SPATIAL NUMERICAL RANGES OF ELEMENTS OF C*-ALGEBRAS

SIN-EI TAKAHASI

Dedicated to Professor Kôzô Yabuta on his sixtieth birthday.

ABSTRACT. When A is a subalgebra of a C^* -algebra, the spatial numerical range of element of A can be described in terms of positive linear functionals on the C^* -algebra.

1. Introduction and results

Let A be a complex Banach algebra and A^* its dual space. Let $a \in A$. If A is unital, then $V(A, a) \equiv \{f(a) : f \in A^*, ||f|| = f(1) = 1\}$ is called the (algebra) numerical range of a and it is a non-void compact convex subset of the complex plane C (see [1, p.52]).

However if A is non-unital, then the above definition is not meaningful. In this case, we consider the following two sets:

$$V_1(A, a) = \{ f(xa) : \exists f \in A^* \text{ and } \exists x \in A \text{ such that } ||f|| = ||x|| = f(x) = 1 \}$$
 and

$$V_2(A, a) = \{ f(ax) : \exists f \in A^* \text{ and } \exists x \in A \text{ such that } ||f|| = ||x|| = f(x) = 1 \}.$$

It is easy to see that $V(A, a) = V_1(A, a) = V_2(A, a)$ for the unital case. A. K. Gaur and T. Husain([3]) especially called the spatial numerical range $V_2(A, a)$ for non-unital case and investigated this situation. In particular, they showed that if A is a commutative C*-algebra with maximal ideal space Φ_A , then

$$\operatorname{co}\{\hat{a}(\phi):\phi\in\Phi_A\}\subseteq V_1(A,a)\subseteq\overline{\operatorname{co}}\{\hat{a}(\phi):\phi\in\Phi_A\},$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 47A12.

Key words and phrases: C^* -algebra, pure state, spatial numerical range.

The author is partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science, Sports and Culture, Japan.

Sin-Ei Takahasi

where co, \overline{co} and \hat{a} denote the convex hull, the closed convex hull and the Gelfand transform of $a \in A$, respectively (see [3, Theorem 4.1]).

The purpose of this paper is to investigate the spatial numerical ranges for C*-algebras and obtain an extension of their result.

Our main result is the following.

THEOREM. Let A be a C*-algebra and B a subalgebra of A. Let $b \in B$. Then

$$V_1(B,b) = \{|f|(b) : \exists f \in A^* \text{ and } \exists x \in B \text{ such that } ||f|| = ||x|| = f(x) = 1\}$$
 and

$$V_2(B,b) = \{|f|(b) : \exists f \in A^* \text{ and } \exists x \in B \text{ such that } ||f|| = ||x|| = f(x) = 1\}$$

where $|f|$ denotes the absolute value of f (cf. [2, Definition 12.2.8]).
If B is a *-subalgebra, then $V_1(B,b) = V_2(B,b)$.

Remark 1. The more detail for the commutative C^* -algebra case will be appeared in ([5]).

As a corollary of the main theorem, we have the following result which extends [3, Theorem 4.1].

COROLLARY. Let A be a
$$C^*$$
-algebra and $a \in A$. Then $\operatorname{co}\{f(a): f \in P(A)\} \subseteq V_1(A,a) = V_2(A,a) \subseteq \overline{\operatorname{co}}\{f(a): f \in P(A)\},$ where $P(A)$ denotes the set of all pure states of A.

REMARK 2. We don't know conditions under which $\operatorname{co}\{f(a): f \in P(A)\} = V_1(A,a) (= V_2(A,a))$ holds. Similarly for $\operatorname{\overline{co}}\{f(a): f \in P(A)\} = V_1(A,a) (= V_2(A,a))$.

2. Proof of results

Proof of Theorem. Set

$$W_1 = \{|f|(b) : \exists f \in A^* \text{ and } \exists x \in B \text{ such that } ||f|| = ||x|| = f(x) = 1\}$$

and let $\lambda \in V_1(B,b)$. Then there exist $g \in B^*$ and $x \in B$ such that $\lambda = g(xb)$ and $||g|| = ||x|| = g(x) = 1$. Take a functional $f \in A^*$ such

that ||f|| = ||g|| and f(b) = g(b) for each $b \in B$, and let $f = u \cdot |f|$ be the enveloping polar decomposition of f (cf. [2, Definition 12.2.8]). Then

(1)
$$1 = f(x) = |f|(ux) = (x|u^*)_{|f|} \le ||x||_{|f|} ||u^*||_{|f|} \le 1 \cdot 1 = 1$$
 so that we can find a scalar α satisfying

$$||u^* - \alpha x||_{|f|} = 0$$

since the equality of the Cauchy-Schwarz inequality in (1) holds. Note that (1) implies

(3)
$$(u^*|x)_{|f|} = (x|u^*)_{|f|} = (u^*|u^*)_{|f|} = (x|x)_{|f|} = 1$$

and hence $1-\overline{\alpha}-\alpha+|\alpha|^2=0$ by (2). Therefore, α must be equal to 1, and so $\|u^*-x\|_{|f|}=0$, that is u^*-x belongs to the left kernel (in the enveloping von Neumann algebra of A) $N_{|f|}=\{x\in A^{**}:|f|(x^*x)=0\}$ of |f|. Also since $|f|(x^*x)=(x|x)_{|f|}=\|x\|_{|f|}^2=1$ by (1), it follows that $1-x^*x\in N_{|f|}$, where 1 denotes the identity element of A^{**} . Therefore we have

$$\lambda = f(xb) = |f|(uxb) = (xb|u^*)_{|f|} = (xb|x)_{|f|} = |f|(x^*xb) = |f|(b)$$

(the 4th-equality follows from $u^* - x \in N_{|f|}$ and the 6th-equality follows from $1 - x^*x \in N_{|f|}$) and so $\lambda \in W_1$, hence $V_1(B, b) \subseteq W_1$.

Conversely suppose $\lambda \in W_1$. Then there exist $f \in A^*$ and $x \in B$ such that $\lambda = |f|(b)$ and ||f|| = ||x|| = f(x) = 1. Let $f = u \cdot |f|$ be the enveloping polar decomposition of f. Then we can apply directly the above arguments for f, x and u. Consequently, we have f(xb) = |f|(b) and hence $\lambda \in V_1(B, b)$, so $W_1 \subseteq V_1(B, b)$. We thus obtain $V_1(B, b) = W_1$.

We next set

 $W_2 = \{|f|(b) : \exists f \in A^* \text{ and } \exists x \in B \text{ such that } ||f|| = ||x|| = f(x^*) = 1\},$ and let $\lambda \in V_2(B,b)$. Then there exist $g \in B^*$ and $x \in B$ such that $\lambda = g(bx)$ and $\|g\| = \|x\| = g(x) = 1$. Take a functional $f \in A^*$ such that $\|f\| = \|g\|$ and f(b) = g(b) for each $b \in B$. Then

$$||f^*|| = ||f|| = ||x|| = ||x^*||$$
 and $1 = f(x) = f^*(x^*)$,

so that $\overline{\lambda} = \overline{f(bx)} = f^*(x^*b^*)$, $||f^*|| = ||f|| = ||x|| = ||x^*||$ and $1 = f(x) = f^*(x^*)$, and hence $\overline{\lambda} \in V_1(\overline{B}, b^*)$, where $\overline{B} = \{x \in A : x^* \in B\}$. Therefore by the preceding argument, we can find $h \in A^*$ and $y \in B$ such that $\overline{\lambda} = |h|(b^*)$ and $||h|| = ||y|| = h(y^*) = 1$. This means that $\lambda \in W_2$, so we have $V_2(B, b) \subseteq W_2$.

Sin-Ei Takahasi

The inverse inclusion $W_2 \subseteq V_2(B, b)$ can be easily obtained by tracing the converse of the above argument.

Set

$$A_{1,B}^* = \{ f \in A^* : \|f\| = 1 \text{ and } \exists x \in B \text{ such that } \|x\| = f(x) = 1 \}$$
 and

$$A_{2,B}^* = \{ f \in A^* : ||f|| = 1 \text{ and } \exists x \in B \text{ such that } ||x|| = f(x^*) = 1 \}.$$

If B is a *-subalgebra, then $f \to f^*$ is a bijection of $A_{1,B}^*$ onto $A_{2,B}^*$ and hence we have

$$V_1(B,b) = \{|f|(b): f \in A_{1,B}^*\} = \{|f|(b): f \in A_{2,B}^*\} = V_2(B,b) \qquad \Box$$

Proof of Corollary. Let A be a C^* -algbera and $a \in A$. Then we have $V_1(A,a) = V_2(A,a)$ by Theorem. We next show that $\operatorname{co}\{f(a): f \in P(A)\} \subseteq V_1(A,a)$. To do this, let $\alpha \in \operatorname{co}\{f(a): f \in P(A)\}$. Then there exist $f_{11}, \cdots, f_{1m_1}, \cdots, f_{n1}, \cdots, f_{nm_n} \in P(A)$ and $\lambda_{11}, \cdots, \lambda_{1m_1}, \cdots, \lambda_{n1}, \cdots, \lambda_{nm_n} \geq 0$ such that

$$\sum_{i=1}^{n} \sum_{j=1}^{m_i} \lambda_{ij} = 1, \sum_{i=1}^{n} \sum_{j=1}^{m_i} \lambda_{ij} f_{ij}(a) = \alpha,$$

$$\pi_{f_{11}} \cong \cdots \cong \pi_{f_{1m_1}}, \cdots, \pi_{f_{n1}} \cong \cdots \cong \pi_{f_{nm_n}} \text{ and } \pi_{f_{i1}} \neq \pi_{f_{i1}} (i \neq j).$$

Let $\pi_1 \cong \pi_{f_{11}} \cong \cdots \cong \pi_{f_{1m_1}}, \cdots, \pi_n \cong \pi_{f_{n1}} \cong \cdots \cong \pi_{f_{nm_n}}$. For each $i, j (1 \leq i \leq n, 1 \leq j \leq m_i)$, choose an isomorphism U_{ij} of the Hilbert space H_{π_i} onto the Hilbert space $H_{\pi_{f_{ij}}}$ which transforms $\pi_i(x)$ into $\pi_{f_{ij}}(x)$ for every $x \in A$, and set $\xi_{ij} = U_{ij}^*(\xi_{f_{ij}})$. Also set $f = \sum_{i=1}^n \sum_{j=1}^{m_i} \lambda_{ij} f_{ij}$. Then we have ||f|| = 1, f = |f|, $\alpha = f(a)$ and

$$(4) f(x) = \sum_{i=1}^{n} \sum_{j=1}^{m_i} \lambda_{ij}(\pi_{f_{ij}}(x)\xi_{f_{ij}}|\xi_{f_{ij}}) = \sum_{i=1}^{n} \sum_{j=1}^{m_i} \lambda_{ij}(\pi_i(x)\xi_{ij}|\xi_{ij})$$

for every $x \in A$. Furthermore since π_1, \dots, π_n are mutually inequivalent, it follows that there exists a hermitian element $y \in A$ such that $\pi_i(y)\xi_{ij} = \xi_{ij} (1 \le i \le n, 1 \le j \le m_i)$ by ([2, Theorem 2.8.3, (i)]). Now consider the continuous function h(t) on $[0, \infty)$ defined by

$$h(t) = \begin{cases} t, & \text{if } 0 \le t \le 1\\ 1, & \text{if } t > 1 \end{cases}$$

and set $z = h(y^2)$. Then z is a positive element of A with $||z|| \le 1$. Moreover, we assert that

(5)
$$\pi_i(z)\xi_{ij} = \xi_{ij} (1 \le i \le n, 1 \le j \le m_i).$$

In fact, let $\varepsilon > 0$ be arbitrary and take a polynomial p(t) such that p(0) = 0 and $\sup\{|p(t) - h(t)| : 0 \le t \le ||z||\} < \varepsilon/2$. Let $1 \le i \le n$ and $1 \le j \le m_i$. Then

$$\begin{aligned} \|\pi_{i}(z)\xi_{ij} - \xi_{ij}\| & \leq \|\pi_{i}(h(y^{2}))\xi_{ij} - \pi_{i}(p(y^{2}))\xi_{ij}\| + \|p(\pi_{i}(y^{2}))\xi_{ij} - \xi_{ij}\| \\ & \leq \|h(y^{2}) - p(y^{2})\| + |p(1) - 1| \\ & \leq \varepsilon/2 + \varepsilon/2 = \varepsilon \end{aligned}$$

and hence we obtain (5) since ε is arbitrary. By (4) and (5), we have

$$f(z) = \sum_{i=1}^{n} \sum_{j=1}^{m_i} \lambda_{ij}(\pi_i(z)\xi_{ij}|\xi_{ij}) = \sum_{i=1}^{n} \sum_{j=1}^{m_i} \lambda_{ij} = 1.$$

Consequently we have $\alpha \in V_1(A, a)$ and hence $\operatorname{co}\{f(a) : f \in P(A)\} \subseteq V_1(A, a)$.

We next show that $V_1(A, a) \subseteq \overline{\operatorname{co}}\{f(a) : f \in P(A)\}$. To do this, let $\alpha \in V_1(A, a)$ and so there exist $f \in A^*$ and $x \in A$ such that $\alpha = |f|(a)$ and ||f|| = ||x|| = f(x) = 1. Note that $|f|(x^*x) = 1$ as observed in the proof of the main theorem and consider the following set:

$$S = \{ q \in A^* : q \ge 0 \text{ and } ||q|| = q(x^*x) = 1 \}.$$

Then $|f| \in S$ and S is weak*-closed. Moreover, we can easily see that any extreme point of S is also an extreme point of $\{g \in A^* : g \ge 0 \text{ and } \|g\| \le 1\}$. But since the extreme points of $\{g \in A^* : g \ge 0 \text{ and } \|g\| \le 1\}$ consist of 0 and P(A) (cf. [2, Proposition 2.5.5]), it follows by the Krein-Milman theorem that $S \subseteq \overline{\operatorname{co}}P(A)$. Then $\alpha = |f|(a) = \lim_{\lambda} g_{\lambda}(a)$ for some net $\{g_{\lambda}\}$ in $\operatorname{co}P(A)$, and hence $\alpha \in \overline{\operatorname{co}}\{f(a) : f \in P(A)\}$.

References

- F. F. Bonsal and J. Dancan, Complete Normed Algebras, Springer-Verlag, Berlin/Heidelberg/ New York, 1973.
- [2] J. Dixmier, C*-algberas, North-Holland, New York, 1977.
- [3] A. K. Gaur and T. Husain, Spatial numerical ranges of elements of Banach algebras, Internat. J. Math. Math. Sci. 12-4 (1989), 633-640.
- [4] A. K. Gaur and Z. V. Kovarik, Norms on unitizations of Banach algebras, Proc. Amer. Math. Soc. 117-1 (1993), 111-113.

Sin-Ei Takahasi

[5] S.-E. Takahasi, Spatial numerical ranges of elements of subalgebras of $C_0(X)$, to appear in Internat. J. Math. Math. Sci.

DEPARTMENT OF BASIC TECHNOLOGY, APPLIED MATHEMATICS AND PHYSICS, YAMAGATA UNIVERSITY, YONEZAWA 992-8510, JAPAN