PSEUDO- $B C I$ ALGEBRAS

WiesŁaw A. Dudek and Young Bae Jun*

Abstract

As a generalization of $B C I$-algebras, the notion of pseudo$B C I$ algebras is introduced, and some of their properties are investigated Characterizations of pseudo- $B C I$ algebras are established. Some conditions for a pseudo- $B C I$ algebra to be a pseudo- $B C K$ algebra are given.

1. Introduction

In [1], G. Georgescu and A. Iorgulescu introduced the notion of pseudo- $B C K$ algebras as an extension of $B C K$-algebras. In this paper, we introduce the notion of pseudo- $B C I$ algebras as an extension of $B C I$-algebras, and investigate some properties.

2. Preliminaries

Recall that a $B C I$-algebra is an algebra $(X, *, 0)$ of type $(2,0)$ satisfying the following axioms: for every $x, y, z \in X$,

- $((x * y) *(x * z)) *(z * y)=0$,
- $(x *(x * y)) * y=0$,
- $x * x=0$,
- $x * y=0$ and $y * x=0$ imply $x=y$.

For any BCI-algebra X, the relation \leq defined by $x \leq y$ if and only if $x * y=0$ is a partial order on X.

3. Pseudo- $B C I$ algebras

Definition 3.1. A pseudo-BCI algebra is a structure $\mathfrak{X}=(X, \leq, *, \diamond, 0)$, where " \leq " is a binary relation on a set X, "*" and " \diamond " are binary operations on X and " 0 " is an element of X, verifying the axioms: for all $x, y, z \in X$,
(a1) $(x * y) \diamond(x * z) \leq z * y,(x \diamond y) *(x \diamond z) \leq z \diamond y$,
(a2) $x *(x \diamond y) \leq y, x \diamond(x * y) \leq y$,
(a3) $x \leq x$,
(a4) $x \leq y, y \leq x \Longrightarrow x=y$,

Received August 30, 2007.
2000 Mathematics Subject Classification. 06F35, 03G25.
Key words and phrases. Pseudo-BCK/BCI-algebra.
*Corresponding author.
(a5) $x \leq y \Longleftrightarrow x * y=0 \Longleftrightarrow x \diamond y=0$.
Note that every pseudo- $B C I$ algebra satisfying $x * y=x \diamond y$ for all $x, y \in X$ is a $B C I$-algebra. Every pseudo- $B C K$ algebra is a pseudo- $B C I$ algebra.

Proposition 3.2. In a pseudo-BCI algebra \mathfrak{X} the following holds:
(b1) $x \leq 0 \Rightarrow x=0$.
(b2) $x \leq y \Rightarrow z * y \leq z * x, z \diamond y \leq z \diamond x$.
(b3) $x \leq y, y \leq z \Rightarrow x \leq z$.
(b4) $(x * y) \diamond z=(x \diamond z) * y$.
(b5) $x * y \leq z \Leftrightarrow x \diamond z \leq y$.
(b6) $(x * y) *(z * y) \leq x * z,(x \diamond y) \diamond(z \diamond y) \leq x \diamond z$.
(b7) $x \leq y \Rightarrow x * z \leq y * z, x \diamond z \leq y \diamond z$.
(b8) $x * 0=x=x \diamond 0$.
(b9) $x *(x \diamond(x * y))=x * y$ and $x \diamond(x *(x \diamond y))=x \diamond y$.
Proof. (b1) If $x \leq 0$, then $0 \diamond x=(x * 0) \diamond x=(x *(x \diamond x)) \diamond x=0$, that is, $0 \leq x$. Hence $x=0$ by (a6).
(b2) Let $x, y \in X$ be such that $x \leq y$. Then $(z * y) \diamond(z * x) \leq x * y=0$, and so $(z * y) \diamond(z * x)=0$ by (b1). Therefore $z * y \leq z * x$. Now

$$
(z \diamond y) *(z \diamond x) \leq x \diamond y=0,
$$

and thus $(z \diamond y) *(z \diamond x)=0$ by (b1). This implies that $z \diamond y \leq z \diamond x$.
(b3) Let $x, y, z \in X$ be such that $x \leq y$ and $y \leq z$. Then $x * z \leq x * y=0$, which implies that $x * z=0$, that is, $x \leq z$.
(b4) Since $x *(x \diamond z) \leq z$ by (a2), it follows from (b2) and (a1) that

$$
(x * y) \diamond z \leq(x * y) \diamond(x *(x \diamond z)) \leq(x \diamond z) * y
$$

Also since $x \diamond(x * y) \leq y$, we have

$$
(x \diamond z) * y \leq(x \diamond z) *(x \diamond(x * y)) \leq(x * y) \diamond z
$$

by (b2) and (a1). Hence, by (a4), we get $(x * y) \diamond z=(x \diamond z) * y$.
(b5) If $x * y \leq z$, then $0=(x * y) \diamond z=(x \diamond z) * y$, and so $x \diamond z \leq y$. Conversely, if $x \diamond z \leq y$, then $0=(x \diamond z) * y=(x * y) \diamond z$. Hence $x * y \leq z$.
(b6) is by (a1) and (b5).
(b7) Let $x, y \in X$ be such that $x \leq y$. Using (b6), we have

$$
(x * z) *(y * z) \leq x * y=0 \text { and }(x \diamond z) \diamond(y \diamond z) \leq x \diamond y=0 .
$$

It follows from (b1) that $(x * z) *(y * z)=0$ and $(x \diamond z) \diamond(y \diamond z)=0$, that is, $x * z \leq y * z$ and $x \diamond z \leq y \diamond z$.
(b8) Putting $y=0$ in (a2), we have $x *(x \diamond 0) \leq 0$ and $x \diamond(x * 0) \leq 0$. It follows from (b1) that $x *(x \diamond 0)=0$ and $x \diamond(x * 0)=0$, so that $x \leq x \diamond 0$ and $x \leq x * 0$. On the other hand,

$$
(x \diamond 0) * x=(x * x) \diamond 0=0 \diamond 0=0 \text { and }(x * 0) \diamond x=(x \diamond x) * 0=0 * 0=0,
$$

and so $x \diamond 0 \leq x$ and $x * 0 \leq x$. By (a4), $x * 0=x=x \diamond 0$.
(b9) By (a2), $x *(x \diamond(x * y)) \leq x * y$ and $x \diamond(x *(x \diamond y)) \leq x \diamond y$. On the other hand,

$$
(x * y) \diamond(x *(x \diamond(x * y))) \leq(x \diamond(x * y)) * y=(x * y) \diamond(x * y)=0
$$

and

$$
(x \diamond y) *(x \diamond(x *(x \diamond y))) \leq(x *(x \diamond y)) \diamond y=(x \diamond y) *(x \diamond y)=0 .
$$

It follows from (b1) that

$$
(x * y) \diamond(x *(x \diamond(x * y)))=0 \text { and }(x \diamond y) *(x \diamond(x *(x \diamond y)))=0,
$$

that is, $x * y \leq x *(x \diamond(x * y))$ and $x \diamond y \leq x \diamond(x *(x \diamond y))$. Hence (b9) is valid by (a4).

We now give a characterization of a pseudo- $B C I$ algebra.
Theorem 3.3. A structure $\mathfrak{X}=(X, \leq, *, \diamond, 0)$ is a pseudo-BCI algebra if and only if it satisfies (a1), (a4), (a5) and (b8).

Proof. The necessity is obvious. Assume that \mathfrak{X} satisfies (a1), (a4), (a5) and (b8). Substituting 0 for y and z in (a1) and using (b8), we have $x \diamond x \leq 0$ and $x * x \leq 0$. It follows from (b8) that

$$
x \diamond x=(x \diamond x) * 0=0 \text { and } x * x=(x * x) \diamond 0=0
$$

so that $x \leq x$. Putting $y=0$ in (a1) and using (b8), we get

$$
x \diamond(x * z)=(x * 0) \diamond(x * z) \leq z * 0=z
$$

and

$$
x *(x \diamond z)=(x \diamond 0) *(x \diamond z) \leq z \diamond 0=z .
$$

This completes the proof.
Definition 3.4. By a pseudo-BCI subalgebra of a pseudo-BCI algebra \mathfrak{X}, we mean a subset S of X which satisfies $x * y \in S$ and $x \diamond y \in S$ for all $x, y \in S$.

Theorem 3.5. For any pseudo-BCI algebra \mathfrak{X} the set

$$
K(\mathfrak{X}):=\{x \in X \mid 0 \leq x\}
$$

is a pseudo-BCI subalgebra of \mathfrak{X}, and so a pseudo-BCK algebra.
Proof. Let $x, y \in K(\mathfrak{X})$. Then $0 \leq x$ and $0 \leq y$. It follows from (a5) and (b7) that $0=0 * y \leq x * y$ and $0=0 \diamond y \leq x \diamond y$ so that $x * y \in K(\mathfrak{X})$ and $x \diamond y \in K(\mathfrak{X})$. Hence $K(\mathfrak{X})$ is a pseudo- $B C I$ subalgebra of \mathfrak{X}.

Theorem 3.6. If a pseudo-BCI algebra \mathfrak{X} satisfies

$$
x \diamond(x * y)=y \diamond(y * x) \text { and } x *(x \diamond y)=y *(y \diamond x)
$$

for all $x, y \in X$, then \mathfrak{X} is a pseudo-BCK algebra.

Proof. Let \mathfrak{X} be a pseudo- $B C I$ algebra such that

$$
x \diamond(x * y)=y \diamond(y * x) \text { and } x *(x \diamond y)=y *(y \diamond x)
$$

for all $x, y \in X$. We first claim that $x * a \notin K(\mathfrak{X})$ and $y \diamond b \notin K(\mathfrak{X})$ for all $x, y \in K(\mathfrak{X})$ and $a, b \in X \backslash K(\mathfrak{X})$. Indeed, if $x * a \in K(\mathfrak{X})$ and $y \diamond b \in K(\mathfrak{X})$ for some $x, y \in K(\mathfrak{X})$ and $a, b \in X \backslash K(\mathfrak{X})$, then $x \diamond(x * a) \in K(\mathfrak{X})$ and $y *(y \diamond b) \in K(\mathfrak{X})$. Hence $0 \leq x \diamond(x * a) \leq a$ and $0 \leq y *(y \diamond b) \leq b$. It follows that $0 \leq a$ and $0 \leq b$ so that $a, b \in K(\mathfrak{X})$. This is a contradiction. Assume that $X \neq K(\mathfrak{X})$. Then there exists $a \in X \backslash K(\mathfrak{X})$, and so

$$
0 *(0 \diamond a)=a *(a \diamond 0)=a * a=0
$$

and

$$
0 \diamond(0 * a)=a \diamond(a * 0)=a \diamond a=0 .
$$

Thus $0 \leq 0 * a$ and $0 \leq 0 \diamond a$, that is, $0 * a \in K(\mathfrak{X})$ and $0 \diamond a \in K(\mathfrak{X})$. This is a contradiction, and consequently $X=K(\mathfrak{X})$. Therefore \mathfrak{X} is a pseudo- $B C K$ algebra.
Theorem 3.7. If a pseudo-BCI algebra \mathfrak{X} satisfies

$$
\begin{equation*}
(x * y) \diamond y=x \diamond y \text { and }(x \diamond y) * y=x * y \tag{1}
\end{equation*}
$$

for all $x, y \in X$, then \mathfrak{X} is a pseudo- $B C K$ algebra.
Proof. Let $x=y$ in (1). Then $0 \diamond x=(x * x) \diamond x=x \diamond x=0$ and $0 * x=$ $(x \diamond x) * x=x * x=0$, that is, $0 \leq x$ for all $x \in X$. Hence $X=K(\mathfrak{X})$, and so \mathfrak{X} is a pseudo- $B C K$ algebra.

Theorem 3.8. If a pseudo-BCI algebra \mathfrak{X} satisfies

$$
\begin{equation*}
x *(y \diamond x)=x \text { and } x \diamond(y * x)=x \tag{2}
\end{equation*}
$$

for all $x, y \in X$, then \mathfrak{X} is a pseudo- $B C K$ algebra.
Proof. Putting $x=0$ in (2), then $0=0 *(y \diamond 0)=0 * y$ and $0=0 \diamond(y * 0)=0 \diamond y$ for any $y \in X$. It follows that $X=K(\mathfrak{X})$ so that \mathfrak{X} is a pseudo- $B C K$ algebra.

References

[1] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, Combinatorics, computability and logic (Constanţa, 2001), 97-114, Springer Ser. Discrete Math. Theor. Comput. Sci. Springer, London, 2001.
W. A. Dudek

Institute of Mathematics, Technical University of Wroceaw, Wybrzeże Wyspiańskiego 27, 50-370 Wroceaw, Poland

E-mail address: dudek@im.pwr.wroc.pl
Y. B. Jun

Department of Mathematics Education (and RINS), Gyeongsang National University, Chinju 660-701, Korea

E-mail address: skywine@gmail.com

