Lie Algebras with an 1-filtrations

K. S. Jung

ABSTRACT. Let L be a Lie algebra over an algebraically closed field F of chracteristic p>0 which has an 1-filtration. We prove that $W(1;\underline{1})$ is the only restricted simple Lie algebra having an 1-filtration. And we show that the even dimensional Lie algebra can not have an 1-filtration.

0. Introduction

Let L be a Lie algebra over an algebraically closed field F of characteristic p > 0. If there is a proper subalgebra $L_{(0)}$ of L of codimension 1 such that the filtration $L_{(i)}$ defined by $L_{(0)}$ satisfies the following conditions: $dim(L_{(i)}/L_{(i+1)}) = 1$ for all $i \ge -1$ and there is some r such that $L_{(r)} \ne 0$ but $L_{(r+1)} = 0$, then the set of subalgebras $L_{(i)}$ is called an $\underline{1}$ -filtration of L defined by $L_{(0)}$. And L is called an $\underline{1}$ -filtered Lie algebra[7].

Let L be a n-dimensional Lie algebra with an $\underline{1}$ -filtration defined by its subalgebra $L_{(0)}$ such that $\dim(L/L_{(0)}) = 1$. Let $\{L_{(i)} \mid i = -1, 0, 1, ..., n-2\}$ be the $\underline{1}$ -filtration of L with $L_{(-1)} = L$. Then we way assume that each $L_{(i)} = 0$ if $i \geq (n-1)$. Then $\dim(L_{(i)}/L_{(i+1)}) = 1$ for each i = -1, 0, 1, ..., n-2.

1. Filtered Lie Algebras

LEMMA 1.

$$[x_i, x_j] \begin{cases} \in \langle x_1, x_2, ..., x_{i+j+1-n} \rangle, & \text{if } i+j \geq n \\ = 0, & \text{otherwise.} \end{cases}$$

Received by the editors on June 16, 1994. 1980 Mathematics subject classifications: Primary 17B20. PROOF. By proposition 2.8 in [7],

$$[x_i, x_j] \in [L_{(n-i-1)}, L_{(n-j-1)}] \subset L_{(2n-i-j-2)}.$$

And the property of the <u>1</u>-filtration implies that if 2n-i-j-2 > n-2, then $L_{(2n-i-j-2)} = 0$. From 2n-(i+j)-2 > n-1, i+j < n. Therefore, if i+j < n, then $L_{(2n-i-j-2)} = 0$. On the other hand, if $2n-i-j-2 \le n-2$, then $i+j \ge n$, and $L_{(2n-i-j-2)} \ne 0$. Since $L_{(2n-i-j-2)} = < x_1, x_2, ..., x_{n-(2n-i-j-2)-1} > = < x_1, x_2, ..., x_{i+j+1-n} > .$

In the following Lemma, we will construct a new basis from the given basis of L. Let x_k denote the given basis of L. For each $k, \alpha_{ijk} \in F$ will denote the coefficient of x_k in the product of x_i and x_j expanded with respect to the basis x_k .

LEMMA 2. Let $x_1, x_2, ..., x_n$ be a basis of L with an 1-filtration defined by a subalgebra $L_{(0)} = \langle x_1, x_2, ..., x_{n-1} \rangle$. Then there exists a new basis $\{x'_k\}$ such that $[x_k, x_n] = \alpha_{kn(k+1)} x'_{k+1}$ and $\langle x_1, ..., x_k \rangle = \langle x'_1, ..., x'_k \rangle$.

PROOF. We have $[x_1, x_{n-1}] \in [L_{(n-2)}, L_{(0)}] \subset L_{(n-2)} = \langle x_1 \rangle$ and $[x_1, x_n] \in [L_{(n-2)}, L_{(-1)}] \subset L_{(n-3)} = \langle x_1, x_2 \rangle$. Let $[x_1, x_{n-1}] = \alpha_{1(n-1)1}x_1$ and let $[x_1, x_n] = \alpha_{1n1}x_1 + \alpha_{1n2}x_2$ for some $\alpha_{1(n-1)1}$, α_{1n1} and $\alpha_{1n2} \in F$. If $\alpha_{1n2} = 0$, then $[x_1, x_n] = \alpha_{1n1}x_1$ and it implies $[x_1, L] \in \langle x_1 \rangle$. So $x_1 \in L_{(n-1)} = 0$. But x_1 is a basis element and it is not 0. Therefore $\alpha_{1n2} \neq 0$. Now let $x_1' = x_1$ and

$$x_2' = \frac{\alpha_{1n1}}{\alpha_{1n2}} x_1 + x_2.$$

Then $[x_1, x_n] = \alpha_{1n1}x_1 + \alpha_{1n2}(-\frac{\alpha_{1n1}}{\alpha_{1n2}}x_1 + x_1') = \alpha_{1n2}x_2'$.

$$< x_1, x_2 > = < x'_1, x'_2 > .$$

Assume $[x_{k-1}, x_n] = \alpha_{k-1nk} x'_k$ and $\langle x_1, ..., x_k \rangle = \langle x'_1, ..., x'_k \rangle$.

$$[x_k, x_n] \in \langle x_1', x_2', ..., x_{k+1} \rangle,$$

$$[x_k, x_n] = (\alpha_{kn1}x_1' + \alpha_{kn2}x_2' + ... + \alpha_{knk}x_k') + \alpha_{kn(k+1)}x_{k+1}.$$

If $\alpha_{kn(k+1)} = 0$, then $[x_k, x_n] \in \langle x_1, ..., x_k \rangle = \langle x'_1, ..., x'_k \rangle$.

$$[x_k, L] \in \langle x'_1, ..., x'_k \rangle$$
.

It implies $x_k \in L_{(n-k)}$, and it contradicts to that x_k is not in $L_{(n-k)}$. Therefore, $\alpha_{kn(k+1)} \neq 0$. So we can put

$$x'_{k+1} = \left[(\alpha_{kn1}x'_1 + \alpha_{kn2}x'_2 + \dots + \alpha_{knk}x'_k) / \alpha_{kn(k+1)} \right] + x_{k+1}.$$

Then $[x_k, x_n] = \alpha_{kn(k+1)} x'_{k+1}$ and $\langle x_1, ..., x_{k+1} \rangle = \langle x'_1, ..., x'_{k+1} \rangle$. Therefore, $\langle x_1, ..., x_n \rangle = \langle x'_1, ..., x'_n \rangle = L$ and it is a new basis for L such that $[x_k, x_n] = \alpha_{kn(k+1)} x'_{k+1}$.

Next we prove that this new basis of L satisfies the following;

PROPOSITION 3. If $L = \langle x_1, x_2, ..., x_n \rangle$ with an <u>1</u>-filtration, then $[x_i, x_j] = \alpha_{ij(i+j+1-n)} x'_{i+j+1-n}$ for $i \leq j$ with $i+j \geq n$. i.e., $\alpha_{ijk} = 0$ if k < (i+j+1-n).

PROOF. For $[x_i, x_n]$, by the previous lemma, it is true for each i. Consider $[x_i, x_{n-j}]$ and use an induction on j. If j = 0, then $[x_i, x_n] = \alpha_{in(i+1)}x'_{i+1}$ by Lemma 2 and we can also assume that it is true for any t < j. Since $[x_i, x_{n-j}] = 0$, for i, j such that $0 \le t < j \le i$.

$$[x_i, x_t] = \alpha_{it(i+t+1-n)} x'_{i+t+1-n}.$$

Then consider $[x_i, x_{t+1}] \in \langle x_1, x_2, ..., x_{i+t+2-n} \rangle$.

$$[x_i, x_{t+1}] = \alpha_{i(t+1)1} x_1 + \alpha_{i(t+1)2} x_2 + \dots + \alpha_{i(t+1)(i+t+1-n)} x_{i+t+1-n} + \alpha_{i(t+1)(i+t+2-n)} x_{i+t+2-n}.$$

Now calculate the Jacobi's identity for x_i, x_t , and x_n .

$$\begin{split} [x_i,[x_t,x_n]] + [x_t,[x_n,x_i]] + [x_n,[x_i,x_t]] &= 0, \\ \alpha_{tn(t+1)}[\alpha_{i(t+1)1}x_1 + \alpha_{i(t+1)2}x_2 + \dots + \alpha_{i(t+1)(i+t+2-n)}x_{i+t+2-n}] \\ + \alpha_{in(i+1)}\alpha_{(i+1)t(i+t+2-n)}x_{i+t+2-n} \\ - \alpha_{it(i+t+1-n)}\alpha_{(i+t+1-n)n(i+t+2-n)}x_{i+t+2-n} &= 0. \end{split}$$

From this equality, $\alpha_{tn(t+1)} \neq 0$ implies the following:

$$\alpha_{i(t+1)1} = \alpha_{i(t+1)2} = \cdots = \alpha_{i(t+1)(i+t+1-n)} = 0.$$

Therefore, $[x_i, x_{t+1}] = \alpha_{i(t+1)(i+t+2-n)} x'_{i+t+2-n}$. For all i, j such that $i + j \ge n$, $[x_i, x_j] = \alpha_{ij(i+j+1-n)} x'_{i+j+1-n}$.

Next, we show that a Lie algebra of dimension p which has an $\underline{1}$ -filtration is unique up to isomorphism by using properties of its $\underline{1}$ -filtration.

PROPOSITION 4. Let L be a restricted Lie algebra of dimension p with an <u>1</u>-filtration. Then there is a basis $\{x_1, x_2, ..., x_p\}$ for L which satisfies the following;

$$[x_i, x_j] = \begin{cases} (j-i)x_{i+j}, & \text{if } i+j \leq p-2\\ 0, & \text{otherwise.} \end{cases}$$

PROOF. Let $\{L_{(i)} \mid i = -1, 0, ..., p-2\}$ be an <u>1</u>-filtration of L defined by a subalgebra $L_{(0)}$ of codimension 1. Since $dim L_{(i)} = p - i - 1$ for $-1 \le i \le p - 2$, we may assume $L_{(p-2)}$ is generated by one element $b_1 \in L$ and $L_{(p-1)}$ is generated by $L_{(p-2)}$ and some element

 b_2 , i.e. $L_{(p-3)} = \langle b_1, b_2 \rangle$. For $-1 \le i \le p-2$, we can assume $L_{(i)} = \langle b_1, b_2, ..., b_{p-i-1} \rangle$. Since $b_i \in L_{(p-i-1)}$ but not in $L_{(p-1)}$,

$$[b_i, L] \not\subset L_{(p-i-1)} = \langle b_1, b_2, ..., b_i \rangle$$

$$[b_i, b_j] \in L_{(p-i-1)} L_{(p-j-1)} \subseteq L_{(2p-i-j-1)}$$

$$\subseteq L_{(2p-(i+p-1)-2)} = L_{(p-i-1)}.$$

By Proposition 3, we can assume that there exists a new basis $\{x_i \mid -1 \leq i \leq p-2\}$ such that $[b_i, b_j] = \alpha_{ij(i+j+1-p)} x_{i+j+1-p}$ for i and j such that $i+j \geq p$. Now define this new basis which satisfy the given properties as following:

Let $x_{-1} = b_p$ and $x_i = A_i b_{p-i-1}$, where $A_i = -\frac{(i+1)!}{\prod_{j=1}^{i+1} \alpha_{(p-j)p(p-j+1)}} \in F$, for i = 0, 1, ..., p-2. Then we need to show

$$[x_i, x_j] = \begin{cases} (j-i)x_{i+j}, & \text{if } i+j \leq p-2\\ 0, & \text{otherwise.} \end{cases}$$

First, let's prove $[x_1, x_i] = (i-1)x_{i+1}$

$$\frac{2\alpha_{(p-i-1)(p-2)(p-i-2)}}{\alpha_{(p-1)pp}\alpha_{(p-2)p(p-1)}}$$

$$= \frac{(i-1)(i+2)}{\alpha_{(p-i-2)p(p-i-1)}} \cdot (i-1)(i+2)\alpha_{(p-1)pp}\alpha_{(p-2)p(p-1)}$$

$$-2\alpha_{(p-i-1)(p-2)(p-i-2)}\alpha_{(p-i-2)p(p-i-1)}$$

$$= (i-1)(i+2)\alpha_{(p-1)pp}\alpha_{(p-2)p(p-1)} - 2\{\alpha_{(p-2)p(p-1)}\alpha_{(p-i-1)(p-i-1)}\}$$

$$+ \alpha_{(p-i-1)p(p-i)}\alpha_{(p-i)(p-2)(p-i-1)}\}$$
(by Jacobi's identity of b_{p-i-1}, b_{p-2}, b_p)
$$= (i-1)(i+2)\alpha_{(p-1)pp}\alpha_{(p-2)p(p-1)} - 2i\alpha_{(p-2)p(p-1)}\alpha_{(p-1)pp}$$

$$-2\alpha_{(p-i-1)p(p-i)}\alpha_{(p-i)(p-i)(p-i-1)}$$

$$= [(i-1)(i+2)-2i]\alpha_{(p-1)pp}\alpha_{(p-2)p(p-1)} - 2\{\alpha_{(p-2)p(p-1)}\alpha_{(p-i)(p-1)(p-i)} + \alpha_{(p-i)p(p-i-1)}\alpha_{(p-i-1)(p-2)(p-i)}\}$$

$$= [(i-1)(i+2)-2i-2(i-1)]\alpha_{(p-1)pp}\alpha_{(p-2)p(p-1)} - 2\alpha_{(p-i)p(p-i-1)}\alpha_{(p-i-1)(p-2)(p-i)}$$

By repeating these calculations for i in the second part, we can get the following:

$$\begin{split} &=[(i-1)(i+2)-2\{i+(i-1)+\ldots+4\}]\alpha_{(p-1)pp}\alpha_{(p-2)p(p-1)}\\ &-2\alpha_{(p-4)(p-2)(p-5)}\alpha_{(p-5)p(p-4)}\\ &=[(i-1)(i+2)-2i+(i-1)+\ldots+5+4+5]\alpha_{(p-1)pp}\alpha_{(p-2)p(p-1)}\\ &=[(i-1)(i+2)-2[\frac{i+1}{2}\cdot i-1]]\alpha_{(p-1)pp}\alpha_{(p-2)p(p-1)}=0. \end{split}$$

$$(i-1)x_{i+1} = -\frac{(i-1)(i+2)!}{\alpha_{(p-1)pp} \dots \alpha_{(p-i-2)p(p-i-1)}} b_{p-i-2}$$

$$= \frac{-2(i+1)!\alpha_{(p-i-1)(p-2)(p-i-2)}}{\alpha_{(p-1)pp}\alpha_{(p-2)p(p-1)}\alpha_{(p-1)pp}\dots\alpha_{(p-i-1)p(p-i)}} b_{p-i-2} = 0.$$

And

$$[x_1,x_i] = \frac{-2(i+1)!\alpha_{(p-i-1)(p-2)(p-i-2)}b_{p-i-2}}{\alpha_{(p-1)pp}\alpha_{(p-2)p(p-1)}\alpha_{(p-1)pp}...\alpha_{(p-i-1)p(p-i)}}.$$

Therefore, $[x_1, x_i] = (i-1)x_{i+1}$. Now use an induction on j in $[x_i, x_j]$ and assume i < j. Since $-1 \le i < j \le p-2$ and $i+j \le p-2$, the initial number for j is zero. Thus, for $j = 0, [x_{-1}, x_0]$ is the only possible case.

$$[x_{-1}, x_0] = [b_p, A_1 b_{p-1}] = -A_1 \alpha_{(p-1)pp} b_p = x_{-1}.$$

Now, assume that $[x_i, x_j] = (j-1)x_{i+j}$. In the case of j+1,

$$[x_{i}, x_{j+1}] = [x_{i}, \frac{1}{j-1}[x_{1}, x_{j}]] = \frac{1}{j-1}[x_{i}, [x_{1}, x_{j}]]$$

$$= \frac{1}{j-1}(-[x_{1}, [x_{j}, x_{i}]] - [x_{j}, [x_{i}, x_{1}]])$$

$$= \frac{1}{j-1}((i-j)[x_{i+j}, x_{1}] + (1-i)[x_{i+1}, x_{j}])$$
(*)

If i + 1 < j, by induction,

$$(*) = \frac{1}{j-1} [(i-j)(1-i-j)x_{i+j+1} + (1-i)(j-i-1)x_{i+j+1}]$$
$$= \frac{1}{j-1} (j-1)(j+1-i)x_{i+j+1} = (j+1-i)x_{i+j+1}.$$

If i + 1 = j, then

$$[x_i, x_j] = [x_{j-1}, x_j] = x_{2j-1}.$$

$$[[x_i, x_j], x_1] = [x_{2j-1}, x_1] = (1 - 2j + 1)x_{2j}.$$

Therefore,

$$(*) = \frac{1}{j-1}(2-2j)x_{2j} + 0 = -2x_{2j}.$$
$$[x_i, x_{j+1}] = -2x_{2j} = (j+1-i)x_{i+j+1}.$$

Thus we can conclude that

$$[x_i, x_j] = \begin{cases} (j-i)x_{i+j}, & \text{if } i+j \leq p-2\\ 0, & \text{otherwise.} \end{cases}$$

In the previous proposition, we consider in the case of dim L = p. For the case of dim L < p, we had proved that L is a classical algebra which is embedding in sl(2, F) [7].

COROLLARY 5. Let L be a Lie algebra satisfying the same hypothesis in proposition 4. Then L is isomorphic to $W(1;\underline{1})$.

PROOF. By proposition 4, L has a basis x_i such that

$$[x_i, x_j] = \begin{cases} (j-i)x_{i+j}, & \text{if } i+j \le p-2\\ 0, & \text{otherwise.} \end{cases}$$

Let $\{e_i\}$ be a standard basis of $W(1;\underline{1})$ and define a map $\varphi: L \mapsto W(1;\underline{1})$ by $\varphi(x_i) = e_i$ for all i = -1, 0, ..., p-2.

Then

$$\varphi([x_i, x_j]) = \begin{cases} \varphi((j-i)x_{i+j}) = (j-i)e_{i+j}, & \text{if } i+j \leq p-2 \\ \varphi(0) = 0, & \text{otherwise.} \end{cases}$$

$$(j-i)e_{i+j} = [e_i, e_j] = [\varphi(x_i), \varphi(x_j)].$$
 So $\varphi([x_i, x_j]) = [\varphi(x_i), \varphi(x_j)].$

By the definition of φ , φ is onto and $ker\varphi = 0$. Thus φ is an isomorphism between L and $W(1:\underline{1})$.

THEOREM 6. Let L be a Lie algebra over F with a $\underline{1}$ - filtration. Then L is isomorphic to $W(1;\underline{m})$.

PROOF. Let $\{x_i \mid i=1,2,..,p^m\}$ be a basis with a <u>1</u>-filtration $\{L_{(i)} \mid i=-1,0,...,p^m-2\}$ of L, where $L_{(i)}$ is generated by $x_1,x_2,...,x_{n-i-1}$. Since $W(1;\underline{m})$ has a basis $\{e_i \mid i=-1,0,...,p^m-2\}$ satisfying

$$[e_i, e_j] = \begin{cases} (j-i)e_{i+j}, & \text{if } i+j \leq p^m - 2\\ 0, & \text{otherwise.} \end{cases}$$

We defined a correspondence between $\{e_i \mid i=-1,...,p^m-2\}$ and $\{x_i \mid i=1,...,p^m\}$ by

$$e_i \mapsto \frac{(i+1)!}{\prod_{j=1}^{i+1} \alpha_{(p-j)p(p-j+1)}} x_{p^m-i-1},$$

for each i. By the similar proof in the previous corollary, φ is an isomorphism from $W(1; \underline{m})$ to L.

THEOREM 7. If L is an even dimensional Lie algebra, then L can not have any $\underline{1}$ -filtration.

PROOF. Suppose there is an <u>1</u>-filtration $\Im(L)$ of L.

$$\Im(L): 0 = L_{(n-1)} \subset L_{(n-2)} \subset ... \subset L_{(1)} \subset L_{(0)} \subset L_{(-1)} = L.$$

Then $dim(L_{(i)}/L_{(i+1)}) = 1$ for each i. Let $\{x_1, x_2, ..., x_n\}$ be a basis of L such that $L_{(i)} = \langle x_1, x_2, ..., x_{n-i-1} \rangle$ for i = -1, 0, ..., n-2 and $L_{(n-1)} = 0$. Let n = 2k for some integer k. Since $[x_{k-1}, [x_k, x_n]] + [x_k, [x_n, x_{k-1}]] + [x_n, [x_{k-1}, x_k]] = 0$,

$$\alpha_{kn(k+1)}\alpha_{(k-1)(k+1)1}x_1 + \alpha_{(k-1)nk} \cdot 0 + 0 = 0$$
$$\alpha_{kn(k+1)}\alpha_{(k-1)(k+1)1} = 0.$$

Since $x_k \in L_{n-k-1}$ and $x_n \in L_{-1}$, $[x_k, x_n] \in L_{n-k-1}L_{-1} \subseteq L_{n-k-2}$ which is generated by $x_1, x_2, ..., x_{k+1}$. If $[x_k, x_n] \in \langle x_1, ..., x_k \rangle$, i.e., $\alpha_{kn(k+1)} = 0$.

$$[x_k, L] \in \langle x_1, ..., x_k \rangle \subseteq L_{n-k-1}.$$

So $x_k \in L_{n-k}$, but $x_k \notin L_{n-k} = \langle x_1, ..., x_{k-1} \rangle$. Therefore, $\alpha_{kn(k+1)} \neq 0$. It implies that $\alpha_{kn(k+1)}\alpha_{(k-1)(k+1)1} = 0$

$$\alpha_{(k-1)(k+1)1} = 0.$$

From the Jacobi's identity for x_{k-j-1}, x_{k+j}, x_n , we will prove $\alpha_{(k-j)(k+j)1} = 0$. If j = 1, then

$$[x_{k-2}, [x_{k+1}, x_n]] + [x_{k+1}, [x_n, x_{k-2}]] + [x_n, [x_{k-2}, x_{k+1}]] = 0,$$

$$\alpha_{(k+1)n(k+2)}\alpha_{(k-2)(k+2)1}x_1 + \alpha_{(k-2)n(k-1)}\alpha_{(k-1)(k+1)1}x_1 = 0$$

By (**), $\alpha_{(k+1)n(k+2)}\alpha_{(k-2)(k+2)1} = 0$. Using the similar argument, $\alpha_{(k+1)n(k+2)} \neq 0$, thus $\alpha_{(k-2)(k+2)1} = 0$.

Now we assume $\alpha_{(k-j+1)(k+j-1)1} = 0$.

$$\begin{aligned} &[x_{k-j},[x_{k+j-1},x_n]] + [x_{k+j-1},[x_n,x_{k-j}]] + [x_n,[x_{k-j},x_{k+j-1}]] = 0, \\ &\alpha_{(k+j-1)n(k+j)}\alpha_{(k-j)(k+j)1}x_1 + \alpha_{(k-j)n(k-j+1)}\alpha_{(k-j+1)(k+j-1)1}x_1 = 0. \end{aligned}$$

By hypothesis, $\alpha_{(k-j+1)(k+j-1)1} = 0$,

$$\alpha_{(k+j-1)n(k+j)}\alpha_{(k-j)(k+j)1} = 0.$$

Since $\alpha_{(k+j-1)n(k+j)} \neq 0$, $\alpha_{(k-j)(k+j)1} = 0$. Therefore, $\alpha_{(k-j)(k+j)1} = 0$ for all j = 1, 2, ..., k-1.i.e.,

$$\alpha_{1(n-1)1} = \alpha_{2(n-2)1} = \dots = \alpha_{(k-1)(k+1)1} = 0$$

From the Jacobi's identity for x_i, x_{n-1}, x_n (i = 1, 2, ..., n-2), if i = 1, then

$$\alpha_{(n-1)nn} + \alpha_{2(n-1)2} - \alpha_{1(n-1)1} = 0.$$

Assume $\alpha_{(n-1)nn} + \alpha_{i(n-1)i} - \alpha_{(i-1)(n-1)(i-1)} = 0$ for i-1. To prove it for i, consider the following;

$$\begin{split} &[x_i,[x_{n-1},x_n]]+[x_{n-1},[x_n,x_i]]+[x_n,[x_i,x_{n-1}]]=0,\\ &\alpha_{in(i+1)}\{\alpha_{(n-1)nn}+\alpha_{(i+1)(n-1)(i+1)}-\alpha_{i(n-1)i}\}=0. \end{split}$$

Since $\alpha_{in(i+1)} \neq 0$, for each i = 1, 2, ..., n-2,

(***)
$$\alpha_{(n-1)nn} + \alpha_{(i+1)(n-1)(i+1)} - \alpha_{i(n-1)i} = 0.$$

If i = n - 2, then $\alpha_{(i+1)(n-1)(i+1)} = \alpha_{(n-1)(n-1)(n-1)} = 0$. Thus $\alpha_{(n-1)nn} = \alpha_{(n-2)(n-1)(n-2)}$.

$$\alpha_{(n-1)nn} + \alpha_{(n-2)(n-1)(n-2)} - \alpha_{(n-3)(n-1)(n-3)} = 0$$

implies

$$2\alpha_{(n-1)nn} = \alpha_{(n-3)(n-1)(n-3)}.$$

Using this fact in (***) for all i,

$$(n-2)\alpha_{(n-1)nn} = \alpha_{1(n-1)1}.$$

From the previous induction, $\alpha_{(n-1)nn} = 0$ and $[x_{n-1}, L] \subseteq L_{(0)}$. So $x_{n-1} \in L_{(1)}$. It contradicts to the definition of $L_{(1)}$. Therefore, L has no 1-filtration when dim L is even.

REFERENCES

- 1. Block R.E., Wilson R.L., On Filtered Lie Algebras and Divided Power Algebras, Comm in Algebras 3(7) (1975), 571-589.
- Restricted Simple Lie Algebras, In Lie Algebras and Related Topics CMS Conf. Proc. 5 (1986), 3-17.
- 3. Chow Yutze, General Theory of Lie Algebras I, II, Gordon and Science Publishers Inc., 1978.
- Ermolaev J.B., Simple Graded Lie Algebras, Soviet Math.(Izv. vuz) 24 (1980), 93-98.
- 5. Humphreys J.E., Introduction to Lie Algebras and Representation Theory, Springer-Verlag, Berlin, 1972.
- 6. Jacobson N., Lie Algebras, Interscience, New York, 1962.
- Jung K.S., On Simple Lie Algebras of Characteristic p and 1-filtrations, University of Iowa Ph D Thesis, 1990.
- Kac V.G., Description of Filtered Lie Algebras with Which Graded Lie Algebras of Cartan Type are associated, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1976), 801-835.

- 9. _____, Filtered Lie Algebras of Cartan Type, Uspehi Mat. Nauk 29 (1974), 203-204.
- 10. Strade H. and Farnsteiner R., Modular Lie Algebra and their representation, Marcel Text Books and Monographs, 1987.

DEPARTMENT OF MATHEMATICS KEONYANG UNIVERSITY NONSAN, 320-800, CHUNG-NAM