First Order Differential Subordinations and Starlikeness of Analytic Maps in the Unit Disc

Sukhjit Singh and Sushma Gupta
Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal-148 106 (Punjab), India
e-mail: sushmagupta1@yahoo.com and sukhjit_d@yahoo.com

Abstract. Let α be a complex number with $\Re \alpha>0$. Let the functions f and g be analytic in the unit disc $E=\{z:|z|<1\}$ and normalized by the conditions $f(0)=g(0)=0$, $f^{\prime}(0)=g^{\prime}(0)=1$. In the present article, we study the differential subordinations of the forms

$$
\alpha \frac{z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)} \prec \alpha \frac{z^{2} g^{\prime \prime}(z)}{g(z)}+\frac{z g^{\prime}(z)}{g(z)}, z \in E,
$$

and

$$
\frac{z^{2} f^{\prime \prime}(z)}{f(z)} \prec \frac{z^{2} g^{\prime \prime}(z)}{g(z)}, z \in E .
$$

As consequences, we obtain a number of sufficient conditions for starlikeness of analytic maps in the unit disc. Here, the symbol ${ }^{〔} \prec$ ' stands for subordination.

1. Introduction

Let \mathcal{H} denote the space of analytic functions in the unit disc $E=\{z \in \mathbb{C}$: $|z|<1\}$, with the topology of local uniform convergence. Denote by \mathcal{A} and \mathcal{A}^{\prime}, the subspaces of \mathcal{H} consisting of functions f which are normalized by the conditions $f(0)=f^{\prime}(0)-1=0$ and $f(0)=1$, respectively. Further, let

$$
S^{*}(\alpha)=\left\{f \in \mathcal{A}: \Re \frac{z f^{\prime}(z)}{f(z)}>\alpha, z \in E, 0 \leq \alpha<1\right\}
$$

and

$$
S(\alpha)=\left\{f \in \mathcal{A}:\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\alpha \frac{\pi}{2}, z \in E, 0<\alpha \leq 1\right\}
$$

be the subspaces of \mathcal{A} consisting of starlike functions of order α and strongly starlike functions of order α, respectively. Note that $S^{*}(0)=S(1)=S^{*}$ is the well-known space of normalized functions starlike (univalent) with respect to the origin. We denote by K, the family of all convex functions in E defined as under:

$$
K=\left\{f \in \mathcal{H}: f^{\prime}(0) \neq 0, \Re\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]>0, z \in E\right\}
$$

Received January 23, 2004.

2000 Mathematics Subject Classification: 30C45, 30C50.
Key words and phrases: univalent function, starlike function, convex function, differential subordination.

A function $f \in \mathcal{H}, f^{\prime}(0) \neq 0$, is said to be close-to-convex in E if there exists a function $g \in K$, such that

$$
\Re e^{i \lambda} \frac{f^{\prime}(z)}{g^{\prime}(z)}>0, z \in E
$$

for some $\lambda,|\lambda|<\pi / 2$. Let C denote the class of all such functions.
If f and g are analytic in E, we say that f is subordinate to g in E, written as $f(z) \prec g(z)$ in E, if g is univalent in $E, f(0)=g(0)$ and $f(E) \subset g(E)$.
Let h be a univalent function in E and let $\psi: \mathbb{C}^{2} \rightarrow \mathbb{C}$, where \mathbb{C} is the complex plane. An analytic function p is said to satisfy the first order differential subordination if

$$
\begin{equation*}
\psi\left(p(z), z p^{\prime}(z)\right) \prec h(z), \quad h(0)=\psi(p(0), 0), \quad z \in E . \tag{1}
\end{equation*}
$$

A univalent function q is said to be the dominant of the differential subordination (1), if $p(0)=q(0)$ and $p \prec q$ for all p satisfying (1). A dominant \tilde{q} of (1) that satisfies $\tilde{q} \prec q$ for all dominants q of (1) is said to be the best dominant of (1).

In 1976, Lewandowski, Miller and Zlotkiewicz [1] proved the following criterion for starlikeness of a function $f \in \mathcal{A}$.

Theorem A. If $f \in \mathcal{A}$ satisfies

$$
\Re\left[\frac{z f^{\prime}(z)}{f(z)}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)\right]>0
$$

for all z in E, then $f \in S^{*}$.
Later, in 1995, Ramesha, Kumar and Padmanabhan [8] extended Theorem 1 by proving the following result:

Theorem B. Let $f \in \mathcal{A}$. For $\alpha \geq 0$, let the condition

$$
\begin{equation*}
\Re\left[\frac{z f^{\prime}(z)}{f(z)}\left(\frac{\alpha z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)\right]>0 \tag{2}
\end{equation*}
$$

be satisfied for all z in E. Then $f \in S^{*}$.
Several similar results pertaining to starlikeness and strongly starlikeness of the analytic function f satisfying (2) have been obtained in [2], [5] and [6]. Recently, Ravichandran et.al. [10] proved the following theorem wherein a sufficient condition for starlikeness of order $\beta, 0 \leq \beta \leq 1$, has been obtained.

Theorem C. For $0 \leq \alpha, \beta \leq 1$, if $f \in \mathcal{A}$ satisfies

$$
\Re\left[\frac{z f^{\prime}(z)}{f(z)}\left(\frac{\alpha z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)\right]>\alpha \beta\left(\beta-\frac{1}{2}\right)+\beta-\frac{\alpha}{2}
$$

for all $z \in E$, then $f \in S^{*}(\beta)$.

In the present article, we consider a first order differential subordination of the form

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}\left(\frac{\alpha z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right) \prec \frac{z g^{\prime}(z)}{g(z)}\left(\frac{\alpha z g^{\prime \prime}(z)}{g^{\prime}(z)}+1\right), z \in E \tag{3}
\end{equation*}
$$

where α is a complex number with $\Re \alpha>0$. Our purpose is to obtain the best dominant for the above differential subordination, which, in turn, will give a sharp order of starlikeness of f. We also study a special case of differential subordination (3), namely,

$$
\frac{z^{2} f^{\prime \prime}(z)}{f(z)} \prec \frac{z^{2} g^{\prime \prime}(z)}{g(z)}, z \in E
$$

to get some interesting results concerning starlikeness of f.

2. Preliminaries

We need the following definition and lemmas to prove our results.
Definition 2.1. A function $L(z, t), z \in E$ and $t \geq 0$ is said to be a subordination chain if $L(., t)$ is analytic and univalent in E for all $t \geq 0, L(z,$.$) is continuously$ differentiable on $[0, \infty)$ for all $z \in E$ and $L\left(z, t_{1}\right) \prec L\left(z, t_{2}\right)$ for all $0 \leq t_{1} \leq t_{2}$.

Lemma 2.1 [7, page 159]. The function $L(z, t): E \times[0, \infty) \rightarrow \mathbb{C}$ of the form $L(z, t)=a_{1}(t) z+\cdots$ with $a_{1}(t) \neq 0$ for all $t \geq 0$, and $\lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\infty$, is a subordination chain if, and only if, $\Re\left[\frac{z \partial L / \partial z}{\partial L / \partial t}\right]>0$ for all $z \in E$ and $t \geq 0$.
Lemma 2.2 ([3]). Let F be analytic in E and let G be analytic and univalent in \bar{E} except for points ζ_{0} such that $\lim _{z \rightarrow \zeta_{0}} F(z)=\infty$, with $F(0)=G(0)$. If $F \notin$ G in E, then there is a point $z_{0} \in E$ and $\zeta_{0} \in \partial E$ (boundary of E) such that $F\left(|z|<\left|z_{0}\right|\right) \subset G(E), F\left(z_{0}\right)=G\left(\zeta_{0}\right)$ and $z_{0} F^{\prime}\left(z_{0}\right)=m \zeta_{0} G^{\prime}\left(\zeta_{0}\right)$ for some $m \geq 1$.
Lemma $2.3([4])$. Let Ω be a set in the complex plane \mathbb{C} and suppose that the function $\psi: \mathbb{C}^{2} \times E \rightarrow \mathbb{C}$ satisfies the condition $\psi(i u, v ; z) \notin \Omega$, for all $u, v, v \leq$ $-\left(1+u^{2}\right) / 2$ and all $z \in E$. If the function $p, p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$, is analytic in E and if $\psi\left(p(z), z p^{\prime}(z) ; z\right) \in \Omega$, then $\Re p(z)>0$ in E.

3. Main results

We begin with the following theorem:
Theorem 3.1. Let α be a complex number with $\Re \alpha>0$. If $f \in \mathcal{A}$ satisfies
(4) $\Re\left[\frac{\alpha z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)}\right]>\frac{(\Im \alpha)^{2}(1-\beta)(1-2 \beta)^{2}}{2(\Re \alpha)(3-2 \beta)}+\frac{(\Re \alpha)\left(2 \beta^{2}-\beta-1\right)}{2}+\beta$,
for all $z \in E, 0 \leq \beta \leq 1$, then $f \in S^{*}(\beta)$.

Proof. Define a function $p(z)$ by

$$
\frac{z f^{\prime}(z)}{f(z)}=\beta+(1-\beta) p(z)
$$

Then $p(z)$ is analytic in E and $p(0)=1$. A simple calculation yields

$$
\begin{aligned}
& \frac{\alpha z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)} \\
= & \alpha[\beta+(1-\beta) p(z)]^{2}+\alpha(1-\beta) z p^{\prime}(z)+(1-\alpha)[\beta+(1-\beta) p(z)] \\
= & \alpha(1-\beta) z p^{\prime}(z)+\alpha(1-\beta)^{2} p^{2}(z)+(1-\beta)(1+2 \alpha \beta-\alpha) p(z)+ \\
= & \phi\left(p(z), z p^{\prime}(z) ; z\right),
\end{aligned}
$$

where,

$$
\phi(u, v ; z)=\alpha(1-\beta) v+\alpha(1-\beta)^{2} u^{2}+(1-\beta)(1+2 \alpha \beta-\alpha) u+\beta(\alpha \beta+1-\alpha)
$$

For all real u_{2}, v_{1} satisfying $v_{1} \leq-\left(1+u_{2}^{2}\right) / 2$ and $\alpha=a+i b$, say, we have

$$
\begin{align*}
= & -a(1-\beta)^{2} u_{2}^{2}+a \beta^{2}-2 b u_{2} \beta(1-\beta)+a(1-\beta) v_{1}+(1-a) \beta+b u_{2}(1-\beta) \tag{5}\\
\leq & -a(1-\beta)^{2} u_{2}^{2}-\frac{a}{2}(1-\beta)\left(1+u_{2}^{2}\right)-2 b \beta(1-\beta) u_{2}+b(1-\beta) u_{2} \\
& +a \beta^{2}+(1-a) \beta \\
= & \frac{-a(1-\beta)(3-2 \beta)}{2} u_{2}^{2}+b(1-\beta)(1-2 \beta) u_{2}+\frac{a\left(2 \beta^{2}-\beta-1\right)}{2}+\beta \\
= & H\left(u_{2}\right),(\text { say }) \\
\leq & \max H\left(u_{2}\right)
\end{align*}
$$

It can be easily verified that

$$
\begin{align*}
\max H\left(u_{2}\right) & =H\left(\frac{b(1-2 \beta)}{a(3-2 \beta)}\right) \tag{6}\\
& =\frac{b^{2}(1-\beta)(1-2 \beta)^{2}}{2 a(3-2 \beta)}+\frac{a\left(2 \beta^{2}-\beta-1\right)}{2}+\beta
\end{align*}
$$

Let

$$
\Omega=\left\{w ; \Re w>\frac{(\Im \alpha)^{2}(1-\beta)(1-2 \beta)^{2}}{2 \Re \alpha(3-2 \beta)}+\frac{\Re \alpha\left(2 \beta^{2}-\beta-1\right)}{2}+\beta\right\}
$$

Then from (4), we have $\phi\left(p(z), z p^{\prime}(z) ; z\right) \in \Omega$ for all $z \in E$, but $\phi\left(i u_{2}, v_{1} ; z\right) \notin \Omega$, in view of (5) and (6). Therefore, by virtue of Lemma 2.3, we conclude that $f \in$
$S^{*}(\beta)$.
Example 3.1. Let $f \in \mathcal{A}$ satisfy

$$
\Re\left[\left(\frac{1}{2}+\frac{i}{2}\right) \frac{z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)}\right]>1 / 4, z \in E
$$

then $\Re \frac{z f^{\prime}(z)}{f(z)}>1 / 2$.
Remark 3.1. Taking α as a positive real number, we obtain Theorem C. Particularly, if we take $\beta=0$ and α, a positive real number in Theorem 3.1, we get the following result of Li and Owa [2]:

Corollary 3.1. Let $f \in \mathcal{A}$ satisfy

$$
\Re\left[\alpha \frac{z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)}\right]>-\frac{\alpha}{2}, z \in E
$$

for some $\alpha \geq 0$. Then $f \in S^{*}$.
Before stating next result, first we prove the following lemma.
Lemma 3.1. Let α be a complex number with $\Re \alpha>0$. Suppose that $q \in \mathcal{A}^{\prime}$ is a convex univalent function which satisfies the following conditions:
(a) $\Re q(z)>0, z \in E$, when $\Re \alpha \geq|\alpha|^{2}$;
(b) $\Re q(z)>\frac{|\alpha|^{2}-\Re \alpha}{2|\alpha|^{2}}, z \in E$, when $\Re \alpha<|\alpha|^{2}$.

If a function $p \in \mathcal{A}^{\prime}$ satisfies the differential subordination

$$
\begin{equation*}
(1-\alpha) p(z)+\alpha(p(z))^{2}+\alpha z p^{\prime}(z) \prec(1-\alpha) q(z)+\alpha(q(z))^{2}+\alpha z q^{\prime}(z) \tag{7}
\end{equation*}
$$

in E, then $p(z) \prec q(z)$ in E and q is the best dominant.
Proof. Let

$$
\begin{equation*}
h(z)=(1-\alpha) q(z)+\alpha(q(z))^{2}+\alpha z q^{\prime}(z) . \tag{8}
\end{equation*}
$$

Clearly h is analytic in E and $h(0)=1$. First of all, we will prove that h is univalent in E so that the subordination (7) is well-defined in E. From (8), we get

$$
\frac{1}{\alpha} \frac{h^{\prime}(z)}{q^{\prime}(z)}=2 q(z)+\frac{\bar{\alpha}-|\alpha|^{2}}{|\alpha|^{2}}+1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}
$$

In view of the conditions (a) and (b) above and the fact that q is convex in E, we obtain

$$
\Re \frac{1}{\alpha} \frac{h^{\prime}(z)}{q^{\prime}(z)}>0, z \in E
$$

Since $\Re \alpha>0$, and q is convex univalent in E, we conclude that h is close-to-convex and hence, univalent in E. We now show that that $p \prec q$. Without any loss of generality, we can assume q to be analytic and univalent in \bar{E}.

If possible, suppose that $p \nprec q$ in E. Then, by Lemma 2.2, there exist points $z_{0} \in E$ and $\zeta_{0} \in \partial E$ such that $p\left(z_{0}\right)=q\left(\zeta_{0}\right)$ and $z_{0} p^{\prime}\left(z_{0}\right)=m \zeta_{0} q^{\prime}\left(\zeta_{0}\right), m \geq 1$. Thus,
(9) $(1-\alpha) p\left(z_{0}\right)+\alpha\left(p\left(z_{0}\right)\right)^{2}+\alpha z_{0} p^{\prime}\left(z_{0}\right)=(1-\alpha) q\left(\zeta_{0}\right)+\alpha\left(q\left(\zeta_{0}\right)\right)^{2}+m \alpha \zeta_{0} q^{\prime}\left(\zeta_{0}\right)$

Consider a function

$$
\begin{align*}
L(z, t) & =(1-\alpha) q(z)+\alpha(q(z))^{2}+\alpha t z q^{\prime}(z) \tag{10}\\
& =1+a_{1}(t) z+\cdots
\end{align*}
$$

The function $L(z, t)$ is analytic in E for all $t \geq 0$ and is continuously differentiable on $[0, \infty)$ for all $z \in E$. Now,

$$
a_{1}(t)=\left[\frac{\partial L(z, t)}{\partial z}\right]_{(0, t)}=q^{\prime}(0)(1+\alpha+\alpha t) .
$$

As the function q is univalent in E, therefore, $q^{\prime}(0) \neq 0$. Also since $\Re \alpha>0$, we get $|\arg (1+\alpha+\alpha t)|<\pi / 2$. Therefore, it follows that $a_{1}(t) \neq 0$ and $\lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\infty$. A simple calculation yields

$$
z \frac{\partial L / \partial z}{\partial L / \partial t}=2 q(z)+\frac{\bar{\alpha}-|\alpha|^{2}}{|\alpha|^{2}}+t\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right) .
$$

Clearly,

$$
\Re\left[z \frac{\partial L / \partial z}{\partial L / \partial t}\right]>0
$$

for all $z \in E$ and $t \geq 0$, in view of given conditions (a) and (b) and the fact that q is convex in E. Hence, $L(z, t)$ is a subordination chain. Therefore, $L\left(z, t_{1}\right) \prec L\left(z, t_{2}\right)$ for $0 \leq t_{1} \leq t_{2}$. From (10), we have $L(z, 1)=h(z)$, thus we deduce that $L\left(\zeta_{0}, t\right) \notin h(E)$ for $\left|\zeta_{0}\right|=1$ and $t \geq 1$. In view of (9) and (10), we can write

$$
(1-\alpha) p\left(z_{0}\right)+\alpha\left(p\left(z_{0}\right)\right)^{2}+\alpha z_{0} p^{\prime}\left(z_{0}\right)=L\left(\zeta_{0}, m\right) \notin h(E)
$$

where $z_{0} \in E,\left|\zeta_{0}\right|=1$ and $m \geq 1$ which is a contradiction to (7). Hence, $p \prec q$ in E. This completes the proof of our Lemma.

Theorem 3.1 enables us to study only the real part of the functional $\frac{z f^{\prime}(z)}{f(z)}$. We now prove our main result which is a subordination theorem providing us best dominant for a certain first order differential subordination, which, in turn, gives us exact region of variability of the functional $\frac{z f^{\prime}(z)}{f(z)}$.
Theorem 3.2. Let α be a complex number, with $\Re \alpha>0$. For a function $g \in \mathcal{A}$, set $G(z)=\frac{z g^{\prime}(z)}{g(z)}$. Assume that $G(z)$ is convex univalent function in E which satisfies the following conditions:
(a) $\Re G(z)>0, z \in E$, when $\Re \alpha \geq|\alpha|^{2}$;
(b) $\Re G(z)>\frac{|\alpha|^{2}-\Re \alpha}{2|\alpha|^{2}}, z \in E$, when $\Re \alpha<|\alpha|^{2}$.

If a function $f \in \mathcal{A}$ satisfies the differential subordination

$$
\begin{equation*}
\frac{\alpha z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)} \prec \frac{\alpha z^{2} g^{\prime \prime}(z)}{g(z)}+\frac{z g^{\prime}(z)}{g(z)}, z \in E \tag{11}
\end{equation*}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{z g^{\prime}(z)}{g(z)}, z \in E
$$

Proof. The proof follows by setting $p(z)=\frac{z f^{\prime}(z)}{f(z)}$ and $q(z)=\frac{z g^{\prime}(z)}{g(z)}$ in Lemma 3.1.
Taking α to be real such that $0<\alpha \leq 1$, in Theorem 3.2, we obtain the following result (Also see Theorem 3 of Ravichandran [9]):

Corollary 3.2. Let $G(z)$ be a convex univalent function which satisfies $\Re G(z)>0$, for all $z \in E$. If $f \in \mathcal{A}$ satisfies the differential subordination

$$
\frac{z f^{\prime}(z)}{f(z)}+\alpha \frac{z^{2} f^{\prime \prime}(z)}{f(z)} \prec(1-\alpha) G(z)+\alpha G^{2}(z)+\alpha z G^{\prime}(z), z \in E
$$

then $\frac{z f^{\prime}(z)}{f(z)} \prec G(z)$ for all $z \in E$.
Again, assuming α to be real in Theorem 3.2, the limiting case when α approaches infinity, gives the following interesting result:
Theorem 3.3. Let $g \in \mathcal{A}$ be a starlike function of order $\delta, 1 / 2 \leq \delta \leq 1$ and let $\frac{z g^{\prime}(z)}{g(z)}=G(z)$. Assume that $G(z)$ is a convex univalent function in E. If $f \in \mathcal{A}$ satisfies the differential subordination

$$
\frac{z^{2} f^{\prime \prime}(z)}{f(z)} \prec \frac{z^{2} g^{\prime \prime}(z)}{g(z)}, z \in E
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{z g^{\prime}(z)}{g(z)}
$$

in E. Note that the function f, too, belongs to $S^{*}(\delta)$, since $\Re \frac{z g^{\prime}(z)}{g(z)}>\delta, z \in E$.

4. Applications

I. Consider $G(z)=\frac{1+a z}{1-z},|a| \leq 1$. Obviously, $G(z)$ is convex univalent in E. It can be easily verified that
(a) when $0 \leq \alpha \leq 1$, we have $\Re G(z)>\frac{1-a}{2}>0, z \in E$, and
(b) when $\alpha>1$, we get $\Re G(z)>\frac{1-a}{2} \geq \frac{\alpha-1}{2 \alpha}$ provided $a \leq 1 / \alpha$.

Thus, in view of Theorem 3.2, we obtain the following:
Corollary 4.1. Let $\alpha, \alpha \geq 0$, be a real number. Assume that $a,|a| \leq 1$, is a real number satisfying $a \leq 1 / \alpha$ whenever $\alpha>1$. Let $f \in \mathcal{A}$ satisfy

$$
\alpha \frac{z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)} \prec(1-\alpha)\left(\frac{1+a z}{1-z}\right)+\alpha\left(\frac{1+a z}{1-z}\right)^{2}+\alpha\left(\frac{(a+1) z}{(1-z)^{2}}\right), z \in E .
$$

Then,

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+a z}{1-z}, z \in E .
$$

Writing $a=1-2 \beta$, we obtain the following form of Theorem C :
Corollary 4.2. Let $\alpha, \alpha \geq 0$, be a real number. Assume that $\beta, 0 \leq \beta \leq 1$, is a real number which satisfies $\beta \geq \frac{1}{2}-\frac{1}{2 \alpha}$ for $\alpha>1$. If an analytic function f in \mathcal{A} satisfies

$$
\Re\left[\alpha \frac{z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)}\right]>\alpha \beta^{2}+\beta-\frac{\alpha}{2}(1+\beta), z \in E
$$

then $f \in S^{*}(\beta)$.
We observe that for $\alpha>1, \beta \geq \frac{1}{2}-\frac{1}{2 \alpha}$, therefore, $f \in S^{*}(\beta)$ implies that $f \in S^{*}\left(\frac{1}{2}-\frac{1}{2 \alpha}\right)$.

Taking $a=1-\alpha$ in Corollary 4.1, we get the following result of Li and Owa [2]:

Corollary 4.3. If f in \mathcal{A} satisfies

$$
\Re\left[\frac{z f^{\prime}(z)}{f(z)}\left(\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)\right]>-\frac{\alpha^{2}}{4}(1-\alpha), z \in E,
$$

for some $\alpha(0<\alpha<2)$, then $f \in S^{*}(\alpha / 2)$.
Letting α tend to infinity in Corollary 4.2 (or an application of Theorem 3.3 with $\left.G(z)=\frac{1+(1-2 \beta) z}{1-z}\right)$ gives us the following result:

Corollary 4.4. Let an analytic function f in \mathcal{A} satisfy

$$
\Re \frac{z^{2} f^{\prime \prime}(z)}{f(z)}>\frac{2 \beta^{2}-\beta-1}{2}, z \in E, 1 / 2 \leq \beta \leq 1
$$

Then $f \in S^{*}(\beta)$.
Writing $\beta=1 / 2$ in Corollary 4.4 (or taking $G(z)=\frac{1}{1-z}$ in Theorem 3.3), we obtain the following:

Example 4.1. Let $f \in \mathcal{A}$ satisfy

$$
\frac{z^{2} f^{\prime \prime}(z)}{f(z)} \prec \frac{2 z}{(1-z)^{2}}, z \in E .
$$

Then $f \in S^{*}(1 / 2)$.
II. Setting $G(z)=\left(\frac{1+z}{1-z}\right)^{\beta}, 0<\beta \leq 1$, in Theorem 3.2, we obtain:

Corollary 4.5. Let α and β be real numbers such that $0<\alpha, \beta \leq 1$. For all $z \in E$, let $f \in \mathcal{A}$ satisfy
$\alpha \frac{z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)} \prec(1-\alpha)\left(\frac{1+z}{1-z}\right)^{\beta}+\alpha\left(\frac{1+z}{1-z}\right)^{2 \beta}+\beta \alpha\left(\frac{1+z}{1-z}\right)^{\beta-1}\left(\frac{2 z}{(1-z)^{2}}\right)$.
Then,

$$
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\beta}
$$

in E, i.e., $f \in S(\beta)$.
Taking $\beta=1$ in Corollary 4.5, we obtain Corollary 3.1. Considering the case when $\beta=1 / 2, \alpha=2 / 3$, we get the following result of Obradović and Joshi [6]:

Corollary 4.6. Let $f \in \mathcal{A}$ be such that

$$
\Re\left[\frac{2}{3} \frac{z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)}\right]>0, z \in E .
$$

Then $f \in S(1 / 2)$.
III. Taking $G(z)=1+b z, 0<b \leq 1 / 2$, we find that G satisfies all the conditions of Theorem 3.3. Thus, we get

Corollary 4.7. Let $f \in \mathcal{A}$ be such that

$$
\left|\frac{z^{2} f^{\prime \prime}(z)}{f(z)}\right|<b(b+2), z \in E, 0<b \leq 1 / 2
$$

then

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<b
$$

in E.

References

[1] Z. Lewandowski, S. S. Miller and E. Zlotkiewicz, Generating functions for some classes of univalent functions, Proc. Amer. Math. Soc., 56(1976), 111-117.
[2] J.-L. Li and S. Owa, Sufficient conditions for starlikeness, Indian J. Pure Appl. Math., 33(3)(2002), 313-318.
[3] S. S. Miller and P. T. Mocanu, Differential subordination and Univalent functions, Michigan Math. J., 28(1981), 157-171.
[4] S. S. Miller and P. T. Mocanu, Differential subordination and inequalities in the complex plane, J. Diff. Eqns, 67(2)(1987), 199-211.
[5] M. Nunokawa, S. Owa, S. K. Lee, M. Obradovic, M. K. Aouf, H. Saitoh, H. Ikeda and N. Koike, Sufficient conditions for starlikeness, Chinese J. Math., 24(1996), 265-272.
[6] M. Obradović and S. B. Joshi, On certain classes of strongly starlike functions, Taiwanese J. Math., 2(3)(1998), 297-302.
[7] Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Gottingen, (1975).
[8] C. Ramesha, S. Kumar and K. S. Padmanabhan, A sufficient condition for starlikeness, Chinese J. Math., 23(1995), 167-171.
[9] V. Ravichandran, Certain applications of first order differential subordination, Far East J. Math.Sci., 12(1)(2004), 41-51.
[10] V. Ravichandran, C. Selvaraj and R. Rajalakshmi, Sufficient conditions for starlike functions of order α, J. Inequal. Pure and Appl. Math., 3(5) Art., 81(2002), 1-6.

