• Title/Summary/Keyword: BiCMOS Circuit

Search Result 53, Processing Time 0.03 seconds

Design of High Performance Full-Swing BiCMOS Logic Circuit (고성능 풀 스윙 BiCMOS 논리회로의 설계)

  • Park, Jong-Ryul;Han, Seok-Bung
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.11
    • /
    • pp.1-10
    • /
    • 1993
  • This paper proposes a High Performance Full-Swing BiCMOS (HiF-BiCMOS) circuit which improves on the conventional BiCMOS circuit. The HiF-BiCMOS circuit has all the merits of the conventional BiCMOS circuit and can realize full-swing logic operation. Especially, the speed of full-swing logic operation is much faster than that of conventional full-swing BiCMOS circuit. And the number of transistors added in the HiF-BiCMOS for full-swing logic operation is constant regardless of the number of logic gate inputs. The HiF-BiCMOS circui has high stability to variation of environment factors such as temperature. Also, it has a preamorphized Si layer was changed into the perfect crystal Si after the RTA. Remarkable scalability for power supply voltage according to the development of VLSI technology. The power dissipation of HiF-BiCMOS is very small and hardly increases about a large fanout. Though the Spice simulation, the validity of the proposed circuit design is proved.

  • PDF

Detection of Stuck-Open Faults in BiCMOS Circuits using Gate Level Transition Faults (게이트 레벨 천이고장을 이용한 BiCMOS 회로의 Stuck-Open 고장 검출)

  • 신재흥;임인칠
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.198-208
    • /
    • 1995
  • BiCMOS circuit consist of CMOS part which constructs logic function, and bipolar part which drives output load. Test to detect stuck-open faults in BiCMOS circuit is important, since these faults do sequential behavior and are represented as transition faults. In this paper, proposes a method for efficiently detecting transistor stuck-open faults in BiCMOS circuit by transforming them into slow-to=rise transition and slow-to-fall transition. In proposed method, BiCMOS circuit is transformed into equivalent gate-level circuit by dividing it into pull-up part which make output 1, and pull-down part which make output 0. Stuck-open faults in transistor are modelled as transition fault in input line of gate level circuit which is transformed from given circuit. Faults are detceted by using pull-up part gate level circuit when expected value is '01', or using pull-down part gate level circuit when expected value is '10'. By this method, transistor stuck-open faults in BiCMOS circuit are easily detected using conventional gate level test generation algorithm for transition fault.

  • PDF

Test Pattern Generation for Detection of Sutck-Open Faults in BiCMOS Circuits (BiCMOS 회로의 Stuck-Open 고장 검출을 위한테스트 패턴 생성)

  • Sin, Jae-Hong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • BiCMOS circuit consist of CMOS part which constructs logic function, and bipolar part which drives output load. In BiCMOS circuits, transistor stuck-open faults exhibit delay faults in addition to sequential behavior. In this paper, proposes a method for efficiently generating test pattern which detect stuck-open in BiCMOS circuits. In proposed method, BiCMOS circuit is divided into pull-up part and pull-down part, using structural property of BiCMOS circuit, and we generate test pattern using set theory for efficiently detecting faults which occured each divided blocks.

Test Pattern Genration for Detection of Stuck-Open and Stuck-On Faults in BiCMOS Circuits (BiCMOS 회로의Stuck-Open 고장과 Stuck-On 고장 검출을 위한 테스트 패턴 생성)

  • 신재흥;임인칠
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.1
    • /
    • pp.1-11
    • /
    • 1997
  • A BiCMOS circuit consists of the CMOS part which performs the logic function, and the bipolar part which drives output load. In BiCMOS circuits, transistor stuck-open faults exhibit delay faults in addition to sequential beavior. Also, stuck-on faults enhanced IDDQ (quiscent power supply current) at steady state. In this paper, a method is proposed which efficiently generates test patterns to detect stuck-open faults and stuck-on faults in BiCMOS circuits. The proposed method divides the BiCMOS circuit into pull-up part and pull-down part, and generates test patterns detect faults occured in each part by structural property of the BiCMOS circuit.

  • PDF

Test Pattern Generation for Detection of faults in BiCMOS Circuits (BiCMOS 회로의 고장 검출을 위한 테스트 패턴 생성)

  • Shin, Jae-Heung;Lee, Byung-Hyo;Kim, Il-Nam;Lee, Bok-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.113-116
    • /
    • 2003
  • BiCMOS circuit consist of CMOS part which constructs logic function, and bipolar part which drives output load. In this paper, proposes a method for efficiently generating test pattern which detect faults in BiCMOS circuits. In proposed method, BiCMOS circuit is divided into pull-up part and pull-down part, using structural property of BiCMOS circuit, and we generate test pattern using set theory for efficiently detecting faults which occured each divided blocks.

  • PDF

High-Speed BiCMOS Comparator

  • Jirawath, Parnklang;Wanchana, Thongtungsai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.510-510
    • /
    • 2000
  • This paper introduces the design of BiCMOS latched comparator circuit for high-speed system application, which can be used in data conversion, instrumentation, communication system etc. By exploiting the advantage technology of the combination of both the bipolar transistor and the CMOS transistor devices. The comparator circuit includes an input stage that combines MOS sampling with a bipolar regenerative amplifier. The resistive load of conventional current-steering comparator is replaced by a load, which is made by a NMOS transistor. The advantage of design and PSPICE simulation of BiCMOS latched comparator are the circuit will obtain wide bandwidth with lowest power consumption at a single supply voltage. All the characteristics of the proposed BiCMOS latched comparator circuit is carried out by simulation program.

  • PDF

Disign Technique and Testability Analysis of High Speed Full-Swing BiCMOS Circuits (테스트가 용이한 고속 풀 스윙 BiCMOS회로의 설계방식과 테스트 용이도 분석)

  • Lee, Jae Min;Jung, Kwang Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.2
    • /
    • pp.199-205
    • /
    • 2001
  • With the growth of BiCMOS technology in ASIC design, the issue of analyzing fault characteristics and testing techniques for BiCMOS circuits become more important In this paper, we analyze the fault models and characteristics of high speed full-swing BiCMOS circuits and the DFT technique to enhance the testability of full-swing high speed BiCMOS circuits is discussed. The SPICE simulation is used to analyze faults characteristics and to confirm the validity of DFT technique.

  • PDF

Design of Voltage Controlled Oscillator Using the BiCMOS (BiCMOS를 사용한 전압 제어 발진기의 설계)

  • Lee, Yong-Hui;Ryu, Gi-Han;Yi, Cheon-Hee
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.83-91
    • /
    • 1990
  • VOC(coltage controlled oscillator) circuits are necessary in applications such at the demodul-ation of FM signals, frequency synthesizer, and for clock recovery from digital data. In this paper, we designed the VCO circuit based on a OTA(operational transconductance amplifier) and the OP amp which using a differential amplifier by BiCMOS circuit. It consists of a OTA, voltage contorolled integrator and a schmitt trigger. Conventional VCO circuits are designed using the CMOS circuit, but in this paper we designed newly BiCMOS VCO circuit which has a good drive avlity, As a result of SPICE simulation, output frequency is 141KHz at 105KHz, and sensitivity is 15KHz.

  • PDF

A Study on the Circuit Analysis of Composite BiCMOS Transistor and the Design Methodology of BiCMOS Differential Amplifier (복합 BiCMOS 트랜지스터의 회로 분석 및 그로 구성된 차동 증폭기의 설계기법에 관한 연구)

  • 송민규;김민규;박성진;김원찬
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.9
    • /
    • pp.1359-1368
    • /
    • 1989
  • In this paper, the composite BiCMOS transistor which combines a bipolar transistor and a MOS transistor in a cascade type, is analyzed in terms of I-V characteristics and small signal equivalent circuit. As a result, it has a larger driving capability than MOS transistor and a more extended rante of input voltage than bipolar transistor. Next, a BiCMOS differential amplifier as its application example is designed and compared with the CMOS one and the bipolar one. It increases the driving capability of the CMOS differential amp and improves the linear operation region of the bipolar differential amp.

  • PDF

A Study on the Characteristics of BiCMOS and CMOS Inverters (BiCMOS 및 CMOS로 구현된 Inverter에 대한 특성비교)

  • 정종척;이계훈;우영신;성만영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.93-96
    • /
    • 1993
  • BiCMOS technology, which combines CMOS and bipolar technology, offers the possibility of achieving both very high density and high performance. In this paper, the characteristics of BiCMOS and CMOS circuits, especilly the delay time is studied. BiCMOS inverter, which has high drive ability because of bipolar transistor, drives high load capacitance and has low-power characteristics because the current flows only during switching transient just like the CMOS gate. BiCMOS inverter has the less dependence on load capacitance than CMOS inverter. SPICE that has been used for electronic circuit analysis is chosen to simulate these circuits and the characteristics is discussed.

  • PDF