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1. Abstract

The purpose of this study is to construct the structure of the connected
Lie group G with its Lie algebra g = rad(g) & s{(2,F), which conforms to
Stellmacher’s [4] Pushing Up. The main idea of this paper comes from
Stellmacher’s [4] Pushing Up. Stellmacher considered Pushing Up under
a finite p-group. This paper, however, considers Pushing Up under the
connected Lie group G with its Lie algebra g = rad(g) & s((2,F). In
this paper, Op(G) in [4] is Q=exp(q), where q = nilrad(g) and a Sylow
p-subgroup S in [7] is S=exp(s), where s = q ® {(g 8) | * € F}

Showing the properties of the connected Lie group and the subgroups
of the connected Lie group with relations between a connected Lie group
and its Lie algebras under the exponential map, this paper constructs the
subgroup series Cz(G) < Z < @ < G and shows [M,Q]=1, where M is
the maximal semisimple connected subgroup of G.

In this paper, we usually denote Lie algebras by lowercase German
letters.

2. Main Hypothesis

Part I : Assume that G is a connected Lie group over F(= R, C). Let g
is the Lie algebra of G. Assume that g = rad(g) & sl(2, F).

When, by Theorem 3.18.13 in [5], Levi-decomposition gives that G =
RM,

where R = rad(G) and M is the maximal semisimple connected sub-
group of G.
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Part II: Assume that G is a subgroup of a group H = (G, Ny(S)),
where H is generated by G and Ny(S), and Ny(S) is the normalizer of
S in H. Also Ny(S) induces a Lie group automorphisms of S.

We estabilish notations as follows.

Let s, is the subalgebra of sl(2,F) given by {(8 3) I € ]F}

q = nilrad(g)

§=qDS,

S,= exp(s,)

S = exp (s)

Q= exp (q)

m= the Lie algebra of M 22 s{(2,F).
Put G, = QM.

Now, we want to replace G by G, in main hypothesis.

LEMMA 2.1. G = Ng(S) G,, where Ng(5) is the normalizer of S in
G.

Proof. We have that G/Q is reductive and that R/Q < G/Q is the
radical of G/Q.
However, the radical of a reductive group is in the center. Thus R/Q <
Z(G/Q) and so [R,S] £ Q@ < S. Hence R < Ng(S). We then have
G = RM £ N¢(5)G,.
Therefore, G = Ng(S5)G,.

Next, we need to show that G, is connected. Since M and @ are con-
nected Lie groups, G, = M@ is a connected Lie group by Bourbaki in [1].
Now, we have that the Lie algebra of G, is g ® m and G = Ng(S) G, in
Lemma 2.1. Thus H = (G, Nu(S)) = (Ng(S)Go, Nu(S)} =(Go, Nu(S)).
Hence the main hypothesis is satisfied by G, in place of G. Also, if G,
satisfies the conclusion of main theorem, then so dose G. Therefore we
assume that G = G,.

Also, g = q @ sl(2,F) as exp(g) = exp(q ®m) > ( exp(q)exp (m))
=QM=G.

Therefore we have,

PRPPOSITION 2.2. G = QM and g = q®sl(2,F).

3. The Structure of Z(Q)
In this section, we will construct the structure of the center of Q.

We quote the following Lemma from proposition 3.26 in [6].
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LEMMA 3.1. Let G and H be connected Lie groups, and let ¢ : G — H
be a homomorphism. Then ¢ is a covering map if and only ifd¢ : G, — H,
is an isomorphism.

LEMMA 3.2. M is a covering group of PSL(2,F).

Proof. We know the M is a connected Lie group with a Lie algebra
sl(2,F) by the definition. Now, SL(2,F) is a covering group of PSL(2, F)
as SL(2,F) — PSL(2,F) is a natural homomorphism with discrete kernel
é (1)) Hence, the Lie algebas of
SL(2, F) is isomorphic to the Lie algebra of PSL(2, F) by Lemma 3.1. Thus
the Lie algebra of PSL(2,F) is sl(2, F).

Let M* denote the universial covering group of PSL(2,F). Then M*
is the unique (up to isomorphism) simply connected Lie group with its
Lie algebra sl(2,F). Now M is a connected Lie group with Lie algebra
sl(2,F). So M* is the universial cover of M.

Thus we have the following diagram:

M* —— M*

{#£I} and is continuous, where I =

covcringl lcovering

M*/D = PSL(2,F) —— M = M*/D*

Here D*, D discete normal subgroups of M™.
We need to prove that D* < D. If so, then
PSL(2,F) = M*/D=(M*/D*)/(D/D*) = M [ (D/D*).
Since D/D* is discrete normal in M, M is a covering group of PSL(2,F).
To prove the claim that D* < D: note that DD* is normal in M*.
We have M*/DD* = (M*/D)/(DD*/D) = PSL(2,F)/(DD*/D).
Since PSL(2, F) is simple, (DD*/D) is either 1 or PSL(2,F).
If DD*/D =1, then D* < D as desired.
Suppose PSL(2,F) = DD*/D. Then PSL(2,F) = DD*/D = D*/(D*N
D) is discrete.
It is not the case.
Put Z = Z(Q).
Then Z is a connected Lie subgroup of G by cor.3.6.4 in [5] and cor.3.50
(a) in [6].

LEMMA 3.3. Let g be an abelian Lie algebra and let G be an additive
group of g.
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Then g is a Lie algebra of G and exp: § — G is an identity.

Proof. Since G is an abelian vector space, G is a Lie group.
For any a € G, let ¢, : F — G be a l-parameter subgroup of G by
t — ta. Then let X, be the unique invariant vector field on G whose value
at identity e is X (e) = d‘ﬁa(filﬁ)-
By definition, this means that for any ¢ € G and any f € €°°(G), we have
Xa(c) = dl.(Xe(e)) where I, : G — G is a translation by ¢, i.e.,

l.(b) = b+ ¢, and we thus have X,(c)(f) = %‘g(‘f ol.0¢,).

We want to show that X,(c) is the directional derivative at c, in the
direction a.
Fix a coordinate function ( z; )., for G, and take a = ( ay,--- ,a, ).
Put { = I 0¢,.
Then the chain rule gives

X)) = Eh(Fo0) = 3 210D ¢/

where ((t) = (C1(t), -+ ,(a(t) = (i +tai)i;-
Thus, X,(c)(f) = Y, a;%(c), and so that X,(c) is the directional

derivative at c, in the direction a.

We now show that any invariant vector field X on G is of the form X,

for some a.

Indeed, it is enough to show that X(e) = X,(e) for some a.

Now, simply take a = (X(e)(z1), -+ ,X(e)(2n)), where z; is the it
coordinate function G — F.

Then X (e) and X,(e) agree on all polynomial maps f, and since these are
dense in C*(G), we get X = X,.

Define A : g — L(G) by a — X,, where L(G) is a Lie algebra of G.
As we have just now shown, A is surjective. Also, A is linear. Indeed, we
have X,45 = X, + Xp and X., = c X,. Evidently, the directional
derivative X,(e) is zero if and only if a = 0, so A is an isomophism of
vector spaces. In order to show that A is an isomorphism of Lie algebras,
we need only observe that L(G) is abelian; ([X,Y](e)) f = Oforany X =
X.,Y = X,. For this it suffices to let f be a coordinate function. The fact
that L(G) is abelian then reduces to the commutativity of multiplication
in F.

We now identify g with L(G) via A. Notice that exp: L(G) — G is
given by X, — ¢,(1) = a, so under the above identification, we have
exp=id:g — G.
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PROPOSITION 3.4. Z = Cz(G)@® W, where W is a G-invariant sub-
group of Z, W = F" for some n and G acts linearly on W.

Proof. We have that Z is a connected Lie group. Hence, Z has a simply
connected universial covering group Z*. Then Z* is a simply connected
abelian group by Corollary 3.50 (b) in [6] and so Z* = F™ for some n.
Let 7 : Z* — Z be a covering map.

Then L(Z*)2L(Z) by Lemma 3.1. By Lemma 3.3, we have L(Z2*) =Z*.

Now, we have a commutative diagram by 3.46 (6) in [6]:

73

G — @G

. - Tox

L(G) i L(G)

where a, is an inner automorphism of G given by conjugation by o.
Then exp|z+ = 7 is G - equivariant by the commutative diagram.
i.e., exp|z-(z*g) =m(2*g) = g7 (n(z*))g = g~ '(exp|z+(z*))g,forg € G
and 2* € Z*.

Now, set Ker(r) = D.
Then we have D is a G-invariant.
Note that G acts linearly on Z* via Ad, see (*).
Since the only continuous action of a connected Lie group on a discrete set
is trivial, M centralizes D. Then Weyl’s Theorem says that Z*=Cz.(M)®
W for some M-invariant subspace W of Z*. Hence D < Cz.(M).
So,Z = Z*/D = (Cz-(M)®W)/D = (Cz-(M)+D)/D®&W+D)/D =
Cz(M)p W',

where W/ = (W +D)/D =& W/(WND) = WasWND=1.
Identify W with W'. Then Z = Cz(M)o W.
Since G = QM and Q centralizes Z, we have Z = Cz(G) @ W.

4. Main Theorem

DEFINITION 4.1. O(G) denotes the subgroup of GG generated by semisim-
ple subgroups of G.
Then we have the following lemma:

LEMMA 4.2.
(1) G/O(@G) is nilpotent.
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(2) If N is a normal subgroup of G such that G/N is nilpotent, then
N 2> O(G).

Proof. (1) By the definition of O(G), O(G) is generated by all M® for
z € G and hence G = QO(G).
Thus G/O(G) = Q is nilpotent.

(2) Suppose N is normal of G such that G/N is nilpotent. Assume that
N < O(G).
Then G/N > O(G)N/N = O(G)/(N n O(G)) is not nilpotent, a
contradiction.

Thus N > O(G).
LEMMA 4.3. §=QS, and S,NQ = 1.

Proof. By the definition of S, § =exp(s)= exp(q @ 5,)-
Clearly, @S, < S. Conversely, we have QS, is a connected Lie group by
Bourbaki in [1]. Let X be a corresponding Lie algebra of @S, under exp:
g —» G.
Then S=exp(s)= exp(q @ 5,) < exp(X)= QS,. Thus S = @Q5,.

Now, we have a cimmutative diagram:

sl(2,F) —— M

H L

s{(2,F) —— PSL(2,F)

exp2

0 a

0 0) € S,, then expy(A) is

So, we have m o exp; = exp; and if 4 = (

the image of ((1) j‘) in PSL(2,F).
Hence we have 7(S,) = {(é I) |x € F} and so

expyl,, : 50 — m(S,)

is an isomorphism. By the commutative diagram, we have 7 o exp; |s, is
injective. Since PSL(2,F) is simple, M N Q < Kerr.

Thus, S, NQ < MNQE < Kerm.

Since 7lexp,,,, is injective, m|s, s injective. Hence we have S, NQ = 1.
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LEMMA 4.4. Z(S) is connected.

Proof. Since S = QS,, S is connected. Also, S is nilpotent as s is
nilpotent. Thus, by Corollary 3.6.4 in [5], Z(S) is connected.

THEOREM 4.5. Assume that Z and S are defined as above.
Then we have

(1) Z < ((2(8)°)).
(i) f Z(S) < Q, then Z = ((Z(5))%).

Proof. (i) By Proposition 3.4, we have Z* = Cz.(M)® W and

Cz-(G) = Z(g) by Bourbaki in [1]. By Weyl’s Theorem, W = W; @
------ @ W, irreducible summands for the action of m. Sinceg = q&m,
each W; is a g-submodule of Z*. Since s, is an ad-nilpotent subgroup of
m = sl(2,F), s, acts as a Lie algebra of nilpotent linear transformations
on each W;. Hence Cw,(s,) # 0 and so Cw,(S,) # 0. Since S = S,Q by
Lemma 4.3, Cw,(S) # 0. Since W, is irreducible, W;( (Cw,(5)F) ). Also,
Cw,(S) < Cz(8) £ Cq(S) < Z(S). Thus, we have W; < ((Z(S))C) and
so W = ((2(5))°).
Since Cz(G) < Cz(S) £ C@(S) £ Z(S) and Cz(G) is normal in G,
Cz(G) < {(2(5))€). Thus we have Z < ((Z(G))%) from the form Z =
Cz(G) ® W by Proposition 3.4.

(i) If Z(S) < Q, then Z(S) < Z(Q) as Z(S) S Q < S.

So, ((Z(5))°) < Z(Q) = Z as Z(Q) is normal in G.
Thus we have Z = ((Z(5))%).

LEMMA 4.6. Assume that M and Q are defined as above. Then [M, Q]
=].

Proof. We know that Z(S) is not in @ and that Z(S) is connected by
Lemma 4.4. Now, since S = @S, and S/Q has dimension 1, S/Q has only
two connected subgroups 1 and S/Q. Thus, § = Z(5)Q.

Since any two conjugates of S, genetate M, any two conjugates of S gen-
erate G.

Hence we have G = (S¥) and so G = ((Z(5))°)Q and [(Z(5))%,Q] = 1.
Since Z(S) < C(Q) and Cg(Q) is normal in G, we have ((Z(5))¢)<Cqs(Q).

Now, we have G/Cs(Q) = Q/(Q N Ca(Q)) = Q/Z(Q) is nilpotent.
Thus M < Cg(Q) by Lemma 4.2.
Therefore [M, Q] = 1.
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