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SUPERSTABILITY OF MULTIPLICATIVE LINEAR

MAPPINGS

Ehsan Anjidani and Esmaeil Ansari-Piri

Abstract. Let A and B be Banach algebras with unit. Here we prove
that an approximate algebra homomorphism f : A → B, in the sense of
Rassias, is an algebra homomorphism.

1. Introduction

The stability problem of functional equations appeared at first by Ulam [13]
in 1940. In the next year, Hyers [8] studied a version of this problem. In 1978,
Th. M. Rassias [12] extended the result of Hyers:

Let X and Y be Banach spaces. Consider f : X → Y to be a mapping such
that f(tx) is continuous in t ∈ R for each fixed x ∈ X. Assume that there exist
constants ϵ ≥ 0 and p ∈ [0, 1) such that

(1.1) ∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ(∥x∥p + ∥y∥p)

for all x, y ∈ X. Then there exists a unique R-linear mapping F : X → Y such
that

∥f(x)− F (x)∥ ≤ 2ϵ

2− 2p
∥x∥p

for all x ∈ X.

In 1994, Gavruta [7] provided a generalization of Rassias theorem in which
he replaced the bound ϵ(∥x∥p + ∥y∥p) in (1.1) by a general control function
ϕ : X ×X → [0,∞) satisfying

∞∑
n=0

2−nϕ(2nx, 2ny) <∞

for all x, y ∈ X. During the last decades, several stability problems of functional
equations have been investigated in spirit of Hyers-Ulam-Rassias (see [4, 9]).
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The aim of this paper is to examine the superstability problem of algebra
homomorphisms. The following result, which is called the superstability of ring
homomorphisms, was obtained by Bourgin [2]:

Suppose A and B are Banach algebras with unit. If f : A→ B is a surjective
mapping such that

∥f(a+ b)− f(a)− f(b)∥ ≤ ϵ (∀a, b ∈ A),

∥f(ab)− f(a)f(b)∥ ≤ δ (∀a, b ∈ A)

for some ϵ ≥ 0 and δ ≥ 0, then f is a ring homomorphism, that is, f(a+ b) =
f(a) + f(b) and f(ab) = f(a)f(b) for all a, b ∈ A.

In 2002, Badora [1] proved the Hyers-Ulam-Rassias stability of ring homo-
morphisms, which generalized the result of Bourgin. During the last years,
the various problems of the stability of homomorphisms have been investigated
(See, e.g. [5, 10, 11]). C. G. Park has studied the stability and superstability
of algebra homomorphisms on C∗-algebras in [11]. In this paper, we generalize
the results of Park’s paper. In fact, we prove that an approximate algebra
homomorphism between Banach algebras, in the sense of Rassias, is an algebra
homomorphism.

Throughout the paper, A and B denote Banach algebras with unit. Here,
a linear mapping f : A → B is called an algebra homomorphism if f(xy) =
f(x)f(y) for all x, y ∈ A.

2. Main results

In this section, we state and prove our main results which generalize the
results of C. G. Park [11, Corollary 3.2 and Theorem 3.3]. We apply the
following theorem [6, Theorem 1] or [3, Proposition 1], to obtain an additive
function from an approximate one.

Theorem 2.1. Let X and Y be Banach spaces and α ∈ C \ {0}. Suppose that
f : X → Y is a mapping for which there exists a function ϕ : X → [0,∞) such
that

ϕ̃(x) :=

∞∑
n=0

|α|−nϕ(αnx) <∞,

∥α−1f(αx)− f(x)∥ ≤ ϕ(x)

for all x ∈ X. Then F (x) := limn→∞
f(αnx)

αn exists and F (αx) = αF (x) for all
x ∈ X.

Theorem 2.2. Let γ, β ∈ C\{0} with α := γ+β ̸= 0. Suppose that f : X → Y
is a mapping for which there exists a function ϕ : X ×X → [0,∞) such that

(2.1)

∞∑
n=0

|α|−nϕ(αnx, αny) <∞,

(2.2) ∥f(γx+ βy)− γf(x)− βf(y)∥ ≤ ϕ(x, y)
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for all x, y ∈ X. Then F (x) := limn→∞
f(αnx)

αn exists, F (αx) = αF (x) and
F (γx+ βy) = γF (x) + βF (y) for all x, y ∈ X.

Proof. Define ψ(x) = |α|−1ϕ(x, x) for all x ∈ X. We have
∞∑

n=0

|α|−nψ(αnx) =

∞∑
n=0

|α|−n|α|−1ϕ(αnx, αnx) <∞,

∥α−1f(αx)− f(x)∥ = |α|−1∥f(αx)− αf(x)∥ ≤ |α|−1ϕ(x, x) = ψ(x).

By Theorem 2.1, F (x) := limn→∞
f(αnx)

αn exists and F (αx) = αF (x) for all
x ∈ X.

Replacing αnx, αny by x, y in (2.2), we get

∥f(αn(γx+ βy))− γf(αnx)− βf(αny)∥ ≤ ϕ(αnx, αny),

so ∥∥∥∥f(αn(γx+ βy))

αn
− γ

f(αnx)

αn
− β

f(αny)

αn

∥∥∥∥ ≤ 1

|α|n
ϕ(αnx, αny)

for all x, y ∈ X. By taking the limit as n → ∞, we have F (γx + βy) =
γF (x) + βF (y) for all x, y ∈ X. □
Theorem 2.3. Let γ, β ∈ C\{0} with α := γ+β ̸= 0. Suppose that f : A→ B
is a mapping with f(0) = 0 for which there exist the functions ϕ, ψ : A× A →
[0,∞) such that

(2.3)

∞∑
n=0

|α|−nϕ(αnx, αny) <∞,

lim
n→∞

α−nψ(αnx, y) = 0,

(2.4) ∥f(γx+ βy)− γf(x)− βf(y)∥ ≤ ϕ(x, y),

(2.5) ∥f(xy)− f(x)f(y)∥ ≤ ψ(x, y)

for all x, y ∈ A. Assume that F (1) := limn→∞
f(αn1)

αn is invertible. Then
f : A→ B is an additive and multiplicative mapping.

Proof. By Theorem 2.2, F (x) := limn→∞
f(αnx)

αn exists for all x ∈ A.
Replacing αnx by x in (2.5), we get

∥f(αnxy)− f(αnx)f(y)∥ ≤ ψ(αnx, y),

hence ∥∥∥∥f(αnxy)

αn
− f(αnx)

αn
f(y)

∥∥∥∥ ≤ 1

|α|n
ψ(αnx, y)

for all x, y ∈ A and n ∈ N. By taking the limit as n→ ∞, we have

(2.6) F (xy) = F (x)f(y).

Let x, y ∈ A and n ∈ N. Since F (αx) = αF (x), by (2.6) we have

F (x)f(αny) = F (αnxy) = F (αnx)f(y) = αnF (x)f(y).
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Therefore,

F (x)
f(αny)

αn
= F (x)f(y).

Sending n to ∞, we get

(2.7) F (x)F (y) = F (x)f(y)

for all x, y ∈ A.
Let x = 1 in (2.7). We have F (1)F (y) = F (1)f(y). Since F (1) is invertible,

we obtain F = f . Therefore, by (2.6) f is multiplicative. By Theorem 2.2, we
have

(2.8) f(γx+ βy) = γf(x) + βf(y)

for all x, y ∈ A.
Put y = 0 and replace x by γ−1x in (2.8). We have f(x) = γf(γ−1x).

Similarly, f(y) = βf(β−1y).
Replacing x by γ−1x and y by β−1y in (2.8), we have f(x+y) = f(x)+f(y)

for all x, y ∈ A. □

Remark 2.4. It easily can be replaced the condition that limn→∞
f(αn.1)

αn is
invertible in Theorem 2.3 by the condition that F (A)

∩
invB ̸= ∅, however

this condition is essential. For example the function f(x) = sinx satisfies (2.4),
(2.5) in which γ = β = 1 and ϕ(x, y) = ψ(x, y) = 3, but f is neither additive
nor multiplicative!

Theorem 2.5. Suppose that f : A→ B is a mapping with f(0) = 0 for which
there exist the functions ϕ, ψ : A×A→ [0,∞) such that

(2.9) ϕ̃(x, y) :=
∞∑

n=0

2−nϕ(2nx, 2ny) <∞,

(2.10) lim
n→∞

2−nψ(2nx, y) = 0,

(2.11) ∥f(λx+ λy)− λf(x)− λf(y)∥ ≤ ϕ(x, y),

∥f(xy)− f(x)f(y)∥ ≤ ψ(x, y)

for all x, y ∈ A and all λ ∈ T := {µ ∈ C : |µ| = 1}. Assume that F (1) :=

limn→∞
f(2n.1)

2n is invertible in B. Then the mapping f is an algebra homo-
morphism.

Proof. Assuming λ = 1 and applying Theorem 2.3, we have that f : A→ B is
an additive and multiplicative mapping. Replacing x by 2nx and putting y = 0
in (2.11), we get

∥f(2nλx)− λf(2nx)∥ ≤ ϕ(2nx, 0)

for all x ∈ A and all λ ∈ T and all n ∈ N. Since f is additive, we have
f(2nx) = 2nf(x), and so we obtain

∥f(λx)− λf(x)∥ ≤ 2−nϕ(2nx, 0).
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By taking the limit as n→ ∞, we get f(λx) = λf(x) for all x ∈ A and λ ∈ T.
Therefore, by the same reasoning as in the proof of [11, Theorem 2.1], the
additive mapping f is linear. □

Corollary 2.6. Let f : A → B be a mapping with f(0) = 0 for which there
exist p, q ∈ (−∞, 1) and ϵ > 0 such that

∥f(λx+ λy)− λf(x)− λf(y)∥ ≤ ϵ(∥x∥p + ∥y∥q),

(2.12) ∥f(xy)− f(x)f(y)∥ ≤ ϵ(∥x∥p + ∥y∥q)

for all x, y ∈ A and all λ ∈ T. Assume that limn→∞
f(2n.1)

2n is invertible. Then
f is an algebra homomorphism.

Proof. Define ϕ(x, y) = ψ(x, y) = ϵ(∥x∥p + ∥y∥q) and apply Theorem 2.5. □

We have replaced the condition that f satisfies f(xy) = f(x)f(y) for all
x, y ∈ A in [11, Corollary 3.2] by the condition that f satisfies inequality
(2.12). Therefore, Corollary 2.6 is a generalization of [11, Corollary 3.2].

Theorem 2.7. Let f : A → B be a mapping with f(0) = 0 for which there
exist the functions ϕ, ψ : A×A→ [0,∞) satisfying (2.9), (2.10) and (2.5) such
that

∥f(ix+ iy)− if(x)− if(y)∥ ≤ ϕ(x, y)

for all x, y ∈ A. Assume that limn→∞
f(2n1)

2n is invertible. If f(tx) is continuous
in t ∈ R for each fixed x ∈ A, then f is an algebra homomorphism.

Proof. It is easy to see that the mappings ϕ and ψ, satisfying (2.9) and (2.10),
respectively, satisfy

∞∑
n=0

|2i|−nϕ((2i)nx, (2i)ny) <∞,

lim
n→∞

|2i|−nψ((2i)nx, y) = 0

for all x, y ∈ A, respectively. By Theorem 2.2, limn→∞
f((2i)n.1)

(2i)n exists. Since

the sequence { f(24n.1)
24n } is the subsequence of { f((2i)n.1)

(2i)n }, we have limn→∞
f((2i)n.1)

(2i)n is invertible in B. Now by Theorem 2.3, f : A → B is an additive

and multiplicative mapping.
Fix x ∈ A and λ ∈ C. We define the mapping h : R → B by h(t) = f(tx). It

is clear that h is additive and so it is R-linear, since the mapping h is continuous
in t ∈ R. Therefore, f is R-linear.

There exist a, b ∈ R such that λ = a+ ib. So

f(λx) = f(ax+ ibx) = af(x) + bf(ix) = af(x) + bif(x) = λf(x).

Therefore, f is linear. □
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Corollary 2.8. Let p, q ∈ (−∞, 1) and ϵ > 0. Suppose f : A→ B is a mapping
with f(0) = 0 satisfying (2.12) such that

∥f(ix+ iy)− if(x)− if(y)∥ ≤ ϵ(∥x∥p + ∥y∥q)

for all x, y ∈ A. Assume that limn→∞
f(2n.1)

2n is invertible. If f(tx) is continu-
ous in t ∈ R for each fixed x ∈ A, then f is an algebra homomorphism.

Proof. Define ϕ(x, y) = ψ(x, y) = ϵ(∥x∥p + ∥y∥q) and apply Theorem 2.7. □

Remark 2.9. We have proved Theorem 2.7 and Corollary 2.8, under the as-
sumptions that

i) the mapping f satisfies

∥f(λx+ λy)− λf(x)− λf(y)∥ ≤ ϕ(x, y)

only for λ = i and
ii) f is an approximately multiplicative mapping. (Compare [11, Theorem

3.3]).

Remark 2.10. In all statements, the condition that control function ψ satisfies
limn→∞ 2−nψ(2nx, y) = 0 can be replaced by the condition that ψ satisfies
limn→∞ 2−nψ(x, 2ny) = 0.
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