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TOEPLITZ DETERMINANTS FOR A-PSEUDO-STARLIKE
FUNCTIONS

MURAT CAGLAR, ISMAILA O. IBRAHIM, TIMILEHIN GIDEON SHABA,
AND ABBAS KAREEM WANAS

ABSTRACT. In this article, by making use of the A-pseudo-starlike func-
tions, we introduce a certain family of normalized analytic functions in
the open unit disk U and we establish coefficient estimates for the first
four determinants of the Toeplitz matrices T5(2), T2(3), T3(2) and T3(1)
for the functions belonging to this family. Further, some known and new
results which follow as special cases of our results are also mentioned.

1. Introduction

Let A stand for the family of functions f of the form:
1) FE) =2+ Y e,
n=2

which are analytic in the open unit disk U = {z € C': |z| < 1}. Let S indicate
the class of all functions in A which are univalent in U.
Babalola [2] defined the family £ of A-pseudo-starlike functions as follows:

Definition ([2]). Let f € A. Suppose that A > 1. A function f belongs to the
family £y of A-pseudo-starlike functions in U if and only if

2 (f' ()
f(z)
In particular, if A = 1, we have S* which in this context are called as starlike

functions. This subclass was recently studied by [4], [5] and [9].

In the univalent function theory, an extensive focus has been given to esti-
mate the bounds of Hankel matrices. Hankel matrices and determinants play an
important role in several branches of mathematics and have many applications
[11]. Toeplitz determinants are closely related to Hankel determinants. Han-
kel matrices have constant entries along the reverse diagonal, whereas Toeplitz

Re >0, (zeU).
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matrices have constant entries along the diagonal. Recently, Ali et al. [1]
introduced the symmetric Toeplitz determinant T,(n) for f € A, defined by

Qp, Ap+1 coo On4qg—1
An+1 ap <o+ On4g—2
Tq(n = )
n+qg—1 Opntqg—2 --- Qp

where n > 1, ¢ > 1 and a; = 1. In particular,

| a2 asg | a3 a4
T5(2) = o a | T5(3) = o a |
and
1 as a3 az a3 G4
Tg(l): as 1 as |, Tg(?): az az asg
az a2 1 as agz a2

The concept of Toeplitz matrices plays an important role in functional anal-
ysis, applied mathematics as well as in physics and technical sciences (for more
details see [11]). Very recently, several authors established estimates of the
Toeplitz determinant |7, (n)| for functions belonging to various families of uni-
valent functions (see, for example, [1,7,8,10]).

To derive the desired bounds in our study, we shall require the following
lemmas. Let P denote the class of analytic functions of the form p(z) = 1 +
P12+ p22? +p3z® + -+ with p(0) = 1 and Re {p(z)} > 0 (2 € U).

Lemma 1.1 ([6]). If the function p € P is given by the series p(z) = 1+p1z+
p2z? 4+ p32® + - -+, then the sharp estimate |px| <2 (k=1,2,3,...) holds.

Lemma 1.2 ([3]). If the function p € P, then
2py = pi + (4 pf) =,
dps = pi+2p1 (4—pi) —p1 (4 —p7) 2® +2(4 - p?) (1 - le2) z
for some x,z with |x| <1 and |z| < 1.
2. Main results
We begin this section by defining the family £, as follows:

Definition ([2]). A function f € A is said to be in the family £y (A > 1) if it
satisfies the condition:

Re{w} >0, (z€U).

Theorem 2.1. Let f € Ly be given by (1). Then

|a’2‘ S §7



TOEPLITZ DETERMINANTS FOR A-PSEUDO-STARLIKE FUNCTIONS 649

jas) < 2 + 2]
“wl=cT o
and
| |< g+%+ﬂ
“=ATBCA T 3BCA
where

A=4\—1, B=2Xx—-1, C=3\—1,
(2) E=06\"—11A+2, N =2\ —4)\+1,
M = 24)\* — 80X + 842 — 28\ + 3.

Proof. For the function f € L given by (1), we know that there exists an
analytic function p € P in the unit disk U with p(0) = 1 and Re{p(z)} > 0
such that

(3) (@) = fEpz). (z€0).
where p has the following series representations:
p(z) =1+ piz+po2® +pa2® +-- -
By elementary calculations, we have
2(1 4 2a92 + 3a32® + 4ag2® + - )*
=(z4a® +azz® + a2’ + ) (L4 prz+p2z® +p32® +--+)

and

(4)
Z+2Xagz? + [Bhaz + 22 (A — 1) a3)2?

IO =1)(A—2)
3
= 2+ (p1 + ag) 2° + (p2 + pras + az) 2° + (p3 + paaz + prag + as) 2" + - --

+ |4has + 6X (A — 1) azas + as| 2t 4

By equating the coefficients in (4), we have the relations

1
(5) ag = Ep27
1 N
(6) as = 6102 - @ZH
and
(7) B + _M s
=P oAl T 3pscah

and by applying Lemma 1.1, we get

2

B’

2 4|N]|

<7
sl = &+ T

las| <
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and
al<2s 4B, 8M
“I=1 T BCA T 3B3CA’

where

A=4\—1, B=2\—-1, C=3)\—1,
E =6\ —11A+2, N =2\ —4\+1,
M = 24)\* — 80X + 84)\% — 28\ + 3. O

Theorem 2.2. Let f € Ly be given by (1). Then

4(B* —4B2N +4N?) 4

8) T(2)] < = - =

where
B=2\—1, N =2)\2 -4\ +1.
Proof. In view of (5), (6) and (2), it easy to see that
T2(2)] = |a3 — a3
_|p3  2Npip:  N°pi  p?

~|c? B2 (C2B* B2’
By applying Lemma 1.2 to express ps in terms p1, it follows that
|3 — a3
|B o ABN AN g (B 2N)e - pd) | a4 )
4B*C? B2 2B2C? 4C?

For convenience of notation, we choose p; = p and since the function p is in
the family P simultaneously, we can suppose without loss of generality that
p € [0,2]. Thus, by applying the triangle inequality with P = 4 — p?, we
deduce that

A

2 2
‘“3—a2|

(B* —4B%N +4N?)p*  p? (B2 —2N)c?|z|P  |z|*P?
4BAC? B2 2B2(C? 4C?2
=: F(p, |z]).

It is obvious that F’(p, |x|) > 0 on [0,1] and thus F(p,|z|) < F(p, |1]).
Trivially when p = 2, we note that the expression F(|z|) has a maximum
value on [0, 2]. Consequently
A(B* — 4B2N +4N?) 4
T2(2)| = a3 — a3| < Sic -5
This concludes the proof. (I

Theorem 2.3. Let f € Ly be given by (1). Then

40, 4(B* — 4B%N + 4N?)
2B6C2 BiC2 )

T2(3)| = lod - o < o
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where

0, =9B5C? —36B°CE + 24B3CM + 36 B*E? + 16 M? — 48 B’E M,
0y =3B*C? —9B3CE 4+ 4BCM + 6B*E? — 4EM,

Q3 = 3B3C — 6B%F + 4M,

Q4 = B2C? - 2BCE + E?.

9)

Proof. Applying (6), (7), (2) and using Lemma 1.2, we have

a2 — 2| = (B' —4B*N +4N?)p} N Qp?  (B®=2N)piz(4 —pi)
4BiC? 144A2B5C?2 2B2C?2
Qopi(4 —pz  Qpi(4 —pi)a® 2?4 —pi)°
1242B4C? 24A2B3C iC?
L Sapi(d —pi)®a?  (BC - E)pi(d - pi)*a® | pi(4 —pi)*at
1A2B2(2 1A2BC 1642
N Qapi(4 —p) (1 — |2*)2 n (BC — E)pi(4 —p)*(1 — |z[*)zz
1242B3C 2A2BC
P14 —pi)P(1 = |2[*)az (4 —pP)>(L — 2[*)%2?
B 442 442 '

We select p; = p for ease of notation, and because the function p is in
the family P at the same time, we may assume that p € [0, 2] without losing
generality. As a result, using the triangle inequality with P = 4 — 2 and
Z = (1 — |z|?), we may conclude

Qp° (B* —4B%N + 4N?%)p*| (B?% - 2N)p?|z|P

144A2B5C? 4B*C? 2B2C2
Qop?Plz|  Qsp*Plz|?  |2]?P?  Qup?P2|z)?
12A2B4C2 " 24APB3C | AC2 | 4AB2(2
(BC — E)p?P%|z|>  p?P%z|* Q3p3PZ

4A2BC 16 A2 12A2B3C
(BC — E)p|lz|P?Z  plz|*P?Z N P27?

2A2BC 4A? 4A?

= Fl(pa |$D

Using elementary calculus to differentiate Fy(p, |z|) w.r.t. |z|, we have

8F1(p7 |£C|)
Olz|
(B> =2N)p*(4 —p*)  Qop*(4—p°)  2Q3p°(4 —p*)|7|
N 2B2C? 12A2B4C2 12A2B3C
Qap*(4 —p*)|z| | Qup*(4—p*)?z|  p(BC - E)(4 - p*)*|z]?
1242B3C 2A2B2C?2 A2BC

i —a3| =

+
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3(BC — E)p*(4=p*)*|z*  p(4—p*)?|=]*  p*(4—p*)*|2f

4A2BC 2A2 4A2
| (BO—Ep(d—pP(— o) _[al(t = p*P(1 - |aP)
2A2BC A?
| Pleld = PP faf?)
2A?

It is shown that (OFi(p, |z|)/0]x|) > 0 for |z| € [0,1] and fixed p € [0,2]. As
a result, Fy(p,|z|) is an increasing function of |z|. So, Fi(p,|z|) < Fi(p,|1]).
Therefore,

a2 — a2 < Qp° (B* —4B°N +4N?)p*|  (B*> —2N)p*(4 —p?)
U EVVV By TToz AB1C2 2822
L A=p)? (20 +03BC)P (4 - p?)
402 24A2BAC?
| (44 +4(BC — B)BC + B*CHp*(4 — p?)?
16A2B2C? '
Now, on [0,2] at p = 2, we have
y s ol A(BY — 4B2N + 4N?)
lai — a5 < Gapacs — BiC? ‘ O
Theorem 2.4. Let f € Ly be given by (1). Then
T5(2)| = |(ag — as)(a3 — 203 + azay)|
(10) 2 8(3B°C—GBE+4M)p* || 4 405
- |B 12AB2C B2  3BAC2A |’
where
an Q5 = 6A(B* —4B*N +4N?) - 3B*>C(BC — 2E) — 4CM,

Qg = 2A(B? — 2N) — BC? + CE.

Proof. From (5), (7), (2) and applying Lemma 1.2, we have

pr Py pid—pha L m —phz?  (4—p})(1 - |z*)z
B 44 24 1A 24

lag — aq| =

Ep} Epi(4—-phx  Mp}
9BCA 9BCA 3B2CA|

Applying triangle inequality and p; = p, we have
P (3B2C — 6BE + 4M)p? n p(BC — E)|z|P
B 12AB2C BC
plz|*P PZ  Ep|z|P

4A 2A  2BCA°

lag — aq| <

+
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Using the same methods as Theorem 2.2 and 2.3, we have

2 8(3B2C — 6BE + 4M)p®
_ < Z _ .
(12) jaz —as < 3 12AB2C

Also, using (5), (6), (7) and (2), applying Lemma 1.2 and taking p; = p € [0, 2],
we have

2 4 2 2 2 2 2
9 9 P Qsp Qep”(4 —p?)|z| | p°(4 —p°)|z|
—9 < |2 _
a2 = 2a3 + asas| < |55 — HEieEg 9B202A 1BA
(4—p*)2z)? | p4—p*)(1—|z|?)
= I .
+ 2C2 ZBA 2(]77 |J}|)

On the closed area [0, 2] x [0, 1], we need to find the maximum value of Fy(p, |z|).
Assume that a maximum of [0,2] x [0,1] exists at an interior point (po, |z]).
After that, by differentiating Fs(p, |z|) w.r.t |z|, we have

OFy(p, |=)) _ Qep*(4—p?) | p*A—p)le| , (4=p*)’e] p(d—p?)la])

olz| 2B2024A 2BA C2 BA
Ifp=0,
8 8
Fa(0,a]) = 5l < .
If p=2,
4 405
B2 1) = 53 ~ gpaceq
If |z| =0,
2 4 2
P Qsp p(4-p°)
Fy(p,0) = | = —
2(00) =5z ~ picea| t2BA
which has the highest possible value
A4
B? 3B4C?A

on [0,2]. Also, if |x| = 1, we have

Byp1) = | 2 (20 + BO?)p*(4 —p?) | (4=p*)"
2 B2 12B*C?A 1B2C?A 202
which has the highest possible value
A4
B2 3B4C2A

on [0,2]. So,
T3(2)| = [(az — as)(a5 — 203 + agay)|

2 8(3B2C — 6BE +4M)p®
B 12AB2C

440
B2 3B4C?A
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Theorem 2.5. Let f € Ly be given by (1). Then

407 8
(13) |T3(1)\=\1+2a§(a3—1)—a§\§1+W—ﬁ,
where
(14) Q7 =4B3C — 8CN — B* +4B?N — 4N?.

Proof. From (5), (6), and (2), applying Lemma 1.2 and some calculations, we
have

x(4—pt) 2Npi  2pi (B'—4B°N +4N?)p}

i, P
Ts(1)] =1 + £L
IT5(1)] tec T BC BiC B2 4BAC?2

(B2 —2N)piz(4 —p}) a2%(4—p)?

2B2C? 4C?

We select p; = p for ease of notation, and because the function p is in the family
P at the same time, we may assume that p € [0, 2] without losing generality.
As a result, using the triangle inequality with p = 4 — 2, we have

4 2 2 _ 2(4 — p? _2)2
IT5(1)] < 1y St 2t (B 2N)pR-pt) | (4 p)
4B%*C? B2 28202 102
Hence, at p = 2, we have
10, 8
‘T3(1)|§1+W*§. 0
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