s}_o}:\mathbf{s}_o \longrightarrow \pi(S_o)$$

is an isomorphism. By the commutative diagram, we have $\pi \circ \exp_1 \mid_{s_o}$ is injective. Since $\operatorname{PSL}(2,\mathbb{F})$ is simple, $M \cap Q \leq \operatorname{Ker} \pi$.

Thus, $S_o \cap Q \leq M \cap Q \leq \operatorname{Ker} \pi$.

Since $\pi|_{\exp(s_0)}$ is injective, $\pi|_{S_0}$ is injective. Hence we have $S_0 \cap Q = 1$.

LEMMA 4.4. Z(S) is connected.

Proof. Since $S = QS_o$, S is connected. Also, S is nilpotent as s is nilpotent. Thus, by Corollary 3.6.4 in [5], Z(S) is connected.

THEOREM 4.5. Assume that Z and S are defined as above. Then we have

(i)
$$Z \leq \langle (Z(S))^G \rangle$$
.

(ii) If
$$Z(S) \leq Q$$
, then $Z = \langle (Z(S))^G \rangle$.

Proof. (i) By Proposition 3.4, we have $Z^* = C_{Z^*}(M) \oplus W$ and $C_{Z^*}(G) = Z(\mathfrak{g})$ by Bourbaki in [1]. By Weyl's Theorem, $W = W_1 \oplus \cdots \oplus W_t$, irreducible summands for the action of \mathfrak{m} . Since $\mathfrak{g} = \mathfrak{q} \oplus \mathfrak{m}$, each W_i is a \mathfrak{g} -submodule of Z^* . Since \mathfrak{s}_o is an ad-nilpotent subgroup of $\mathfrak{m} \cong \mathfrak{sl}(2,\mathbb{F})$, \mathfrak{s}_o acts as a Lie algebra of nilpotent linear transformations on each W_i . Hence $C_{W_i}(\mathfrak{s}_o) \neq 0$ and so $C_{W_i}(S_o) \neq 0$. Since $S = S_oQ$ by Lemma 4.3, $C_{W_i}(S) \neq 0$. Since W_i is irreducible, $W_i \in (C_{W_i}(S)^G)$. Also, $C_{W_i}(S) \leq C_Z(S) \leq C_Q(S) \leq Z(S)$. Thus, we have $W_i \leq ((Z(S))^G)$ and so $W = \langle (Z(S))^G \rangle$.

Since $C_Z(G) \leq C_Z(S) \leq C_Q(S) \leq Z(S)$ and $C_Z(G)$ is normal in G, $C_Z(G) \leq \langle (Z(S))^G \rangle$. Thus we have $Z \leq \langle (Z(G))^G \rangle$ from the form $Z = C_Z(G) \oplus W$ by Proposition 3.4.

(ii) If $Z(S) \leq Q$, then $Z(S) \leq Z(Q)$ as $Z(S) \leq Q \leq S$. So, $\langle (Z(S))^G \rangle \leq Z(Q) = Z$ as Z(Q) is normal in G. Thus we have $Z = \langle (Z(S))^G \rangle$.

LEMMA 4.6. Assume that M and Q are defined as above. Then [M, Q] =1.

Proof. We know that Z(S) is not in Q and that Z(S) is connected by Lemma 4.4. Now, since $S = QS_o$ and S/Q has dimension 1, S/Q has only two connected subgroups 1 and S/Q. Thus, S = Z(S)Q.

Since any two conjugates of S_o generate M, any two conjugates of S generate G.

Hence we have $G = \langle S^G \rangle$ and so $G = \langle (Z(S))^G \rangle Q$ and $[(Z(S))^G, Q] = 1$. Since $Z(S) \leq C_G(Q)$ and $C_G(Q)$ is normal in G, we have $\langle (Z(S))^G \rangle \leq C_G(Q)$.

Now, we have $G/C_G(Q)\cong Q/(Q\cap C_G(Q))=Q/Z(Q)$ is nilpotent. Thus $M\leq C_G(Q)$ by Lemma 4.2. Therefore [M,Q]=1.

References

- 1. N.Bourbaki, textElements of Mathematics Lie Groups and Lie Algebras, Chapter 1-3, Springer-Verlag, New York 1989.
- 2. J.E.Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York 1972.
- 3. J-P.Serre, Lie Algebras and Lie Groups, 1964 Lectures Given at Harvard University, The benjamin/cummings Publishing Company, Massachusetts 1965.
- 4. B.Stellmacher, Pushing Up., Arch. Math. 48 (1986), 8-17.
- 5. V.S. Varadarajan,, Lie Groups, Lie Algebras and Their Representations, Prentice-Hall, New York 1974.
- 6. F.W.Warner, Foundations of Differentiable Manifolds and Lie Groups, Scott, Foresman and Company, Illinois 1971.