Strongly Solid Varieties and Free Generalized Clones

Klaus Denecke
University of Potsdam, Institute of Mathematics, 14415 Potsdam, Germany
e-mail: kdenecke@rz.uni-potsdam.de

Abstract. Clones are sets of operations which are closed under composition and contain all projections. Identities of clones of term operations of a given algebra correspond to hyperidentities of this algebra, i.e., to identities which are satisfied after any replacements of fundamental operations by derived operations ([7]). If any identity of an algebra is satisfied as a hyperidentity, the algebra is called solid ([3]). Solid algebras correspond to free clones. These connections will be extended to so-called generalized clones, to strong hyperidentities and to strongly solid varieties. On the basis of a generalized superposition operation for terms we generalize the concept of a unitary Menger algebra of finite rank ([6]) to unitary Menger algebras with infinitely many nullary operations and prove that strong hyperidentities correspond to identities in free unitary Menger algebras with infinitely many nullary operations.

1. Menger algebras with infinitely many nullary operations

Generalized hypersubstitutions were introduced in [4] on the basis of a generalized superposition operation which is defined as an $(m+1)$-ary operation $S^{m}, m \in \mathbb{N}^{+}:=\mathbb{N} \backslash\{0\}$, on the set of all terms of type τ. Here we consider terms of type τ_{n} defined by using of operation symbols $f_{i}, i \in I$, where f_{i} is n ary for every $i \in I$ and by elements of the alphabet $X=\left\{x_{1}, \cdots, x_{n}, \cdots\right\}$. Let $W_{\tau_{n}}(X)$ be the set of all terms of type τ_{n}. Then for any $n \geq 1, n \in \mathbb{N}^{+}$, we define $S^{n}: W_{\tau_{n}}(X)^{n+1} \rightarrow W_{\tau_{n}}(X)$ inductively by the following steps:

Definition 1.1.

(i) If $t=x_{i}, 1 \leq i \leq n$, then $S^{n}\left(x_{i}, t_{1}, \cdots, t_{n}\right):=t_{i}$ for $t_{1}, \cdots, t_{n} \in W_{\tau_{n}}(X)$.
(ii) If $t=x_{i}, n<i$, then $S^{n}\left(x_{i}, t_{1}, \cdots, t_{n}\right):=x_{i}$.
(iii) If $t=f_{i}\left(s_{1}, \cdots, s_{n}\right)$, then

$$
S^{n}\left(t, t_{1}, \cdots, t_{n}\right):=f_{i}\left(S^{n}\left(s_{1}, t_{1}, \cdots, t_{n}\right), \cdots, S^{n}\left(s_{n}, t_{1}, \cdots, t_{n}\right)\right)
$$

[^0]Then we may consider the algebraic structure

$$
\text { clone }_{g} \tau_{n}:=\left(W_{\tau_{n}}(X) ; S^{n},\left(x_{i}\right)_{i \in \mathbb{N}^{+}}\right)
$$

with the universe $W_{\tau_{n}}(X)$, with one $(n+1)$-ary operation and infinitely many nullary operations. This algebra is called a generalized clone. Now we prove

Theorem 1.2. The algebra clone ${ }_{g} \tau_{n}$ satisfies the following identities:
$(\mathrm{Cg} 1) \tilde{S}^{n}\left(T, \tilde{S}^{n}\left(F_{1}, T_{1}, \cdots, T_{n}\right), \cdots, \tilde{S}^{n}\left(F_{n}, T_{1}, \cdots, T_{n}\right)\right)$
$\approx \tilde{S}^{n}\left(\tilde{S}^{n}\left(T, F_{1}, \cdots, F_{n}\right), T_{1}, \cdots, T_{n}\right)$.
(Cg2) $\tilde{S}^{n}\left(T, \lambda_{1}, \cdots, \lambda_{n}\right)=T$.
(Cg3) $\tilde{S}^{n}\left(\lambda_{i}, T_{1}, \cdots, T_{n}\right)=T_{i}$ for $1 \leq i \leq n$.
(Cg4) $\tilde{S}^{n}\left(\lambda_{j}, T_{1}, \cdots, T_{n}\right)=\lambda_{j}$ for $j>n$.
(Here $\tilde{S}^{n}, \lambda_{i}$ are operation symbols corresponding to the operations S^{n} and $x_{i}, i \in$ \mathbb{N}^{+}, respectively and T, T_{j}, F_{i} are new variables.)
Proof. (Cg1) We give a proof by induction on the complexity of the term t.
(i) If $t=x_{j}, 1 \leq j \leq n$, then

$$
\begin{aligned}
& S^{n}\left(x_{j}, S^{n}\left(s_{1}, t_{1}, \cdots, t_{n}\right), \cdots S^{n}\left(s_{n}, t_{1}, \cdots, t_{n}\right)\right) \\
= & S^{n}\left(s_{j}, t_{1}, \cdots, t_{n}\right) \\
= & S^{n}\left(S^{n}\left(x_{j}, s_{1}, \cdots, s_{n}\right), t_{1}, \cdots, t_{n}\right)
\end{aligned}
$$

(ii) If $t=x_{j}, j>n$, then

$$
\begin{aligned}
& S^{n}\left(x_{j}, S^{n}\left(s_{1}, t_{1}, \cdots, t_{n}\right), \cdots S^{n}\left(s_{n}, t_{1}, \cdots, t_{n}\right)\right) \\
= & x_{j} \\
= & S^{n}\left(x_{j}, t_{1}, \cdots, t_{n}\right) \\
= & S^{n}\left(S^{n}\left(x_{j}, s_{1}, \cdots, s_{n}\right), t_{1}, \cdots, t_{n}\right)
\end{aligned}
$$

(iii) If $t=f_{i}\left(t_{1}^{\prime}, \cdots, t_{n}^{\prime}\right)$ and if we assume that our proposition is satisfied for $t_{1}^{\prime}, \cdots, t_{n}^{\prime}$, then

$$
\begin{aligned}
& S^{n}\left(f_{i}\left(t_{1}^{\prime}, \cdots, t_{n}^{\prime}\right), S^{n}\left(s_{1}, t_{1}, \cdots, t_{n}\right), \cdots, S^{n}\left(s_{n}, t_{1}, \cdots, t_{n}\right)\right) \\
= & f_{i}\left(S^{n}\left(t_{1}^{\prime}, S^{n}\left(s_{1}, t_{1} \cdots, t_{n}\right), \cdots, S^{n}\left(s_{n}, t_{1}, \cdots, t_{n}\right)\right), \cdots,\right. \\
& \left.S^{n}\left(t_{n}^{\prime}, S^{n}\left(s_{1}, t_{1}, \cdots, t_{n}\right), \cdots, S^{n}\left(s_{n}, t_{1}, \cdots, t_{n}\right)\right)\right) \\
= & f_{i}\left(S^{n}\left(S^{n}\left(t_{1}^{\prime}, s_{1}, \cdots, s_{n}\right), t_{1}, \cdots, t_{n}\right), \cdots, S^{n}\left(S^{n}\left(t_{n}^{\prime}, s_{1}, \cdots, s_{n}\right), t_{1}, \cdots, t_{n}\right)\right) \\
= & S^{n}\left(S^{n}\left(f_{i}\left(t_{1}^{\prime}, \cdots, t_{n}^{\prime}\right), s_{1}, \cdots, s_{n}\right), t_{1}, \cdots, t_{n}\right) \\
= & S^{n}\left(S^{n}\left(t, s_{1}, \cdots, s_{n}\right), t_{1}, \cdots, t_{n}\right) .
\end{aligned}
$$

(Cg2) If t contains variables from the set $\left\{x_{1}, \cdots, x_{n}\right\}$, then we substitute in t for these variables the same variables and obtain t. If t contains a variable which does not belong to the set $\left\{x_{1}, \cdots, x_{n}\right\}$, then this variable will not be replaced by another term. Therefore the result is t.
(Cg3) and (Cg4) correspond to (i) and (ii), respectively, in the definition of S^{n}.
Algebras $\left(M ; S^{n}\right)$ of type $\tau_{n}=(n+1), n \geq 1$, which satisfy the so-called superassociative law
(C1) $S^{n}\left(x, S^{n}\left(z_{1}, y_{1}, \cdots, y_{n}\right), \cdots, S^{n}\left(z_{n}, y_{1}, \cdots, y_{n}\right)\right) \approx S^{n}\left(S^{n}\left(x, z_{1}, \cdots, z_{n}\right), y_{1}\right.$, \cdots, y_{n}) are called Menger algebras of rank n (see e.g. [6]). An algebra ($M ; S^{n}, \lambda_{1}, \cdots, \lambda_{n}$) of type $\tau_{n}=(n+1,0, \cdots, 0)$ is called a unitary Menger algebra of rank n (see [6]) if ($M ; S^{n}$) is a Menger algebra of rank n and if the nullary fundamental operations $\lambda_{1}, \cdots, \lambda_{n}$ satisfy the identities
(C2) $S^{n}\left(\lambda_{i}, x_{1}, \cdots, x_{n}\right)=x_{i}$.
(C3) $S^{n}\left(x, \lambda_{1}, \cdots, \lambda_{n}\right)=x$.
The set of all terms of a given type built up by variables from an n-element alphabet $X_{n}=\left\{x_{1}, \cdots, x_{n}\right\}$ together with an ($n+1$)-ary superposition operation which is defined by (i) and (iii) from Definition 1.1 forms a Menger algebra of rank n. If we add the variables x_{1}, \cdots, x_{n} as nullary operations, we have a unitary Menger algebra of rank n. Another example is the Menger algebra of all n-ary term operations of a given algebra \mathcal{A} together with the superposition. Generalizing the concept of a Menger algebra we define

Definition 1.3. An algebra ($\left.M ; S^{n},\left(e_{i}\right)_{i \in \mathbb{N}^{+}}\right)$where S^{n} is ($n+1$)-ary and $e_{i}, i \in \mathbb{N}^{+}$ are nullary, is called unitary Menger algebra with infinitely many nullary operations if (Cg1), (Cg2), (Cg3), (Cg4) are satisfied.

The class of all unitary Menger algebras with infinitely many nullary operations forms a variety V_{M} and the algebra clone $_{g} \tau_{n}$ belongs to this variety. In [6] Menger algebras were characterized by semigroups. If $\left(M ; S^{n}\right)$ is an algebra of type $\tau_{n}=(n+$ 1), then on the cartesian power M^{n} one can define a binary operation $*:\left(M^{n}\right)^{2} \rightarrow$ M^{n} by $\left(x_{1}, \cdots, x_{n}\right) *\left(y_{1}, \cdots, y_{n}\right):=\left(S^{n}\left(x_{1}, y_{1}, \cdots, y_{n}\right), \cdots, S^{n}\left(x_{n}, y_{1}, \cdots, y_{n}\right)\right)$. Then an algebra $\left(M ; S^{n}\right)$ of type $\tau_{n}=(n+1)$ is a Menger algebra if and only if $\left(M^{n} ; *\right)$ is a semigroup. This can be generalized to unitary Menger algebras with infinitely many nullary operations.

Let V_{M} be the variety of all unitary Menger algebras with infinitely many nullary operations. Let $\left\{X_{i} \mid i \in I\right\}$ be a new set of variables. This set is indexed by the index set I of the set of operation symbols of type τ_{n}. By \tilde{S}^{n} we denote an $(n+1)$-ary operation symbol and let $\left(\lambda_{i}\right)_{i \in \mathbb{N}^{+}}$be an indexed set of nullary operation symbols. Let $\mathcal{F}_{V_{M}}\left(\left\{X_{i} \mid i \in I\right\}\right)$ be the free algebra with respect to the variety V_{M}, freely generated by $\left\{X_{i} \mid i \in I\right\}$. Then we have:

Theorem 1.4. The algebra clone $\tau_{g} \tau_{n}$ is isomorphic with the free algebra $\mathcal{F}_{V_{M}}\left(\left\{X_{i} \mid\right.\right.$
$i \in I\})$ and therefore free with respect to the variety of unitary Menger algebras with infinitely many nullary operations.
Proof. We define a map $\varphi: W_{\tau_{n}}(X) \rightarrow F_{V_{M}}\left(\left\{X_{i} \mid i \in I\right\}\right)$ inductively as follows:
(i) $\varphi\left(x_{j}\right):=\lambda_{j}, j \in \mathbb{N}^{+}$,
(ii) $\varphi\left(f_{i}\left(t_{1}, \cdots, t_{n}\right)\right):=\tilde{S}^{n}\left(X_{i}, \varphi\left(t_{1}\right), \cdots, \varphi\left(t_{n}\right)\right)$.

We prove the homomorphism property

$$
\varphi\left(S^{n}\left(t_{0}, t_{1}, \cdots, t_{n}\right)\right)=\tilde{S}^{n}\left(\varphi\left(t_{0}\right), \varphi\left(t_{1}\right), \cdots, \varphi\left(t_{n}\right)\right)
$$

by induction on the complexity of the term t_{0}.

$$
\begin{aligned}
t_{0}=x_{j}, 1 \leq j \leq n: & \varphi\left(S^{n}\left(x_{j}, t_{1}, \cdots, t_{n}\right)\right) \\
= & \varphi\left(t_{j}\right) \\
= & \tilde{S}^{n}\left(\lambda_{j}, \varphi\left(t_{1}\right), \cdots, \varphi\left(t_{n}\right)\right) \\
= & \tilde{S}^{n}\left(\varphi\left(t_{0}\right), \varphi\left(t_{1}\right), \cdots, \varphi\left(t_{n}\right)\right) \quad \text { by }(\mathrm{Cg} 3) . \\
t_{0}=x_{k}, k>n: & \varphi\left(S^{n}\left(x_{k}, t_{1}, \cdots, t_{n}\right)\right) \\
= & \varphi\left(x_{k}\right) \\
= & \tilde{S}^{n}\left(\lambda_{k}, \varphi\left(t_{1}\right), \cdots, \varphi\left(t_{n}\right)\right) \\
= & \tilde{S}^{n}\left(\varphi\left(x_{k}\right), \varphi\left(t_{1}\right), \cdots, \varphi\left(t_{n}\right)\right) \quad \text { by }(\mathrm{Cg} 4)
\end{aligned}
$$

Inductively, assume that $t_{0}=f_{i}\left(s_{1}, \cdots, s_{n}\right)$ and that $\varphi\left(S^{n}\left(s_{j}, t_{1}, \cdots, t_{n}\right)\right)=$ $\tilde{S}^{n}\left(\varphi\left(s_{j}\right), \varphi\left(t_{1}\right), \cdots, \varphi\left(t_{n}\right)\right)$ for all $1 \leq j \leq n$. Then

$$
\begin{aligned}
& \varphi\left(S^{n}\left(f_{i}\left(s_{1}, \cdots, s_{n}\right), t_{1}, \cdots, t_{n}\right)\right) \\
= & \varphi\left(f_{i}\left(S^{n}\left(s_{1}, t_{1}, \cdots, t_{n}\right), \cdots, S^{n}\left(s_{n}, t_{1}, \cdots, t_{n}\right)\right)\right) \\
= & \tilde{S}^{n}\left(X_{i}, \varphi\left(S^{n}\left(s_{1}, t_{1}, \cdots, t_{n}\right)\right), \cdots, \varphi\left(S^{n}\left(s_{n}, t_{1}, \cdots, t_{n}\right)\right)\right) \\
= & \tilde{S}^{n}\left(X_{i}, \tilde{S}^{n}\left(\varphi\left(s_{1}\right), \varphi\left(t_{1}\right), \cdots, \varphi\left(t_{n}\right)\right), \cdots, \tilde{S}^{n}\left(\varphi\left(s_{n}, \varphi\left(t_{1}\right), \cdots, \varphi\left(t_{n}\right)\right)\right.\right. \\
= & \tilde{S}^{n}\left(\tilde{S}^{n}\left(X_{i}, \varphi\left(s_{1}\right), \cdots, \varphi\left(s_{n}\right)\right), \varphi\left(t_{1}\right), \cdots, \varphi\left(t_{n}\right)\right) \\
= & \tilde{S}^{n}\left(\varphi\left(f_{i}\left(s_{1}, \cdots, s_{n}\right)\right), \varphi\left(t_{1}\right), \cdots, \varphi\left(t_{n}\right)\right)
\end{aligned}
$$

Thus φ is a homomorphism. It maps the generating set $F_{\tau_{n}}:=\left\{f_{i}\left(x_{1}, \cdots, x_{n}\right) \mid\right.$ $i \in I\}$ of the algebra clone ${ }_{g} \tau_{n}$ onto the set $\left\{X_{i} \mid i \in I\right\}$ since

$$
\begin{aligned}
& \varphi\left(f_{i}\left(x_{1}, \cdots, x_{n}\right)\right. \\
= & \tilde{S}^{n}\left(X_{i}, \varphi\left(x_{1}\right), \cdots, \varphi\left(x_{n}\right)\right) \\
= & \tilde{S}^{n}\left(X_{i}, \lambda_{1}, \cdots, \lambda_{n}\right) \\
= & X_{i} \text { by }(\mathrm{Cg} 2) .
\end{aligned}
$$

Furthermore, since $\left\{X_{i} \mid i \in I\right\}$ is a free independent set we have

$$
X_{i}=X_{j} \Rightarrow i=j \Rightarrow f_{i}\left(x_{1}, \cdots, x_{n}\right)=f_{j}\left(x_{1}, \cdots, x_{n}\right)
$$

Thus φ is a bijection between the generating sets of clone $_{g} \tau_{n}$ and $\mathcal{F}_{V_{M}}\left(\left\{X_{i} \mid i \in I\right\}\right)$. Altogether, φ is an isomorphism.

2. Generalized hypersubstitutions and endomorphisms

In [4] the concept of a generalized hypersubstitution was defined with the aim to consider strong hyperidentities and strongly solid varieties.

Definition 2.1. A mapping $\sigma:\left\{f_{i} \mid i \in I\right\} \rightarrow W_{\tau_{n}}(X)$ is called a generalized hypersubstitution of type τ_{n}. If σ maps n-ary operation symbols to n-ary terms of type τ_{n}, it is called a hypersubstitution of type τ_{n}. Generalized hypersubstitutions can be inductively extended to mappings $\hat{\sigma}$ defined on $W_{\tau_{n}}(X)$ by
(i) $\hat{\sigma}\left[x_{i}\right]:=x_{i} \in X$.
(ii) $\hat{\sigma}\left[f_{i}\left(t_{1}, \cdots, t_{n}\right)\right]:=S^{n}\left(\sigma\left(f_{i}\right), \hat{\sigma}\left[t_{1}\right], \cdots, \hat{\sigma}\left[t_{n}\right]\right)$

Let $\operatorname{Hyp}_{G}\left(\tau_{n}\right)$ be the set of all generalized hypersubstitutions of type τ_{n} and let $H y p\left(\tau_{n}\right)$ be the set of all (arity-preserving) hypersubstitutions. We denote the hypersubstitution which maps the operation symbol f_{i} to the term $f_{i}\left(x_{1}, \cdots, x_{n}\right)$ for every $i \in I$ by $\sigma_{i d}$.
(For arity-preserving hypersubstitutions see e.g. [3])
Proposition 2.2. The extension of a generalized hypersubstitution is an endomorphism of the algebra clone ${ }_{g} \tau_{n}$.
Proof. Let S^{n} be the $(n+1)$-ary fundamental operation of the algebra clone ${ }_{g} \tau_{n}$. Then we show by induction on the complexity of the term t that

$$
\begin{equation*}
\hat{\sigma}\left[S^{n}\left(t, t_{1}, \cdots, t_{n}\right)\right]=S^{n}\left(\hat{\sigma}[t], \hat{\sigma}\left[t_{1}\right], \cdots, \hat{\sigma}\left[t_{n}\right]\right) \tag{*}
\end{equation*}
$$

If $t=x_{i}, 1 \leq i \leq n$, then $\left.\hat{\sigma}\left[S^{n}\left(x_{i}, t_{1}, \cdots, t_{n}\right)\right]=\hat{\sigma}\left[t_{i}\right]=S^{n}\left(\hat{\sigma}\left[x_{i}\right], \hat{\sigma}\left[t_{1}\right]\right), \cdots, \hat{\sigma}\left[t_{n}\right]\right)$.
If $t=x_{j}, j>n$, then $\hat{\sigma}\left[S^{n}\left(x_{j}, t_{1}, \cdots, t_{n}\right)\right]=x_{j}=S^{n}\left(\hat{\sigma}\left[x_{j}\right], \hat{\sigma}\left[t_{1}\right], \cdots, \hat{\sigma}\left[t_{n}\right]\right)$.
If $t=f_{i}\left(s_{1}, \cdots, s_{n}\right)$ and if we assume that equation $(*)$ is satisfied for s_{1}, \cdots, s_{n}, then

$$
\begin{aligned}
& \left.\hat{\sigma}\left[S^{n}\left(f_{i}\left(s_{1}, \cdots, s_{n}\right), t_{1}, \cdots, t_{n}\right)\right)\right] \\
= & \hat{\sigma}\left[f_{i}\left(S^{n}\left(s_{1}, t_{1}, \cdots, t_{n}\right), \cdots, S^{n}\left(s_{n}, t_{1}, \cdots, t_{n}\right)\right)\right] \\
= & S^{n}\left(\sigma\left(f_{i}\right), \hat{\sigma}\left[S^{n}\left(s_{1}, t_{1}, \cdots, t_{n}\right)\right], \cdots, \hat{\sigma}\left[S^{n}\left(s_{n}, t_{1}, \cdots, t_{n}\right)\right]\right) \\
= & S^{n}\left(\sigma\left(f_{i}\right), S^{n}\left(\hat{\sigma}\left[s_{1}\right], \hat{\sigma}\left[t_{1}\right], \cdots, \hat{\sigma}\left[t_{n}\right]\right), \cdots, S^{n}\left(\hat{\sigma}\left[s_{n}\right], \hat{\sigma}\left[t_{1}\right], \cdots, \hat{\sigma}\left[t_{n}\right]\right)\right) \\
= & S^{n}\left(S^{n}\left(\sigma\left(f_{i}\right), \hat{\sigma}\left[s_{1}\right], \cdots, \hat{\sigma}\left[s_{n}\right]\right), \hat{\sigma}\left[t_{1}\right], \cdots, \hat{\sigma}\left[t_{n}\right]\right) \\
= & S^{n}\left(\hat{\sigma}\left[f_{i}\left(s_{1}, \cdots, s_{n}\right)\right], \hat{\sigma}\left[t_{1}\right], \cdots, \hat{\sigma}\left[t_{n}\right]\right) .
\end{aligned}
$$

For the nullary operations we have $\hat{\sigma}\left[x_{j}\right]=x_{j}$.
The converse is also satisfied, i.e.,
Proposition 2.3. Every endomorphism of clone ${ }_{g} \tau_{n}$ is the extension of a generalized hypersubstitution.
Proof. If $\varphi:$ clone $_{g} \tau_{n} \rightarrow$ clone $_{g} \tau_{n}$ is an endomorphism, then we consider the restriction of φ^{\prime} of φ to the set $F_{\tau_{n}}:=\left\{f_{i}\left(x_{1}, \cdots, x_{n}\right) \mid i \in I\right\}$ and form the mapping $\varphi^{\prime} \circ \sigma_{i d}:\left\{f_{i} \mid i \in I\right\} \rightarrow W_{\tau_{n}}(X)$. This mapping is a generalized hypersubstitution. We prove that φ is equal to the extension $\left(\varphi^{\prime} \circ \sigma_{i d}\right)^{\wedge}$ of this generalized hypersubstitution. Indeed, $\varphi\left(x_{i}\right)=x_{i}=\left(\varphi^{\prime} \circ \sigma_{i d}\right)^{\wedge}\left[x_{i}\right]$ for every variable x_{i} and for composite terms $f_{i}\left(t_{1}, \cdots, t_{n}\right)$ we have:

$$
\begin{aligned}
& \varphi\left(f_{i}\left(t_{1}, \cdots, t_{n}\right)\right) \\
= & \varphi\left(S^{n}\left(f_{i}\left(x_{1}, \cdots, x_{n}\right), t_{1}, \cdots, t_{n}\right)\right) \\
= & S^{n}\left(\varphi\left(f_{i}\left(x_{1}, \cdots, x_{n}\right), \varphi\left(t_{1}\right), \cdots, \varphi\left(t_{n}\right)\right)\right. \\
= & S^{n}\left(\left(\varphi^{\prime} \circ \sigma_{i d}\right)\left(f_{i}\right)\left(\varphi^{\prime} \circ \sigma_{i d}\right)^{\wedge}\left[t_{1}\right], \cdots,\left(\varphi^{\prime} \circ \sigma_{i d}\right)^{\wedge}\left[t_{n}\right]\right) \\
= & \left(\varphi^{\prime} \circ \sigma_{i d}\right)^{\wedge}\left[f_{i}\left(t_{1}, \cdots, t_{n}\right)\right] .
\end{aligned}
$$

It is easy to see that the set $\operatorname{Hyp}_{G}\left(\tau_{n}\right)$ together with the binary operation \circ_{G} defined by $\sigma_{1} \circ{ }_{G} \sigma_{2}:=\hat{\sigma}_{1} \circ \sigma_{2}$ and $\sigma_{i d}$ forms a monoid $\left(\operatorname{Hyp}_{G}\left(\tau_{n}\right) ;{ }_{G}, \sigma_{i d}\right)$. Let End $\left(\right.$ clone $\left._{g} \tau_{n}\right)$ be the endomorphism monoid of clone $_{g} \tau_{n}$. Then we have:

Proposition 2.4. The monoid $\left(\operatorname{Hyp}_{G}\left(\tau_{n}\right) ;{ }_{G}, \sigma_{i d}\right)$ of all generalized hypersubstitutions is isomorphic with the endomorphism monoid End(clone $\left.{ }_{g} \tau_{n}\right)$.
Proof. We consider the mapping $\psi: E n d\left(\right.$ clone $\left._{g} \tau_{n}\right) \rightarrow \operatorname{Hyp}_{G} \tau_{n}$ defined by $\varphi \mapsto \varphi \circ \sigma_{i d}$ which maps each endomorphism of clone $_{g} \tau_{n}$ to a generalized hypersubstitution. Clearly, ψ is well-defined and injective since from $\varphi \circ \sigma_{i d}=\varphi^{\prime} \circ \sigma_{i d}$ by multiplication with $\sigma_{i d}^{-1}$ from the right hand side there follows $\varphi=\varphi^{\prime}$. The mapping ψ is surjective since for $\sigma \in \operatorname{Hyp}_{G}\left(\tau_{n}\right)$ the extension $\hat{\sigma}$ is an endomorphism and $\psi(\hat{\sigma})=\hat{\sigma} \circ \sigma_{i d}=\sigma$. Therefore, ψ is a bijection. Let $i d_{W_{\tau_{n}}(X)}$ be the identity mapping on $W_{\tau_{n}}(X)$, then $\psi\left(i d_{W_{\tau_{n}}(X)}\right)=i d_{W_{\tau_{n}}(X)} \circ \sigma_{i d}=\sigma_{i d}$ and $\psi\left(\varphi_{1} \circ \varphi_{2}\right)=\left(\varphi_{1} \circ \varphi_{2}\right) \circ \sigma_{i d}=\varphi_{1} \circ\left(\varphi_{2} \circ \sigma_{i d}\right)=\left(\varphi_{1} \circ \sigma_{i d}\right)^{\wedge} \circ\left(\varphi_{2} \circ \sigma_{i d}\right)=\psi\left(\varphi_{1}\right)^{\wedge} \circ \psi\left(\varphi_{2}\right)=$ $\psi\left(\varphi_{1}\right){ }^{\circ}{ }_{G} \psi\left(\varphi_{2}\right)$. Here we used that φ_{1} is equal to the extension of the hypersubstitution $\varphi_{1} \circ \sigma_{i d}$ (see the proof of Proposition 2.3).

The algebra clone $\tau_{n}=\left(W_{\tau_{n}}(X) ; S^{n}\right.$, The algebra clone ${ }_{g} \tau_{n}=\left(W_{\tau_{n}}(X) ; S^{n}\right.$, $\left.\left(x_{i}\right)_{i \in \mathbb{N}^{+}}\right)$is generated by the set $F_{\tau_{n}}=\left\{f_{i}\left(x_{1}, \cdots, x_{n}\right) \mid i \in I\right\}$. Any mapping from $F_{\tau_{n}}$ to $W_{\tau_{n}}(X)$ is called a generalized clone substitution. Since clone $e_{g} \tau_{n}$ is free, every generalized clone substitution can be uniquely extended to an endomorphism of the algebra clone τ_{n}. Let Subst $_{G}$ be the set of all generalized clone substitutions. We introduce a binary composition operation \otimes on this set, by setting $\eta_{1} \otimes \eta_{2}:=\overline{\eta_{1}} \circ \eta_{2}$ where \circ denotes the usual composition f functions. Denoting by $i d_{F_{\tau_{n}}}$ the identity mapping on $F_{\tau_{n}}$ we see that $\left(\operatorname{Subst}_{G} ; \otimes, i d_{F_{\tau_{n}}}\right)$ is a monoid. Further we have:

Proposition 2.5. The monoids $\left(\right.$ Subst $\left._{G} ; \otimes, i d_{F_{\tau_{n}}}\right)$ and $\left(H y p_{G}\left(\tau_{n}\right) ; \circ_{G}, \sigma_{i d}\right)$ are isomorphic.

3. Strong hyperidentities and identities in generalized clones

Generalized hypersubstitutions can be used to define strong hyperidentities in algebras or in varieties ([4]).

Definition 3.1. Let V be a variety of type τ_{n} and let $I d V$ be the set of all identities satisfied in V. An identity $s \approx t \in I d V$ is called a strong hyperidentity in $V([4])$ if $\hat{\sigma}[s] \approx \hat{\sigma}[t] \in I d V$ for all generalized hypersubstitutions $\sigma \in H y p_{G}\left(\tau_{n}\right)$.

We consider the following example: Let $R e c$ be the variety of semigroups which is defined by the following identity: $x_{1} x_{2} x_{3} \approx x_{1} x_{3}$, i.e., $\operatorname{Rec}:=\operatorname{Mod}\left\{x_{1}\left(x_{2} x_{3}\right) \approx\right.$ $\left.\left(x_{1} x_{2}\right) x_{3} \approx x_{1} x_{3}\right\}$. We want to prove that the associative law is a strong hyperidentity in Rec. We introduce the binary operation symbol F and write the associative identity in the form $F\left(x_{1}, F\left(x_{2}, x_{3}\right)\right) \approx F\left(F\left(x_{1}, x_{2}\right), x_{3}\right)$. Arbitrary n-ary terms over the variety Rec have the form x_{i} or $x_{i} x_{j}, i, j \in \mathbb{N}^{+}$. Then we have

$$
\hat{\sigma}_{x_{i}}\left[F\left(x_{1}, F\left(x_{2}, x_{3}\right)\right)\right]=x_{i}=\hat{\sigma}_{x_{i}}\left[F\left(F\left(x_{1}, x_{2}\right), x_{3}\right)\right]=\hat{\sigma}_{x_{i}}\left[F\left(x_{1}, x_{3}\right)\right] \text { if } i \neq 2
$$

and

$$
\hat{\sigma}_{x_{2}}\left[F\left(x_{1}, F\left(x_{2}, x_{3}\right)\right)\right]=x_{3}=\hat{\sigma}_{x_{2}}\left[F\left(F\left(x_{1}, x_{2}\right), x_{3}\right)\right]=\hat{\sigma}_{x_{2}}\left[F\left(x_{1}, x_{3}\right)\right] .
$$

Actually, if $i, j \in\{1,2\}$, we can use that the variety Rec is solid and therefore its identities are closed under any application of arity-preserving hypersubstitutions. Then the following cases are left:

$$
\begin{aligned}
\hat{\sigma}_{x_{i} x_{j}}\left[F\left(x_{1}, F\left(x_{2}, x_{3}\right)\right)\right] & =S^{2}\left(x_{i} x_{j}, x_{1}, S^{2}\left(x_{i} x_{j}, x_{2}, x_{3}\right)\right) \\
& = \begin{cases}x_{1} x_{j} & \text { if } i=1, j>2, \\
x_{3} x_{j} x_{j} & \text { if } i=2, j>2, \\
x_{i} x_{1} & \text { if } j=1, i>2, \\
x_{i} x_{i} x_{3} & \text { if } j=2, i>2, \\
x_{i} x_{j} & \text { if } i, j>2\end{cases}
\end{aligned}
$$

and further we have

$$
\begin{aligned}
\hat{\sigma}_{x_{i} x_{j}}\left[F\left(F\left(x_{1}, x_{2}\right), x_{3}\right)\right] & =S^{2}\left(x_{i} x_{j}, S^{2}\left(x_{i} x_{j}, x_{1}, x_{2}\right), x_{3}\right) \\
& = \begin{cases}x_{1} x_{j} x_{j} & \text { if } i=1, j>2, \\
x_{3} x_{j} & \text { if } i=2, j>2, \\
x_{i} x_{i} x_{1} & \text { if } j=1, i>2, \\
x_{i} x_{3} & \text { if } j=2, i>2, \\
x_{i} x_{j} & \text { if } i, j>2 .\end{cases}
\end{aligned}
$$

Because of $x_{1} x_{j} \approx x_{1} x_{j} x_{j}, x_{3} x_{j} x_{j} \approx x_{3} x_{j}, x_{i} x_{1} \approx x_{i} x_{i} x_{1}, x_{i} x_{i} x_{3} \approx x_{i} x_{3}$, this shows that the associative law is a strong hyperidentity in Rec.

If every identity of a variety V is satisfied as a strong hyperidentity, the variety is called strongly solid. It is not difficult to check that the variety Rec is a strongly solid variety of semigroups. Indeed, we have

$$
\begin{aligned}
\hat{\sigma}_{x_{i} x_{j}}\left[F\left(x_{1}, x_{3}\right)\right] & =S^{2}\left(x_{i} x_{j}, x_{1}, x_{3}\right) \\
& = \begin{cases}x_{1} x_{j} & \text { if } i=1, j>2, \\
x_{3} x_{j} & \text { if } i=2, j>2, \\
x_{i} x_{1} & \text { if } j=1, i>2, \\
x_{i} x_{3} & \text { if } j=2, i>2, \\
x_{i} x_{j} & \text { if } i, j>2 .\end{cases}
\end{aligned}
$$

Because of $x_{1} x_{j} x_{j} \approx x_{1} x_{j}, x_{i} x_{i} x_{1} \approx x_{i} x_{1}$ the equation $F\left(F\left(x_{1}, x_{2}\right), x_{3}\right) \approx$ $F\left(x_{1}, x_{3}\right)$ is a strong hyperidentity. This proves that the variety Rec is strongly solid since it is enough to consider the identities from a basis.

On the set $W_{\tau_{n}}(X)$ of all terms of type τ_{n} the operation symbols $f_{i}, i \in I$, we define operations of type τ_{n} by

$$
\overline{f_{i}}: W_{\tau_{n}}(X)^{n} \rightarrow W_{\tau_{n}}(X) \text { with } \overline{f_{i}}\left(t_{1}, \cdots, t_{n}\right):=f_{i}\left(t_{1}, \cdots, t_{n}\right)
$$

Together with these operations one obtains the absolutely free algebra $\mathcal{F}_{\tau_{n}}(X):=$ $\left(W_{\tau_{n}}(X) ;\left(\overline{f_{i}}\right)_{i \in I}\right)$ of type τ_{n}. If V is a variety of type τ_{n}, then $I d V$, the set of all identities satisfied in V, forms a fully invariant congruence on $\mathcal{F}_{\tau_{n}}(X)$, i.e., a congruence which is closed under all endomorphisms of $\mathcal{F}_{\tau_{n}}(X)$. Now we prove that $I d V$ is also a congruence relation on the unitary Menger algebra clone ${ }_{g} \tau_{n}$ with infinitely many nullary operations.
Theorem 3.2. Let V be a variety of type τ_{n} and let $I d V$ be the set of all identities satisfied in V. Then $I d V$ is a congruence relation on clone ${ }_{g} \tau_{n}$.
Proof. At first we prove by induction on the complexity of the term t that for every $n \in \mathbb{N}^{+}$from $t_{1} \approx s_{1}, \cdots, t_{n} \approx s_{n} \in I d V$ follows $S^{n}\left(t, t_{1}, \cdots, t_{n}\right) \approx$ $S^{n}\left(s, s_{1}, \cdots, s_{n}\right) \in I d V$.
(a) $t=x_{i}, 1 \leq i \leq n$: Then $S^{n}\left(t, t_{1}, \cdots, t_{n}\right)=t_{i} \approx s_{i}=S^{n}\left(t, s_{1}, \cdots, s_{n}\right) \in$ $I d V$.
(b) $t=x_{j}, j>n$: Then $S^{n}\left(t, t_{1}, \cdots, t_{n}\right)=x_{j} \approx x_{j}=S^{n}\left(t, s_{1}, \cdots, s_{n}\right) \in I d V$.
(c) Assume now that $t=f_{i}\left(l_{1}, \cdots, l_{n}\right)$ and that for $l_{j}, 1 \leq j \leq n$ we have already $S^{n}\left(l_{j}, t_{1}, \cdots, t_{n}\right) \approx S^{n}\left(l_{j}, s_{1}, \cdots, s_{n}\right) \in I d V, 1 \leq j \leq n$. Then

$$
\begin{aligned}
& S^{n}\left(t, t_{1}, \cdots, t_{n}\right) \\
= & f_{i}\left(S^{n}\left(l_{1}, t_{1}, \cdots, t_{n}\right), \cdots, S^{n}\left(l_{n}, t_{1}, \cdots, t_{n}\right)\right) \\
\approx & f_{i}\left(S^{n}\left(l_{1}, s_{1} \cdots, \cdots, s_{n}\right), \cdots, S^{n}\left(l_{n}, s_{1}, \cdots, s_{n}\right)\right) \in I d V
\end{aligned}
$$

since $I d V$ is compatible with the operations of $\mathcal{F}_{\tau_{n}}(X)$.

The next step consists in showing

$$
t \approx s \Rightarrow S^{n}\left(t, s_{1}, \cdots, s_{n}\right) \approx S^{n}\left(s, s_{1}, \cdots, s_{n}\right) \in I d V
$$

Since $I d V$ is a fully invariant congruence on $\mathcal{F}_{\tau_{n}}(X)$ from $t \approx s \in I d V$ we obtain $S^{n}\left(t, s_{1}, \cdots, s_{n}\right) \approx S^{n}\left(s, s_{1}, \cdots, s_{n}\right) \in I d V$ by substitution if t and s contain only variables from $X=\left\{x_{1}, \cdots, x_{n}\right\}$. Variables $x_{j}, j<n$, will not be changed. Therefore in all cases we get $S^{n}\left(t, s_{1}, \cdots, s_{n}\right) \approx S^{n}\left(s, s_{1}, \cdots, s_{n}\right)$.
Assume now that $t \approx s, t_{1} \approx s_{1}, \cdots, t_{n} \approx s_{n} \in I d V$. Then
$\left.S^{n}\left(t, t_{1}, \cdots, t_{n}\right) \approx S^{n}\left(t, s_{1}, \cdots, s_{n}\right) \approx S^{n}\left(s, s_{1}, \cdots, s_{n}\right) \approx S^{n}\left(s, t_{1}, \cdots, t_{n}\right)\right) \in I d V$.
The compatibility with the nullary operations of clone $g_{g} \tau_{n}$ is also clear.
Further we have:
Theorem 3.3. Let V be a variety of type τ_{n}. Then V is strongly solid if and only if $I d V$ is a fully invariant congruence relation on clone ${ }_{g} \tau_{n}$.
Proof. Let V be strongly solid, let $s \approx t \in I d V$ and let $\varphi:$ clone $_{g} \tau_{n} \rightarrow$ clone $_{g} \tau_{n}$ be an endomorphism of clone $_{g} \tau_{n}\left(\varphi \in \operatorname{End}\left(\right.\right.$ clone $\left.\left._{g} \tau_{n}\right)\right)$. Then we have

$$
\varphi(s)=\left(\varphi \circ \sigma_{i d}\right)^{\wedge}[s] \approx\left(\varphi \circ \sigma_{i d}\right)^{\wedge}[t]=\varphi(t) \in I d V
$$

since $\varphi \circ \sigma_{i d}$ is a generalized hypersubstitution with $\varphi=\left(\varphi \circ \sigma_{i d}\right)^{\wedge}$ (see Proposition 2.4 and the proof of Proposition 2.3). Therefore $I d V$ is fully invariant. If conversely $I d V$ is fully invariant, $s \approx t \in I d V$ and let $\sigma \in H y p_{G}\left(\tau_{n}\right)$, then $\hat{\sigma}[s] \approx \hat{\sigma}[t] \in I d V$ since by Proposition 2.2 the extension of a generalized hypersubstitution is a clone endomorpism. This shows that every identity $s \approx t \in I d V$ is satisfied as a strong hyperidentity and then V is strongly solid.

Since $I d V$ is a congruence relation on clone $_{g} \tau_{n}$, we may form the quotient algebra clone ${ }_{g} V:=$ clone $_{g} \tau_{n} / I d V$. The operations \tilde{S}^{n} of this algebra are defined as usual by

$$
\tilde{S}^{n}\left([t]_{I d V},\left[t_{1}\right]_{I d V}, \cdots,\left[t_{n}\right]_{I d V}\right):=\left[S^{n}\left(t, t_{1}, \cdots, t_{n}\right)\right]_{I d V}
$$

The nullary operations are $\left[x_{i}\right]_{I d V}, i \in \mathbb{N}^{+}$. Since for a strongly solid variety V the relation $I d V$ is fully invariant on clone $_{g} \tau_{n}$, it corresponds to a fully invariant congruence on the absolutely free algebra of the type of unitary Menger algebras with infinitely many nullary operations (see [1]). Fully invariant congruences on absolutely free algebras of a given type correspond to equational theories, i.e., to sets of identities of certain varieties. Therefore we have:

Theorem 3.4. Let V be a variety of type τ_{n} and let $s \approx t \in I d V$. Then $s \approx t$ is a strong hyperidentity in V iff $s \approx t$ is an identity in clone ${ }_{g} V$.
Proof. Assume at first that $s \approx t$ is a strong hyperidentity of V. This means that for each $\sigma \in \operatorname{Hyp}_{G}\left(\tau_{n}\right)$ we have $\hat{\sigma}[s] \approx \hat{\sigma}[t] \in I d V$. Let $v:\left\{f_{i}\left(x_{1}, \cdots, x_{n}\right) \mid\right.$
$i \in I\} \rightarrow$ clone $_{g} \tau_{n}$ be a valuation mapping and let Φ be a choice function which chooses from each block with respect to $I d V$ exactly one element and from the class $\left[x_{j}\right]_{I d V}$ the variable x_{j}. Then the mapping $\eta:=\Phi \circ v$ is a clone substitution of clone $_{g} \tau_{n}$. Let nat $(I d V)$ be the natural mapping which maps each term t to the class $[t]_{I d V}$. Under the isomorphism between clone substitutions and generalized hypersubstitutions from Proposition 2.5 the generalized hypersubstitution which corresponds to η is $\eta \circ \sigma_{i d}$. Since clone τ_{n} is free, freely generated by $F_{\tau_{n}}$:= $\left\{f_{i}\left(x_{1}, \cdots, x_{n}\right) \mid i \in I\right\}$, the extension $\bar{\eta}$ is an endomorphism of clone ${ }_{g} \tau_{n}$ and is uniquely determined. Therefore, we have $\bar{\eta}=\left(\eta \circ \sigma_{i d}\right)^{\wedge}$. A consequence of the freeness of clone q_{q} is that from $v=\operatorname{nat}(I d V) \circ \eta$ there follows $\bar{v}=n a t I d V \circ \bar{\eta}$. Then we obtain from $s \approx t \in I d V$

$$
\begin{aligned}
\bar{v}(s) & =(\operatorname{nat}(I d V) \circ \bar{\eta})(s) \\
& =\operatorname{nat}(\operatorname{Id} V)\left(\left(\eta \circ \sigma_{i d}\right)^{\wedge}[s]\right)=\operatorname{nat}(\operatorname{Id} V)\left(\left(\eta \circ \sigma_{i d}\right)^{\wedge}[t]\right)=\bar{v}(t) .
\end{aligned}
$$

This shows that $s \approx t$ is an identity in clone $_{g} V$.
Conversely, assume that $s \approx t$ is an identity in clone ${ }_{g} V$ and let σ be a generalized hypersubstitution. Then $\operatorname{nat}(\operatorname{Id} V) \circ \sigma \circ \sigma_{i d}^{-1}$ is a valuation mapping and $\operatorname{nat}(I d V)(\hat{\sigma}[s])=\left(\operatorname{nat}(I d V) \circ \overline{\left(\sigma \circ \sigma_{i d}^{-1}\right)}\right)(s)=\overline{\operatorname{nat}(I d V) \circ \sigma \circ \sigma_{i d}^{-1}}(s)=$ $\overline{n a t I d} V \circ \sigma \circ \sigma_{i d}^{-1}(t)=\operatorname{nat}(I d V)(\hat{\sigma}[t])$ using $\overline{\sigma \circ \sigma_{i d}^{-1}}$. This means $\hat{\sigma}[s] \approx \hat{\sigma}[t] \in$ $I d V$ and $s \approx t$ is a strong hyperidentity.

Corollary 3.5. Let V be a variety of type τ_{n}. Then V is strongly solid iff clone ${ }_{g} V$ is free with respect to itself, freely generated by the set $\left\{\left[f_{i}\left(x_{1}, \cdots, x_{n}\right)\right]_{I d V} \mid i \in I\right\}$, meaning that every mapping from $\left\{\left[f_{i}\left(x_{1}, \cdots, x_{n}\right)\right]_{I d V} \mid i \in I\right\}$ to the universe of clone ${ }_{g} V$ can be extended to an endomorphism of clone ${ }_{g} V$.
Proof. If V is strongly solid, then by Theorem 3.3, $I d V$ is a fully invariant congruence relation on clone $_{g} \tau_{n}$. The algebra clone ${ }_{g} \tau_{n}$ is the quotient algebra of the absolutely free algebra $\mathcal{F}\left(\left\{X_{i} \mid i \in I\right\}\right)$ of the type of unitary Menger algebras with infinitely many nullary operations . Using the "Correspondence Teorem" (Theorem 6.20 in [1]) the fully invariant congruence relation $I d V$ on clone $_{g} \tau_{n}$ corresponds to a fully invariant congruence θ on $\mathcal{F}\left(\left\{X_{i} \mid i \in I\right\}\right)$ and then the quotient algebra $\mathcal{F}\left(\left\{X_{i} \mid i \in I\right\}\right) / \theta$ is free with respect to itself ([1], Lemma 14.7) and is by the isomorphism theorem isomorphic to clone ${ }_{g} V$.

For the converse direction we use Theorem 3.4, and we will show that V is strongly solid if every identity $s \approx t \in I d V$ is also an identity in clone ${ }_{g} V$. Suppose that clone ${ }_{g} V$ is free with respect to itself, freely generated by the set $\left\{\left[f_{i}\left(x_{1}, \cdots, x_{n}\right)\right]_{I d V} \mid i \in I\right\}$. Let $s \approx t$ be any identity in $I d V$. To show that $s \approx t$ is an identity in $c l o n e_{g} V$, we will show that $\bar{v}(s)=\bar{v}(t)$ for any valuation mapping $v: F_{\tau_{n}} \longrightarrow$ clone $_{g} V$. Given v, we define a mapping $\alpha_{v}:\left\{\left[f_{i}\left(x_{1}, \cdots, x_{n}\right)\right]_{I d V} \mid\right.$ $i \in I\} \longrightarrow$ clone $_{g} V$ by $\alpha_{v}\left(\left[f_{i}\left(x_{1}, \cdots, x_{n}\right)\right]_{I d V}\right)=v\left(f_{i}\left(x_{1}, \cdots, x_{n}\right)\right)$. Since clone $_{g} V$ is free with respect to itself and is freely generated by the independent set $\left\{\left[f_{i}\left(x_{1}, \cdots, x_{n}\right)\right]_{I d V} \mid i \in I\right\}$, we get

$$
\begin{aligned}
& {\left[f_{i}\left(x_{1}, \cdots, x_{n}\right)\right]_{I d V}=\left[f_{j}\left(x_{1}, \cdots, x_{n}\right)\right]_{I d V}} \\
& \Longrightarrow \quad i=j \\
& \Longrightarrow \quad f_{i}\left(x_{1}, \cdots, x_{n}\right)=f_{j}\left(x_{1}, \cdots, x_{n}\right) \\
& \Longrightarrow \quad v\left(f_{i}\left(x_{1}, \cdots, x_{n}\right)\right)=v\left(f_{j}\left(x_{1}, \cdots, x_{n}\right)\right) \\
& \Longrightarrow \alpha_{v}\left(\left[f_{i}\left(x_{1}, \cdots, x_{n}\right)\right]_{I d V}\right)=\alpha_{v}\left(\left[f_{j}\left(x_{1}, \cdots, x_{n}\right)\right]_{I d V}\right) \text {, }
\end{aligned}
$$

and the mapping α_{v} is well-defined. Since the set $F_{\tau_{n}}$ generates the free algebra clone τ_{n}, the mapping v can be uniquely extended to the homomorphism $\bar{v}:$ clone $_{g} \tau_{n} \rightarrow$ clone $_{g} V$. Then we have

$$
s \approx t \Longrightarrow[s]_{I d V}=[t]_{I d V} \Longrightarrow \bar{\alpha}_{v}\left([s]_{I d V}\right)=\bar{\alpha}_{v}\left([t]_{I d V}\right) \Longrightarrow \bar{v}(s)=\bar{v}(t)
$$

showing that $s \approx t \in I d\left(\right.$ clone $\left._{g} V\right)$.
(For algebras which are free with respect to itself and for free independent sets see e.g. [2] and [5])

References

[1] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag New York, 1981.
[2] K. Denecke, and K. Głazek, M-solid Varieties and Q-free clones, Math. Slovaca, 46(5)(1996), 515-524.
[3] K. Denecke and S. L. Wismath, Hyperidentities and Clonesm, Gordon and Breach Science Publishers, 2000.
[4] S. Leeratanavalee and K. Denecke, Generalized hypersubstitutions and strongly solid Varieties, General Algebra and Applications, Proceedings of the 59th Workshop on General Algebra, 15th Conference for Young Algebraists, Potsdam 2000, Shaker-Verlag, Aachen, 135-146.
[5] E. Marczewski, Independence in Abstract Algebras, Results and Problems, Colloquium Mathematicum, XIV(1966), 169-188.
[6] B. M. Schein and V. S. Trochimenko, Algebras of multiplace functions, Semigroup Forum, 17(1979), 1-64.
[7] W. Taylor, Hyperidentities and Hypervarieties, Aequationes Mathematicae, 23(1981), 111-127.

[^0]: Received November 11, 2003.
 2000 Mathematics Subject Classification: 08B15, 08B25.
 Key words and phrases: Menger algebra, clone, superposition of terms, hypersubstitution, generalized hypersubstitution.

