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SHARP BOUNDS OF FIFTH COEFFICIENT AND

HERMITIAN-TOEPLITZ DETERMINANTS FOR

SAKAGUCHI CLASSES
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Abstract. For the classes of analytic functions f defined on the unit
disk satisfying

2zf ′(z)

f(z) − f(−z)
≺ φ(z) and

(2zf ′(z))′

(f(z) − f(−z))′
≺ φ(z),

denoted by S∗
s (φ) and Cs(φ), respectively, the sharp bound of the nth

Taylor coefficients are known for n = 2, 3 and 4. In this paper, we obtain

the sharp bound of the fifth coefficient. Additionally, the sharp lower and

upper estimates of the third order Hermitian Toeplitz determinant for the
functions belonging to these classes are determined. The applications of

our results lead to the establishment of certain new and previously known

results.

1. Introduction

Let H be the class of holomorphic functions in the unit disk D and A ⊂ H
represent the class of functions f satisfying f(0) = f ′(0) − 1 = 0. Let S ⊂ A
be the class of univalent functions. A function f ∈ H is said to be starlike with
respect to symmetric point if for r less than and sufficiently close to 1 and every
z0 on |z| = r, the angular velocity of f(z) about the point f(−z0) is positive
at z = z0 as z traverses the circle |z| = r in the positive direction. Sakaguchi
[20] showed that a function f ∈ A is starlike with respect to symmetrical point
if and only if

Re
zf ′(z)

f(z)− f(−z)
> 0.

The class of all such functions is denoted by S∗
s . It is noted that the class of

functions univalent and starlike with respect to symmetric points includes the
classes of convex functions and odd functions starlike with respect to the origin
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[20]. Afterwards, Das and Singh [5] introduced the class Ks of f ∈ A, known
as convex functions with respect to symmetric points, which satisfy

Re
(2zf ′(z))′

(f(z)− f(−z))′
> 0.

The functions in the class are convex and Das and Singh proved that the nth

coefficient of functions in Ks is bounded by 1/n, n ≥ 2.
Incorporating the notion of subordination, Ravichandran [19] generalized

these classes as

S∗
s (φ) =

{
f ∈ A :

2zf ′(z)

f(z)− f(−z)
≺ φ(z)

}
,

Cs(φ) =
{
f ∈ A :

(2zf ′(z))′

(f(z)− f(−z))′
≺ φ(z)

}
,

where φ(z) is an analytic univalent function in D satisfying (i) φ(D) is sym-
metric about the real axis, (ii) φ(D) is starlike with respect to φ(0) = 1 (iii)
φ′(0) > 0 and (iv) Reφ(z) > 0 for all z ∈ D. Let us take

(1.1) φ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · , B1 > 0.

They obtained certain convolution conditions and growth and distortion esti-
mates for functions belonging to these classes. Later, Shanmugam et al. [21]
found the sharp bound of Feketo-Szegö functional, |a3 − µa22| for the classes
S∗
s (φ) and Cs(φ), which easily provides the bound for initial coefficients |a2|

and |a3|. Further, the sharp bound of |a4| was determined by Khatter et al. [9]
and for certain important choices of φ such as

(1.2)

 S∗
s,e := S∗

s (e
z), S∗

s,L := S∗
s (
√
1 + z) and

S∗
s,RL := S∗

s

(√
2− (

√
2− 1)

√
(1− z)/(1 + 2(

√
2− 1)z)

)
,

the sharp bound of |a5| was also established. The sharp bound of |a5| for
functions belonging to the classes S∗

s (φ) and Cs(φ) was still unknown. We get
this bound in Section 2. Recently, Gangania and Kumar [6] studied generalized
Bohr Rogosinski type inequalities for the classes S∗

s (φ) and Cs(φ). Kumar and
Kumar [11] obtained the sharp bound of second and third order Hermitian-
Toeplitz determinant for Sakaguchi functions and the classes defined in (1.2).

For f ∈ A and m,n ∈ N, the Hermitian-Toeplitz determinant of order m is
given by

(1.3) Tm(n)(f) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+m−1

an+1 an · · · an+m−2

...
...

...
...

an+m−1 an+m−2 · · · an

∣∣∣∣∣∣∣∣∣ .
It can be easily seen that the determinant of Tm,1(f) is rotationally invariant
that is determinant of Tm,1(f) and Tm,1(fθ) are same, where fθ = e−iθf(eiθz)
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and θ ∈ R. Since for n = 1 and f ∈ A, a1 = 1. Thus, the third order
Hermitian-Toepilitz determinant is

(1.4) T3,1(f) = 1− 2|a2|2 + 2Re
(
a22ā3

)
− |a3|2.

Ye and Lim [23] proved that any n×n matrix over C generically can be written
as the product of some Toeplitz matrices or Hankel matrices. The applications
of Toeplitz matrices and Toeplitz determinants can be seen in the field of pure
as well as applied mathematics. They arise in algebraic geometry, numerical
integration, numerical integral equations and queueing networks. For more
applications, we refer to [23] and the references cited therein.

Numerous papers have recently focused on finding the sharp upper and lower
bounds of the Hermitian Toeplitz determinants for functions in A. Cudna et
al. [4] initiated this work by determining the sharp lower and upper estimates
for T2,1(f) and T3,1(f) for the class of starlike and convex functions of order α,
0 ≤ α < 1. The bounds of T2,1(f) and T3,1(f) for the class S and its certain
subclasses were derived by Obradović and Tuneski [18]. For more recent work
on this topic, we refer to [1, 10,12–14] and the references cited therein.

The aim of this paper is to derive the bound of |a5| and third order Hermitian
Toeplitz determinant for f belonging to the classes S∗

s (φ) and Cs(φ).

2. Fifth coefficient bound

Let P be the class of Carathéodory functions p(z) = 1+
∑∞

n=1 pnz
n satisfying

Re p(z) > 0 (z ∈ D). The subsequent lemmas are used in order to prove the
bound of |a5|.
Lemma 2.1 ([17]). If the functions 1 +

∑∞
n=1 pnz

n and 1 +
∑∞

n=1 qnz
n are

members of P, then the same is true of the function

1 +

∞∑
n=1

pnqn
2

zn.

Lemma 2.2 ([17]). Let h(z) = 1+ β1z+ β2z
2 + · · · and 1+H(z) = 1+ b1z+

b2z
2 + · · · be functions in P, and set

γn =
1

2n

[
1 +

1

2

n∑
ν=1

(
n

ν

)
βν

]
, γ0 = 1.

If An is defined by
∞∑

n=1

(−1)n+1γn−1H
n(z) =

∞∑
n=1

Anz
n,

then |An| ≤ 2.

It is worth recalling the Möbius function Ψξ, which maps the unit disk D
onto itself and given by

(2.1) Ψξ(z) =
z − ξ

1− ξz
, ξ ∈ D.
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Lemma 2.3 ([3]). If p(z) = 1 +
∑∞

n=1 pnz
n ∈ P, then for some ξ1, ξ2, ξ3 ∈ D,

(2.2)


p1 = 2ξ1, p2 = 2ξ21 + 2(1− |ξ1|2)ξ2,
p3 = 2ξ31 + 4(1− |ξ1|2)ξ1ξ2 − 2(1− |ξ1|2)ξ1ξ22

+ 2(1− |ξ1|2)(1− |ξ2|2)ξ3.

Further, for ξ1, ξ2 ∈ D and ξ3 ∈ T := ∂D = {z ∈ C : |z| = 1}, there is a unique
function p(z) = (1+ω(z))/(1−ω(z)) ∈ P with p1, p2 and p3 as in (2.2), where

(2.3) ω(z) = zΨ−ξ1(zΨ−ξ2(ξ3z)),

that is

p(z) =
1 + (ξ2ξ3 + ξ1ξ2 + ξ1)z + (ξ1ξ3 + ξ1ξ2ξ3 + ξ2)z

2 + ξ3z
3

1 + (ξ2ξ3 + ξ1ξ2 − ξ1)z + (ξ1ξ3 − ξ1ξ2ξ3 − ξ2)z2 − ξ3z3
.

Conversely, for given ξ1, ξ2 ∈ D and ξ3 ∈ D, we can construct a (unique)
function p(z) = 1+

∑∞
n=1 pnz

n ∈ P such that p1, p2 and p3 satisfy the identities
in (2.2). For this, we define

(2.4) ω(z) = ωξ1,ξ2,ξ3(z) = zΨ−ξ1(zΨ−ξ2(ξ3z)).

Moreover, if we define p(z) = (1 + ω(z))/(1− ω(z)), then p1, p2 and p3 satisfy
the identities in (2.2) (see the proof of [3, Lemma 2.4]).

Assumption 2.4. Let φ(z) be given by (1.1). The following conditions on
coefficients of φ helps us to prove the result.

C1 : |B3
1 − 2B1B2 + 2B2

2 | < |2B2
1 −B3

1 − 2B1B2|,
C2 : |B3

1 −B2
1B2 + 3B2

2 − 3B1B3| < 3|B3
1 −B2

1 +B2
2 |,

C3 : |B7
1 −B6

1(8B2 + 3)− 6B4
1(B2(3B2 + 2B3 + 2)− 6B3 + 9B4)

+B5
1(7B2(B2 + 4)− 24B3 + 18B4) + 6B3

1(B
3
2 − 2B2

2 + 8B2B3 − 3B2
3

+ 6(B2 + 1)B4)− 6B1B2(3B
3
2 − 6B2

3 +B2
2(4B3 − 6) + 6B2(B4 − 2B3))

+ 18B2
2(−2B2

3 +B2((B2 − 2)B2 + 2B4)) +B2
1B2(B2(B2(5B2 + 6)

− 24B3 + 18B4)− 36(2B3 +B4))| < 2|((B1 − 2)B1 + 2B2)

(B1(2B1 +B2 − 3) + 3B3)(4B
3
1 + 6B2

2 −B2
1(B2 + 3)− 3B1B3)|,

C4 : 0 < (2B1 −B2
1 − 2B2)/(2(B1 −B2)) < 1.

Theorem 2.5. If f(z) = z+a2z
2+a3z

3+ · · · ∈ S∗
s (φ) and coefficients of φ(z)

satisfy the conditions C1, C2, C3 and C4, then

|a5| ≤
B1

4
.

The bound is sharp.
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Proof. Let f(z) = z +
∑∞

n=2 anz
n ∈ S∗

s (φ). Then there exists a Schwarz
function ω(z) such that

2zf ′(z)

f(z)− f(−z)
= φ(ω(z)).

By the one-to-one correspondence between the class of Schwarz functions and
the class P, we obtain

(2.5)
2zf ′(z)

f(z)− f(−z)
= φ

(
p(z)− 1

p(z) + 1

)
for some p(z) = 1 +

∑∞
n=1 pnz

n ∈ P. On the comparison of the same powers
of z with the series expansions of functions f(z), φ(z) and p(z), the above
equation yields

(2.6) a5 =
B1

8
(Υ1p

4
1 +Υ2p

2
1p2 +Υ3p1p3 +Υ4p

2
2 + p4),

where

(2.7)



Υ1 =
B2

1 − 2B1 + 6B2 − 2B1B2 +B2
2 − 6B3 + 2B4

16B1
,

Υ2 =
3B1 −B2

1 − 6B2 +B1B2 + 3B3

4B1
, Υ3 =

B2 −B1

B1
,

Υ4 =
B2

1 − 2B1 + 2B2

4B1
.

Let us consider that q(z) = 1+
∑∞

n=1 κnz
n and h(z) = 1+

∑∞
n=2 νnz

n are the
members of P, then by Lemma 2.1 for p ∈ P, we have

(2.8) 1 +H(z) := 1 +

∞∑
n=1

pnκn

2
zn ∈ P.

For h ∈ P and the function 1 +H(z) given in (2.8), Lemma 2.2 gives

(2.9) A4 =
1

2
γ0κ4p4 −

1

4
γ1κ

2
2p

2
2 −

1

2
γ1κ1κ3p1p3 +

3

8
γ2κ

2
1κ2p

2
1p2 −

1

16
γ3κ

4
1p

4
1,

where γ0 = 1,
(2.10)

γ1 =
1

2

(
1 +

1

2
ν1

)
, γ2 =

1

4

(
1 + ν1 +

1

2
ν2

)
, γ3 =

1

8

(
1 +

3

2
ν1 +

3

2
ν2 +

1

2
ν3

)
and

(2.11) |A4| ≤ 2.

Now, in order to establish the required bound, we construct functions h(z) and
q(z) such that

(2.12) A4 = Υ1p
4
1 +Υ2p

2
1p2 +Υ3p1p3 +Υ4p

2
2 + p4,
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where Υ’s and A4 are given in (2.7) and (2.9), respectively. For 0 < τ < 1,
define

q(z) =
1 + 2τz + 2τ2z2 + 2τz3 + z4

1− z4
,

which yields

(2.13) κ1 = κ3 = 2τ, κ2 = 2τ2 and κ4 = 2.

From [2, Theorem 1], we have q ∈ P. To construct function h(z), using Lemma
2.3, let

h(z) =
1 + ω1(z)

1− ω1(z)

such that

(2.14) ω1(z) = zΨ−ε1(zΨ−ε2(ε3z)),

where ε1, ε2 ∈ D and ε3 ∈ D. Thus, we have

ν1 = 2ε1, ν2 = 2ε21 + 2(1− |ε1|2)ε2,
ν3 = 2ε31 + 4(1− |ε1|2)ε1ε2 − 2(1− |ε1|2)ε1ε22 + 2(1− |ε1|2)(1− |ε2|2)ε3.

The above set of equations may be satisfied by many ε’s. For our purpose, we
impose some restriction on ε’s and take all ε’s as real numbers. Therefore,

(2.15)

{
ν1 = 2ε1, ν2 = 2ε21 + 2(1− ε21)ε2,

ν3 = 2ε31 + 4(1− ε21)ε1ε2 − 2(1− ε21)ε1ε
2
2 + 2(1− ε21)(1− ε22)ε3.

In addition, if we define

ε1 =
B3

1 − 2B1B2 + 2B2
2

2B2
1 −B3

1 − 2B1B2
, ε2 =

B3
1 −B2

1B2 + 3B2
2 − 3B1B3

3(−B2
1 +B3

1 +B2
2)

,

ε3 =

(
B7

1 −B6
1(8B2 + 3)− 6B4

1(B2(3B2 + 2B3 + 2)− 6B3 + 9B4)

+B5
1(7B2(B2 + 4)− 24B3 + 18B4) + 6B3

1(B
3
2 − 2B2

2 + 8B2B3 − 3B2
3

+ 6(B2 + 1)B4)− 6B1B2(3B
3
2 − 6B2

3 +B2
2(4B3 − 6)− 6B2(2B3 −B4))

+ 18B2
2(−2B2

3 +B2((B2 − 2)B2 + 2B4)) +B2
1B2(−36(2B3 +B4)

+B2(B2(6 + 5B2)− 24B3 + 18B4))

)/(
2((B1 − 2)B1 + 2B2)

(B1(2B1 +B2 − 3) + 3B3)(4B
3
1 + 6B2

2 −B2
1(3 +B2)− 3B1B3)

)
and

τ =

√
2B1 −B2

1 − 2B2

2(B1 −B2)
,
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then by Assumption 2.4, we have |ε1| < 1, |ε2| < 1, |ε3| < 1 and 0 < τ < 1.
Putting these defined ε’s in (2.15), we obtain νi’s, which in turn together with
(2.10) yields

(2.16)



γ1 =− (B1 −B2)
2

B1(B2
1 − 2B1 + 2B2)

,

γ2 =− (B1 −B2)
2(B2

1 + 6B2 −B1(3 +B2)− 3B3)

3B1(B2
1 − 2B1 + 2B2)2

,

γ3 =− (B1 −B2)
2(B2

1 + 6B2 +B2
2 − 2B1(1 +B2)− 6B3 + 2B4)

4B1(B2
1 − 2B1 + 2B2)2

.

On putting the values of κi’s and γi’s from (2.13) and (2.16), respectively, in
(2.9), we get (2.12). Using the bound |A4| ≤ 2 in (2.12), we get

|Υ1p
4
1 +Υ2p

2
1p2 +Υ3p1p3 +Υ4p

2
2 + p4| ≤ 2,

which together with (2.6) gives the desired bound of |a5|.
Consider the function f̃5(z) = z +

∑∞
n=2 ãnz

n in the unit disk satisfying

2zf̃ ′
5(z)

f̃5(z)− f̃5(−z)
= φ(z4),

where φ(z) is given by (1.1). Clearly, f̃5 ∈ S∗
s (φ). Equating the coefficients

in the above equation, we obtain ã2 = ã3 = ã4 = 0 and ã5 = B1/4, that
demonstrates the sharpness of the bound. □

For −1 ≤ B < A ≤ 1, consider the classes S∗
s [A,B] := S∗((1+Az)/(1+Bz))

and S∗
s,SG := S∗(2/(1 + e−z)). These classes are analogues to the correspond-

ing classes of starlike functions introduced and studied in [7, 8]. Theorem 2.5
directly gives the following result for these classes.

Corollary 2.6. If f(z) = z+
∑∞

n=2 anz
n ∈ S∗

s [A,B] such that A and B satisfy
the following conditions

(2.17)



C1 : |(A−B)2(A+B + 2B2)| < |(A− 3B − 2)(A−B)2|,
C2 : |(A−B)3(B + 1)| < 3|(A−B)2(A− 1 + (B − 1)B)|,
C3 : |(A−B)5(B + 1)(A2(7B + 1) +B(B(38 + (12− 17B)B)

+ 15) +A(B(B(5B − 31)− 27)− 3))| < 2|(A−B)4(A

− 3B − 2)(A(B − 2)− 4B2 + 2B + 3)(A(B + 4) + 2B(B

− 2)− 3)|,
C4 : 0 < (3B −A+ 2)/(2B + 2) < 1,

then

|a5| ≤ (A−B)/4.

The bound is sharp.
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Example 2.7. For A = 0 and B = −1/2, all conditions in Corollary 2.6 are
satisfied. Thus, if f(z) = z +

∑∞
n=2 anz

n ∈ S∗
s [0,−1/2], then |a5| ≤ 1/8.

Corollary 2.8. If f(z) = z +
∑∞

n=2 anz
n ∈ S∗

s,SG, then |a5| ≤ 1/8 and the
bound is sharp.

In case of the classes S∗
s,L and S∗

s,RL, the coefficients of corresponding φ
satisfy the conditions C1, C2, C3 and C4. Theorem 2.5 yields the following
result for these classes:

Remark 2.9. If f(z) = z +
∑∞

n=2 anz
n ∈ S∗

s,L, then |a5| ≤ 1/8 [9, Theorem

5(a)].

Remark 2.10. If f(z) = z +
∑∞

n=2 anz
n ∈ S∗

s,RL, then |a5| ≤ (5 − 3
√
2)/8

[9, Theorem 5(b)].

Theorem 2.11. If f(z) = z + a2z
2 + a3z

3 + · · · ∈ Cs(φ) and coefficients of
φ(z) satisfy the conditions C1, C2, C3 and C4, then

|a5| ≤
B1

20
.

The bound is sharp.

Proof. Let f(z) = z +
∑∞

n=2 anz
n ∈ Cs(φ). Then there exists a Schwarz func-

tion ω(z) such that

(2zf ′(z))′

(f(z)− f(−z))′
= φ(ω(z)).

Corresponding to the Schwarz function ω(z), let there be a function p(z) =
1 +

∑∞
n=1 pnz

n ∈ P satisfying p(z) = (1 + ω(z))/(1− ω(z)). Thus, we obtain

(2.18)
(2zf ′(z))′

(f(z)− f(−z))′
= φ

(
p(z)− 1

p(z) + 1

)
.

Comparing the coefficients of the same powers of z after applying the series
expansion of f(z), φ(z) and p(z) leads to

a5 =
B1

20
(Υ1p

4
1 +Υ2p

2
1p2 +Υ3p1p3 +Υ4p

2
2 + p4),

where Υi’s are given in (2.7). Since, Υi’s are the same as in the case of S∗
s (φ),

therefore following the same methodology as in Theorem 2.5, we get the bound
of |a5|.

To see the sharpness, consider the function g̃5(z) = z+
∑∞

n=2 ãnz
n in D such

that
(2zg̃′5(z))

′

(g̃5(z)− g̃5(−z))′
= φ(z4).

Comparison of coefficients of same powers yields ã2 = ã3 = ã4 = 0 and ã5 =
B1/20, which proves the sharpness of the bound. □
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We can define the classes Cs[A,B], Cs,e, Cs,SG, Cs,L and Cs,RL in a similar
manner as S∗

s [A,B], S∗
s,e, S∗

s,SG, S∗
s,L and S∗

s,RL, respectively. For these classes,
Theorem 2.11 yields the following:

Corollary 2.12. (1) If f(z) = z +
∑∞

n=2 anz
n ∈ Cs[A,B] such that A and B

satisfy the conditions given in Corollary 2.6, then |a5| ≤ (A−B)/20.
(2) If f(z) = z +

∑∞
n=2 anz

n ∈ Cs,e, then |a5| ≤ 1/20.
(3) If f(z) = z +

∑∞
n=2 anz

n ∈ Cs,L, then |a5| ≤ 1/40.

(4) If f(z) = z +
∑∞

n=2 anz
n ∈ Cs,RL, then |a5| ≤ (5− 3

√
2)/40.

(5) If f(z) = z +
∑∞

n=2 anz
n ∈ Cs,SG, then |a5| ≤ 1/40.

All these bounds are sharp.

3. Hermitian-Toeplitz determinant

Shanmugam et al. [21] obtained the following bounds of |a3−µa22| for f(z) =
z +

∑∞
n=2 anz

n belonging to the classes S∗
s (φ) and Cs(φ).

Lemma 3.1 ([21, Theorem 2.1]). If f(z) = z +
∑∞

n=2 anz
n ∈ S∗

s (φ), then

|a3 − µa22| ≤



1

2

(
B2 −

µ

2
B2

1

)
if µ ≤ ν1,

B1

2
if ν1 ≤ µ ≤ ν2,

−1

2

(
B2 −

µ

2
B2

1

)
if µ ≥ ν2,

where ν1 = (2(B2 −B1))/B
2
1 and ν2 = (2(B2 +B1))/B

2
1 . The bound is sharp.

Lemma 3.2 ([21, Corollary 2.4]). If f(z) = z +
∑∞

n=2 anz
n ∈ Cs(φ), then

|a3 − µa22| ≤



1

6

(
B2 −

3

8
µB2

1

)
if µ ≤ ν1,

B1

6
if ν1 ≤ µ ≤ ν2,

−1

6

(
B2 −

3

8
µB2

1

)
if µ ≥ ν2,

where ν1 = (8(B2 − B1))/(3B
2
1) and ν2 = (8(B2 + B1))/(3B

2
1). The bound is

sharp.

For µ = 0, the following bounds for |a3| directly follow, which help us to
prove the results:

Lemma 3.3. If f(z) = z + a2z
2 + a3z

3 + · · · ∈ S∗
s (φ) and B1 ≤ |B2|, then

|a3| ≤
|B2|
2

.

Lemma 3.4. If f(z) = z + a2z
2 + a3z

3 + · · · ∈ Cs(φ) and B1 ≤ |B2|, then

|a3| ≤
|B2|
6

.
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Theorem 3.5. If f ∈ S∗
s (φ) and B1 ≤ |B2|, then

T3,1(f) ≤ 1.

The bound is sharp.

Proof. Let f(z) = z +
∑∞

n=2 anz
n ∈ S∗

s (φ). Then

(3.1) T3,1(f) = 1− 2|a2|2 − |a3|2 + 2Re(a22ā3).

Applying the inequality 2Re(a22ā3) ≤ 2|a22||a3| in the last equation, we obtain

T3,1(f) ≤ 1− 2|a2|2 − |a3|2 + 2|a22||a3| =: g(x),

where g(x) = 1 − 2|a2|2 − x2 + 2|a22|x with x = |a3|. For f ∈ S∗
s (φ), we

have |a2| ≤ B1/2 and from Lemma 3.3, |a3| ≤ |B2|/2. Thus |a2| ∈ [0, 1] and
x = |a3| ∈ [0, 1]. As g′(x) = 0 at x = |a2|2 and g′′(x) < 0 for all x ∈ [0, 1].
Consequently, we have

T3,1(f) ≤ max g(x)

= g(|a2|2) = (|a2|2 − 1)2 ≤ 1.

Since the identity function f(z) = z is a member of the class S∗
s (φ) and for

this function, we have a2 = 0, a3 = 0 and T3,1(f) = 1, which shows that the
bound is sharp. □

Theorem 3.6. If f ∈ Cc(φ) and B1 ≤ |B2|, then
T3,1(f) ≤ 1.

The result is sharp.

Proof. Let f(z) = z+
∑∞

n=2 anz
n ∈ Cs(φ). Then using the inequality Re(a22ā3)

≤ |a2|2|a3| in (1.4) for f ∈ Cs(φ), we obtain

T3,1(f) ≤ 1− 2|a2|2 − |a3|2 + 2|a2|2|a3| =: g(x),

where g(x) = 1−2|a2|2−x2+2|a2|2x. Since |a2| ≤ B1/4 and from Lemma 3.4,
we have |a3| ≤ |B2|/6, therefore |a2| ∈ [0, 1/2] and |a3| ∈ [0, 1/3]. Also, note
that g(x) attains its maximum value at x = |a2|2. Hence

T3,1(f) ≤ max g(x)

= g(|a2|2) = (|a2|2 − 1)2 ≤ 1.

The equality case holds for f(z) = z. □

Theorem 3.7. If f ∈ S∗
s (φ) such that B2

1 > 2B2, then the following estimates
hold:

T3,1(f) ≥


min

{
1− B2

1

4
, 1− B2

1

2
+

B2
1B2

4
− B2

2

4

}
, σ1 /∈ [0, 4],

1− B2
1

2
+

B2
1B2

4
− B2

2

4
, σ1 = 4,

1− B3
1(B

3
1 + 4B2

1 − 4B1 − 8B2)

16(B3
1 +B2

1(B2 − 1)− 2B1B2 −B2
2)

, σ1 ∈ (0, 4),
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where

σ1 =
2B1(B

2
1 − 2B2)

(B2
1 −B1 −B2)(B1 +B2)

.

First two inequalities are sharp.

Proof. Let f(z) = z +
∑∞

n=2 anz
n ∈ S∗

s (φ). Then from (2.5), we obtain

a2 =
B1p1
4

and a3 =
1

8
(−B1p

2
1 +B2p

2
1 + 2B1p2).

Since the class S∗
s (φ) and the class P is rotationally invariant, therefore we

can take p1 = p ∈ [0, 2]. Moreover, Libera et al. [15] showed that 2p2 =
p21 + (4− p21)ζ, ζ ∈ D for p(z) = 1 +

∑∞
n=1 pnz

n ∈ P. Thus, we have

−|a3|2 = − 1

64

(
B2

2p
4
1 +B2

1(4− p21)
2|ζ|2 + 2B1B2p

2
1(4− p21)Re ζ̄

)
,

2Re(a22ā3) =
1

64
B2

1p
2
1

(
(B2 −B1)p

2
1 +B1(p

2
1 + (4− p21)Re ζ̄)

)
.

Taking these into account in (1.4), we get

T3,1(f) =
1

64

(
(B2

1 −B2)B2p
4
1 −B2

1(4− p21)
2|ζ|2

+B1(B
2
1 − 2B2)p

2
1(4− p21)Re ζ̄

)
− B2

1p
2
1

8
+ 1

=: F (p1, |ζ|,Re ζ̄).

It can be seen that F (p1, |ζ|,Re ζ̄) ≥ F (p1, |ζ|,−|ζ|) =: G(x, y) by considering
p21 = x and |ζ| = y, where

G(x, y) =
1

64

(
(B2

1 −B2)B2x
2 −B2

1(4− x)2y2 −B1(B
2
1 − 2B2)x(4− x)y

)
− B2

1x

8
+ 1.

Whenever B2
1 > 2B2, we have

∂G

∂y
=

1

64
(−2B2

1(4− x)2y −B1(B
2
1 − 2B2)x(4− x)) ≤ 0

for x ∈ [0, 4] and y ∈ [0, 1], which means that G(x, y) is a decreasing function
of y and G(x, y) ≥ G(x, 1) =: I(x) with

I(x) =
1

64
(B3

1 +B2
1(B2 − 1)− 2B1B2 −B2

2)x
2 +

B1

16
(2B2 −B2

1)x− B2
1

4
+ 1.

An easy computation yields that I ′(x) = 0 at

x0 =
2B1(B

2
1 − 2B2)

(B2
1 −B1 −B2)(B1 +B2)



328 S. GIRI AND S. S. KUMAR

and

I ′′(x0) =
1

32
(B2

1 −B1 −B2)(B1 +B2).

Since B2
1 > 2B2, therefore numerator of x0 is always positive. Moreover,

denominator of x0 and numerator of I ′′(x0) are same, therefore x0 < 0 (or
x0 > 0) if and only if I ′′(x0) < 0 (or I ′′(x0) > 0). Here we discuss the following
cases:
Case I: Whenever x0 ∈ (0, 4), then I ′′(x0) > 0. Thus I(x) attains its minimum
value at x0, which gives

T3,1(f) ≥ I(x0)

= 1− B3
1(B

3
1 + 4B2

1 − 4B1 − 8B2)

16(B3
1 +B2

1(B2 − 1)− 2B1B2 −B2
2)

.

Case II: When x0 < 0 or x0 > 4, which indicates that I(x) does not have any
critical point, therefore

T3,1(f) ≥ min{I(0), I(4)}

= min

{
1− B2

1

4
, 1− B2

1

2
+

B2
1B2

4
− B2

2

4

}
.

For x0 = 4, T3,1(f) ≥ I(4).

Functions f̃2 ∈ S∗
s (φ) and f̃3 ∈ S∗

s (φ) given by

2zf̃ ′
2(z)

f̃2(z)− f̃2(−z)
= φ(z),

2zf̃ ′
3(z)

f̃3(z)− f̃3(−z)
= φ(z2)

show that these bounds are sharp as

T3,1(f̃2) = 1− B2
1

2
+

B2
1B2

4
− B2

2

4
and T3,1(f̃3) = 1− B2

1

4
,

which completes the proof. □

Theorem 3.8. If f ∈ Cs(φ) and 3B2
1 ≥ 8B2, then the following estimates hold:

T3,1(f) ≥


min

{
1− B2

1

36
, 1− B2

1

8
+

B2
1B2

48
− B2

2

36

}
, σ2 /∈ [0, 4],

1− B2
1

8
+

B2
1B2

48
− B2

2

36
, σ2 = 4,

1− B3
1(B

3
1 + 12B2

1 + 4B1 − 32B2)

64(3B3
1 +B2

1(3B2 − 4)− 8B1B2 − 4B2
2)

, σ2 ∈ (0, 4),

where

σ2 =
2B1(3B

2
1 + 10B1 − 8B2)

3B3
1 + 3B2

1B2 − 4B2
1 − 8B1B2 − 4B2

2

.

First two inequalities are sharp.
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Proof. Let f(z) = z +
∑∞

n=2 anz
n ∈ Cs(φ). Then from (2.18), we obtain

(3.2) a2 =
B1p1
8

, a3 =
1

24
((B2 −B1)p

2
1 + 2B1p2).

The rotationally invariant property of the classes Cs(φ) and P allows to take
p1 ∈ [0, 2]. Using the formula 2p2 = p21 + (4− p21)ζ (see [15]) in (3.2), we get

−|a3|2 = − 1

576
(B2

2p
4
1 +B2

1(4− p21)
2|ζ|2 + 2B1B2p

2
1(4− p21)Re ζ̄),

2Re(a22ā3) =
B2

1p
2
1

768
(−B1p

2
1 +B2p

2
1 +B1(p

2
1 + (4− p21)Re ζ̄)).

These above values together with (1.4) leads to

T3,1(f) =

(
B2

1B2

768
− B2

2

576

)
p41 −

1

576
B2

1(4− p21)
2|ζ|2

+

(
3B3

1 − 8B1B2

2304

)
p21(4− p21)Re ζ̄ −

B2
1p

2
1

32
+ 1

=: F (p1, |ζ|,Re ζ̄).

As Re ζ̄ ≥ −|ζ|, hence F (p1, |ζ|,Re ζ̄) ≥ F (p1, |ζ|,−|ζ|) := G(x, y), where

G(x, y) =

(
B2

1B2

768
− B2

2

576

)
x2 − 1

576
B2

1(4− x)2y2 −
(
3B3

1 − 8B1B2

2304

)
x(4− x)y

− B2
1

32
x+ 1

for x = p21 ∈ [0, 4] and y = |ζ| ∈ [0, 1]. Whenever 3B2
1 ≥ 8B1B2, we have

∂G(x, y)

∂y
= − 1

288
B2

1(4− x)2y −
(
3B3

1 − 8B1B2

2304

)
x(4− x) ≤ 0.

Therefore, G(x, y) is a decreasing function of y and G(x, y) ≥ G(x, 1) =: I(x),
where

I(x) = 1− B1(3B
2
1 + 10B1 − 8B2)

576
x− B2

1

36

+
x2(3B3

1 + 3B2
1B2 − 4B2

1 − 8B1B2 − 4B2
2)

2304
.

An elementary calculation reveals that I ′(x) = 0 at

x0 =
2B1(3B

2
1 + 10B1 − 8B2)

3B3
1 + 3B2

1B2 − 4B2
1 − 8B1B2 − 4B2

2

and

I ′′(x) =
3B3

1 + 3B2
1B2 − 4B2

1 − 8B1B2 − 4B2
2

1152
.

Since 3B2
1 ≥ 8B2 and B1 > 0, therefore numerator of x0 is always positive.

Also, note that, denominator x0 and numerator of I ′′(x) is same, therefore sign
of x0 and I ′′(x) changes simultaneously. Here, two cases arise:
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Case I: 0 < x0 < 4. In this case I ′′(x) > 0, so the minimum of I(x) attains at
x0, which gives

T3,1(f) ≥ I(x0)

= 1− B3
1(B

3
1 + 12B2

1 + 4B1 − 32B2)

64(3B3
1 +B2

1(3B2 − 4)− 8B1B2 − 4B2
2)

.

Case II: x0 < 0 or x0 > 4. In this case I(x) has no critical point. Thus

T3,1(f) ≥ min{I(0), I(4)}

= min

{
1− B2

1

36
, 1− B2

1

8
+

B2
1B2

48
− B2

2

36

}
.

For the case x0 = 4, we have T3,1(f) ≥ I(4).
The sharpness of these bounds follows from the functions g̃2(z) and g̃3(z)

defined by

(2zg̃′2(z))
′

(g̃2(z)− g̃2(−z))′
= φ(z) and

(2zg̃′3(z))
′

(g̃3(z)− g̃3(−z))′
= φ(z2),

respectively. Since

T3,1(g̃2) = 1− B2
1

8
+

B2
1B2

48
− B2

2

36
and T3,1(g̃3) = 1− B2

1

36
,

which completes the proof. □

4. Some special cases

If φ(z) = (1 + Az)/(1 + Bz), the classes S∗
s (φ) and Cs(φ) reduce to the

classes S∗
s [A,B] and Cs[A,B], respectively. Theorems 3.5 and 3.6 immediately

give the following sharp bound for the class S∗
s [A,B] and Cs[A,B].

Corollary 4.1. (1) If f ∈ S∗
s [A,B] and A−B ≤ |B2−AB|, then T3,1(f) ≤ 1.

(2) If f ∈ Cs[A,B] and A−B ≤ |B2 −AB|, then T3,1(f) ≤ 1.

Theorems 3.7 and 3.8 yield the following lower bound of T3,1(f) for these
classes.

Corollary 4.2. If f ∈ S∗
s [A,B] such that A2 − B2 > 0, then the following

estimates hold:

T3,1(f) ≥


min

{
1− 1

4
(A−B)2, 1− 1

4
(A−B)2(AB + 2)

}
, σ1 /∈ [0, 4],

1− 1

4
(A−B)2(AB + 2), σ1 = 4,

1 +
(A2 − 2A(B − 2) +B2 + 4B − 4)(A−B)2

16(1−A)(1−B)
, σ1 ∈ (0, 4),

where

σ1 = − 2(A+B)

(1−A)(1−B)
.

First two inequalities are sharp.
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Corollary 4.3. If f ∈ Cs[A,B] and 3A2 + 2AB − 5B2 ≥ 0, then the following
estimates hold:

T3,1(f) ≥


min

{
1− (A−B)2

36
, 1− (A−B)2(B2+3AB+18)

144

}
, σ2 /∈ [0, 4],

1− (A−B)2(B2 + 3AB + 18)

144
, σ2 = 4,

1− (A2 − 2A(B − 6) +B2 + 20B + 4)(A−B)2

64(1−B)(3A+B − 4)
, σ2 ∈ (0, 4),

where

σ2 =
2(3A+ 5(B + 2))

(1−B)(3A+B − 4)
.

First two inequalities are sharp.

For φ(z) = (1 + (1− 2α)z)/(1− z) and (1 + z)/(1− z) in S∗
s (φ), we obtain

the class S∗
s (α) and Sakaguchi’s class, S∗

s , respectively, where α ∈ [0, 1]. For
more detail of these classes, we refer to [16,22]. Theorems 3.5 and 3.7 yield the
following sharp lower and upper bounds of T3,1(f) for these classes, proved by
Kumar and Kumar [11].

Remark 4.4. (1) If f ∈ S∗
s (α), then (3 − 2α)α2 ≤ T3,1(f) ≤ 1 [11, Theorem

2.2].
(2) If f ∈ S∗

s , then 0 ≤ T3,1(f) ≤ 1 [11, Corollary 2.3].

For other subclasses of S∗
s , the following sharp bounds follow from Theo-

rem 3.7.

Corollary 4.5. If f ∈ S∗
s,SG, then T3,1(f) ≥ 2009/2304.

Remark 4.6. (1) If f ∈ S∗
s,L, then T3,1(f) ≥ 221/256 [11, Theorem 3.1].

(2) If f ∈ S∗
s,RL, then T3,1(f) ≥ (863− 444

√
2)/256 [11, Theorem 3.3].

Theorems 3.6 and 3.8 give the following corollaries for different subclasses
of Cc.

Corollary 4.7. (1) If f ∈ Cs[A,B] and A−B ≤ |B2 −AB|, then T3,1(f) ≤ 1.
(2) If f ∈ Cs(α), then T3,1(f) ≤ 1.
(3) If f ∈ Cs, then T3,1(f) ≤ 1.

All these bounds are sharp.

Corollary 4.8. (1) If f ∈ Cs,SG, then T3,1(f) ≥ 31/32.
(2) If f ∈ Cs,L, then T3,1(f) ≥ 4459/4608.

(3) If f ∈ Cs,RL, then T3,1(f) ≥ (−3731 + 5835
√
2)/4608.

All these bounds are sharp.
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