• 제목/요약/키워드: Analytic and univalent functions

검색결과 114건 처리시간 0.024초

ON FUNCTIONS STARLIKE WITH RESPECT TO n-PLY SYMMETRIC, CONJUGATE AND SYMMETRIC CONJUGATE POINTS

  • Malik, Somya;Ravichandran, Vaithiyanathan
    • 대한수학회논문집
    • /
    • 제37권4호
    • /
    • pp.1025-1039
    • /
    • 2022
  • For given non-negative real numbers 𝛼k with ∑mk=1 𝛼k = 1 and normalized analytic functions fk, k = 1, …, m, defined on the open unit disc, let the functions F and Fn be defined by F(z) := ∑mk=1 𝛼kfk(z), and Fn(z) := n-1n-1j=0 e-2j𝜋i/nF(e2j𝜋i/nz). This paper studies the functions fk satisfying the subordination zf'k(z)/Fn(z) ≺ h(z), where the function h is a convex univalent function with positive real part. We also consider the analogues of the classes of starlike functions with respect to symmetric, conjugate, and symmetric conjugate points. Inclusion and convolution results are proved for these and related classes. Our classes generalize several well-known classes and the connections with the previous works are indicated.

Some Inclusion Properties of New Subclass of Starlike and Convex Functions associated with Hohlov Operator

  • Sokol, Janusz;Murugusundaramoorthy, Gangadharan;Kothandabani, Thilagavathi
    • Kyungpook Mathematical Journal
    • /
    • 제56권2호
    • /
    • pp.597-610
    • /
    • 2016
  • For a sufficiently adequate special case of the Dziok-Srivastava linear operator defined by means of the Hadamard product (or convolution) with Srivastava-Wright convolution operator, the authors investigate several mapping properties involving various subclasses of analytic and univalent functions, $G({\lambda},{\alpha})$ and $M({\lambda},{\alpha})$. Furthermore we discuss some inclusion relations for these subclasses to be in the classes of k-uniformly convex and k-starlike functions.

TOEPLITZ DETERMINANTS FOR λ-PSEUDO-STARLIKE FUNCTIONS

  • Murat Caglar;Ismaila O. Ibrahim;Timilehin Gideon Shaba;Abbas Kareem Wanas
    • 대한수학회논문집
    • /
    • 제39권3호
    • /
    • pp.647-655
    • /
    • 2024
  • In this article, by making use of the λ-pseudo-starlike functions, we introduce a certain family of normalized analytic functions in the open unit disk U and we establish coefficient estimates for the first four determinants of the Toeplitz matrices T2(2), T2(3), T3(2) and T3(1) for the functions belonging to this family. Further, some known and new results which follow as special cases of our results are also mentioned.

First Order Differential Subordinations and Starlikeness of Analytic Maps in the Unit Disc

  • Singh, Sukhjit;Gupta, Sushma
    • Kyungpook Mathematical Journal
    • /
    • 제45권3호
    • /
    • pp.395-404
    • /
    • 2005
  • Let α be a complex number with 𝕽α > 0. Let the functions f and g be analytic in the unit disc E = {z : |z| < 1} and normalized by the conditions f(0) = g(0) = 0, f'(0) = g'(0) = 1. In the present article, we study the differential subordinations of the forms $${\alpha}{\frac{z^2f^{{\prime}{\prime}}(z)}{f(z)}}+{\frac{zf^{\prime}(z)}{f(z)}}{\prec}{\alpha}{\frac{z^2g^{{\prime}{\prime}}(z)}{g(z)}}+{\frac{zg^{\prime}(z)}{g(z)}},\;z{\in}E,$$ and $${\frac{z^2f^{{\prime}{\prime}}(z)}{f(z)}}{\prec}{\frac{z^2g^{{\prime}{\prime}}(z)}{g(z)}},\;z{\in}E.$$ As consequences, we obtain a number of sufficient conditions for star likeness of analytic maps in the unit disc. Here, the symbol ' ${\prec}$ ' stands for subordination

  • PDF

GEOMETRIC PROPERTIES ON (j, k)-SYMMETRIC FUNCTIONS RELATED TO STARLIKE AND CONVEX FUNCTION

  • Gochhayat, Priyabrat;Prajapati, Anuja
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.455-472
    • /
    • 2022
  • For j = 0, 1, 2,…, k - 1; k ≥ 2; and - 1 ≤ B < A ≤ 1, we have introduced the functions classes denoted by ST[j,k](A, B) and K[j,k](A, B), respectively, called the generalized (j, k)-symmetric starlike and convex functions. We first proved the sharp bounds on |f(z)| and |f'(z)|. Various radii related problems, such as radius of (j, k)-symmetric starlikeness, convexity, strongly starlikeness and parabolic starlikeness are determined. The quantity |a23 - a5|, which provide the initial bound on Zalcman functional is obtained for the functions in the family ST[j,k]. Furthermore, the sharp pre-Schwarzian norm is also established for the case when f is a member of K[j,k](α) for all 0 ≤ α < 1.

THE SHARP BOUND OF THE THIRD HANKEL DETERMINANT FOR SOME CLASSES OF ANALYTIC FUNCTIONS

  • Kowalczyk, Bogumila;Lecko, Adam;Lecko, Millenia;Sim, Young Jae
    • 대한수학회보
    • /
    • 제55권6호
    • /
    • pp.1859-1868
    • /
    • 2018
  • In the present paper, we have proved the sharp inequality ${\mid}H_{3,1}(f){\mid}{\leq}4$ and ${\mid}H_{3,1}(f){\mid}{\leq}1$ for analytic functions f with $a_n:=f^{(n)}(0)/n!$, $n{\in}{\mathbb{N}},$, such that $$Re\frac{f(z)}{z}>{\alpha},\;z{\in}{\mathbb{D}}:=\{z{\in}{\mathbb{C}}:{\mid}z{\mid}<1\}$$ for ${\alpha}=0$ and ${\alpha}=1/2$, respectively, where $$H_{3,1}(f):=\left|{\array{{\alpha}_1&{\alpha}_2&{\alpha}_3\\{\alpha}_2&{\alpha}_3&{\alpha}_4\\{\alpha}_3&{\alpha}_4&{\alpha}_5}}\right|$$ is the third Hankel determinant.

SHARP BOUNDS OF FIFTH COEFFICIENT AND HERMITIAN-TOEPLITZ DETERMINANTS FOR SAKAGUCHI CLASSES

  • Surya Giri;S. Sivaprasad Kumar
    • 대한수학회보
    • /
    • 제61권2호
    • /
    • pp.317-333
    • /
    • 2024
  • For the classes of analytic functions f defined on the unit disk satisfying ${\frac{2zf'(z)}{f(z)-f(-z)}}{\prec}{\varphi}(z)$) and ${\frac{(2zf'(z))'}{(f(z)-f(-z))'}}{\prec}{\varphi}(z)$, denoted by S*s(𝜑) and Cs(𝜑), respectively, the sharp bound of the nth Taylor coefficients are known for n = 2, 3 and 4. In this paper, we obtain the sharp bound of the fifth coefficient. Additionally, the sharp lower and upper estimates of the third order Hermitian Toeplitz determinant for the functions belonging to these classes are determined. The applications of our results lead to the establishment of certain new and previously known results.

Polylogarithms and Subordination of Some Cubic Polynomials

  • Manju Yadav;Sushma Gupta;Sukhjit Singh
    • Kyungpook Mathematical Journal
    • /
    • 제64권1호
    • /
    • pp.57-68
    • /
    • 2024
  • Let V3(z, f) and 𝜎(1)3(z, f) be the cubic polynomials representing, respectively, the 3rd de la Vallée Poussin mean and the 3rd Cesàro mean of order 1 of a power series f(z). If 𝒦 denotes the usual class of convex univalent functions in the open unit disk centered at the origin, we show that, in general, V3(z, f) ⊀ 𝜎(1)3(z,f), for all f ∈ 𝒦. Making use of polylogarithms, we identify a transformation, Λ : 𝒦 → 𝒦, such that V3(z, Λ(f)) ≺ 𝜎(1)3(z, Λ(f)) for all f ∈ 𝒦. Here '≺' stands for subordination between two analytic functions.

ON A FIRST ORDER STRONG DIFFERENTIAL SUBORDINATION AND APPLICATION TO UNIVALENT FUNCTIONS

  • Aghalary, Rasoul;Arjomandinia, Parviz
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.445-454
    • /
    • 2022
  • Using the concept of the strong differential subordination introduced in [2], we find conditions on the functions θ, 𝜑, G, F such that the first order strong subordination θ(p(z)) + $\frac{G(\xi)}{\xi}$zp'(z)𝜑(p(z)) ≺≺ θ(q(z)) + F(z)q'(z)𝜑(q(z), implies p(z) ≺ q(z), where p(z), q(z) are analytic functions in the open unit disk 𝔻 with p(0) = q(0). Corollaries and examples of the main results are also considered, some of which extend and improve the results obtained in [1].

ON THE FEKETE-SZEGO PROBLEM FOR CERTAIN ANALYTIC FUNCTIONS

  • Kwon, Oh-Sang;Cho, Nak-Eun
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제10권4호
    • /
    • pp.265-271
    • /
    • 2003
  • Let $CS_\alpha(\beta)$ denote the class of normalized strongly $\alpha$-close-to-convex functions of order $\beta$, defined in the open unit disk $\cal{U}$ of $\mathbb{C}$${\mid}arg{(1-{\alpha})\frac{f(z)}{g(z)}+{\alpha}\frac{zf'(z)}{g(z)}}{\mid}\;\leq\frac{\pi}{2}{\beta}(\alpha,\beta\geq0)$ such that $g\; \in\;S^{\ask}$, the class of normalized starlike unctions. In this paper, we obtain the sharp Fekete-Szego inequalities for functions belonging to $CS_\alpha(\beta)$.

  • PDF