• Title/Summary/Keyword: BE-algebra

Search Result 653, Processing Time 0.024 seconds

Representation of Apparent Power of Non-sinusoidal Multi-line Power System Using Geometric Algebra (기하대수에 의한 비정현파 다선식 전력계통에서의 피상전력의 표현)

  • Jeon, Seong-Jeub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2064-2070
    • /
    • 2009
  • According to recent researches, apparent power in a non-sinusoidal single phase system can be represented with geometric algebra. In this paper, the geometric algebra is applied to apparent power defined in a multi-line system having transmission lines with frequency-dependency under non-sinusoidal conditions.

COHOMOLOGY AND DEFORMATIONS OF HOM-LIE-YAMAGUTI COLOR ALGEBRAS

  • Issa, A. Nourou
    • Korean Journal of Mathematics
    • /
    • v.29 no.2
    • /
    • pp.271-291
    • /
    • 2021
  • Hom-Lie-Yamaguti color algebras are defined and their representation and cohomology theory is considered. The (2, 3)-cocycles of a given Hom-Lie-Yamaguti color algebra T are shown to be very useful in a study of its deformations. In particular, it is shown that any (2, 3)-cocycle of T gives rise to a Hom-Lie-Yamaguti color structure on T⊕V , where V is a T-module, and that a one-parameter infinitesimal deformation of T is equivalent to that a (2, 3)-cocycle of T (with coefficients in the adjoint representation) defines a Hom-Lie-Yamaguti color algebra of deformation type.

SPATIAL NUMERICAL RANGES OF ELEMENTS OF $C^*$-ALGEBRAS

  • Takahasi, Sin-Ei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.537-542
    • /
    • 2000
  • When A is a subalgebra of a $C^*$-algebra, the spatial numerical range of element of A can be described in terms of positive linear functionals on the $C^*$-algebra.

  • PDF

PSEUDO-BCI ALGEBRAS

  • Dudek, Wieslaw A.;Jun, Young-Bae
    • East Asian mathematical journal
    • /
    • v.24 no.2
    • /
    • pp.187-190
    • /
    • 2008
  • As a generalization of BCI-algebras, the notion of pseudo-BCI algebras is introduced, and some of their properties are investigated. Characterizations of pseudo-BCI algebras are established. Some conditions for a pseudo-BCI algebra to be a pseudo-BCK algebra are given.

  • PDF

RESULTS ON THE RANGE OF DERIVATIONS

  • Jung, Yong-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.265-272
    • /
    • 2000
  • Let D be a derivation on an Banach algebra A. Suppose that [[D(x), x], D(x)] lies in the nil radical of A for all $x{\;}{\in}{\;}A$. Then D(A) is contained in the Jacobson radical of A.

  • PDF

Lie Algebras with all $\underline{1}$-filtrations

  • Jung, K.S.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.7 no.1
    • /
    • pp.75-86
    • /
    • 1994
  • Let L be a Lie algebra over an algebraically closed field F of chracteristic p > 0 which has an $\underline{1}$-filtration. We prove that W(1;$\underline{1}$) is the only restricted simple Lie algebra having an $\underline{1}$-filtration. And we show that the even dimensional Lie algebra can not have an $\underline{1}$-filtration.

  • PDF

THE TENSOR PRODUCTS OF SPHERICAL NON-COMMUTATIVE TORI WITH CUNTZ ALGEBRAS

  • Park, Chun-Gil;Boo, Deok-Hoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.127-139
    • /
    • 1997
  • The spherical non-commutative $\mathbb{S}_{\omega}$ were defined in [2,3]. Assume that no non-trivial matrix algebra can be factored out of the $\mathbb{S}_{\omega}$, and that the fibres are isomorphic to the tensor product of a completely irrational non-commutative torus with a matrix algebra $M_k(\mathbb{C})$. It is shown that the tensor product of the spherical non-commutative torus $\mathbb{S}_{\omega}$ with the even Cuntz algebra $\mathcal{O}_{2d}$ has a trivial bundle structure if and only if k and 2d - 1 are relatively prime, and that the tensor product of the spherical non-commutative torus $S_{\omega}$ with the generalized Cuntz algebra $\mathcal{O}_{\infty}$ has a non-trivial bundle structure when k > 1.

  • PDF

Strongly Solid Varieties and Free Generalized Clones

  • Denecke, Klaus
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.33-43
    • /
    • 2005
  • Clones are sets of operations which are closed under composition and contain all projections. Identities of clones of term operations of a given algebra correspond to hyperidentities of this algebra, i.e., to identities which are satisfied after any replacements of fundamental operations by derived operations ([7]). If any identity of an algebra is satisfied as a hyperidentity, the algebra is called solid ([3]). Solid algebras correspond to free clones. These connections will be extended to so-called generalized clones, to strong hyperidentities and to strongly solid varieties. On the basis of a generalized superposition operation for terms we generalize the concept of a unitary Menger algebra of finite rank ([6]) to unitary Menger algebras with infinitely many nullary operations and prove that strong hyperidentities correspond to identities in free unitary Menger algebras with infinitely many nullary operations.

  • PDF

DUALITY OF CO-POISSON HOPF ALGEBRAS

  • Oh, Sei-Qwon;Park, Hyung-Min
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.17-21
    • /
    • 2011
  • Let A be a co-Poisson Hopf algebra with Poisson co-bracket $\delta$. Here it is shown that the Hopf dual $A^{\circ}$ is a Poisson Hopf algebra with Poisson bracket {f, g}(x) = < $\delta(x)$, $f\;{\otimes}\;g$ > for any f, g $\in$ $A^{\circ}$ and x $\in$ A if A is an almost normalizing extension over the ground field. Moreover we get, as a corollary, the fact that the Hopf dual of the universal enveloping algebra U(g) for a finite dimensional Lie bialgebra g is a Poisson Hopf algebra.