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GEOMETRIC PROPERTIES ON (j, k)-SYMMETRIC

FUNCTIONS RELATED TO STARLIKE AND

CONVEX FUNCTION

Priyabrat Gochhayat and Anuja Prajapati

Abstract. For j = 0, 1, 2, . . . , k − 1; k ≥ 2; and − 1 ≤ B < A ≤ 1,
we have introduced the functions classes denoted by ST [j,k](A,B) and

K[j,k](A,B), respectively, called the generalized (j, k)-symmetric starlike

and convex functions. We first proved the sharp bounds on |f(z)| and
|f ′(z)|. Various radii related problems, such as radius of (j, k)-symmetric

starlikeness, convexity, strongly starlikeness and parabolic starlikeness are
determined. The quantity |a23 − a5|, which provide the initial bound on

Zalcman functional is obtained for the functions in the family ST [j,k].

Furthermore, the sharp pre-Schwarzian norm is also established for the
case when f is a member of K[j,k](α) for all 0 ≤ α < 1.

1. Introduction and preliminaries

We denote by H, the family of analytic functions in D := {z ∈ C : |z| < 1}
with the condition of normalization f(0) = f ′(0) − 1 = 0. Thus, all functions
in the family H have the Taylor-Maclaurin series of the form:

(1.1) f(z) =

∞∑
n=1

anz
n, (a1 = 1, z ∈ D).

Let S denote the subclass of H that are univalent in D. Suppose that f, g ∈ H,
then f is subordinate to g in D (cf. [12]) denoted by f ≺ g if there exists a
function w ∈ H satisfies the Schwarz condition w(0) = 0 and |w(z)| < 1 such
that

f(z) = g(w(z)) (z ∈ D).
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Let P[A,B], with −1 ≤ B < A ≤ 1, denote the class of functions p analytic in
D that satisfy the subordination relation p(z) ≺ 1+Az

1+Bz and has the series of the
form:

p(z) = 1 + p1z + p2z
2 + · · · , (z ∈ D),

with p(0) = 1,<(p(z)) > 0. This class was introduced and studied by Janowski
[8]. In particular, P[1,−1] := P is the usual Caratheodory class. Most im-
portant basic subclasses of the family S includes S∗(α) and K(α), respectively,
the family of univalent starlike functions and convex functions of order α in
D for all 0 ≤ α < 1. For fixed integer k ≥ 1, corresponding k-fold symmetric
function (cf. [16] also see [3, 22]), denoted by fk(z), is of the form

(1.2) fk(z) =
1

k

k−1∑
ν=0

f(ενz)

εν
, (z ∈ D),

where ε = e2πi/k. The set Sk denotes all such space of k-fold symmetric uni-
valent functions. Similarly, (j, k)-symmetric functions is defined over a k-fold

symmetric set Ω as f : Ω → C if f(z) = 1
εj f(εz) for all z ∈ Ω, ε = e

2πi
k and

j = 0, 1, 2, . . . , k− 1; k ≥ 2. Here we have considered the domain Ω as D. S(j,k)

denoted as the space of (j, k)-symmetrical functions. In particular, S(0,2),S(1,2)

and S(1,k) are known as the family of even, odd, and k-fold symmetric func-
tions, respectively. The above family S(j,k) is introduced and studied in [11].
For more recent work on the related class we refer [18] and the references
therein. Every function fj,k is in the class S(j,k) has the series representation:

f(z) =

k−1∑
j=0

fj,k(z), (z ∈ D),

where

(1.3) fj,k(z) =
1

k

k−1∑
ν=0

ε−νjf(ενz) =
1

k

k−1∑
ν=0

ε−νj

( ∞∑
n=1

an(ενz)n

)
(z ∈ D).

Further it is easy to see that

(1.4) fj,k(z) =

∞∑
n=1

ψn,j anz
n, (a1 = 1, z ∈ D)

where ψn,j = 1
k

∑k−1
ν=0 ε

(n−j)ν =

{
1; n = lk + j,

0; n 6= lk + j
(l ∈ N0) and note that

f0,2(z) = f(z). Motivated by the above concept, we mainly considered the
functions class ST [j,k](A,B) and K[j,k](A,B), respectively called the family of
generalized (j, k)-symmetric starlike and convex functions, and defined in term
of subordination as follows.
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Definition 1. A function f ∈ H is said to be in the class of ST [j,k](A,B),
(−1 ≤ B < A ≤ 1) if the following subordination condition satisfied:

(1.5)
zf ′(z)

fj,k(z)
≺ 1 +Azj+k−1

1 +Bzj+k−1
, (z ∈ D, j = 0, 1, 2, . . . , k − 1; k ≥ 1).

Definition 2. A function f ∈ H is said to be in the class of K[j,k](A,B),
(−1 ≤ B < A ≤ 1) if the following subordination condition satisfied:

(1.6)
(zf ′(z))′

f ′j,k(z)
≺ 1 +Azj+k−1

1 +Bzj+k−1
, (z ∈ D, j = 0, 1, 2, . . . , k − 1; k ≥ 1).

For the various choices of the parameters the above defined families unifies
various classical as well as recently studied subclasses of S. In Table 1, we
provide some relevant connections for the family ST [j,k](A,B). Here, for an

abbreviation, we set p(z) = zf ′(z)
fj,k(z) .

Table 1. For the certain values of j, k, A and B, the class
ST [j,k](A,B) is represents in terms of subordination.

ST [j,k](A,B) Subordination Relevant
relation connections

ST [1,k](A,B) =: S∗k(A,B) p(z) ≺ 1+Azk

1+Bzk
[2]

ST [1,1](A,B) =: S∗(A,B) p(z) ≺ 1+Az
1+Bz [8]

ST [1,1](1,−1) =: S∗ p(z) ≺ 1+z
1−z [13]

ST [j,k](1− 2α,−1) =: ST [j,k](α);α ∈ [0, 1) p(z) ≺ 1+(1−2α)zj+k−1

1−zj+k−1 [18]

ST [1,1](1− 2α,−1) =: S∗(α);α ∈ [0, 1) p(z) ≺ 1+(1−2α)z
1−z [15]

ST [1,1](1, 0) =: S∗(1, 0) p(z) ≺ 1 + z [19]

ST [1,1](e
iβ(eiβ − 2α cosβ),−1) =: Sβ(α),

α ∈ [0, 1) and β ∈ (−π/2, π/2), p(z) ≺ 1+eiβ(eiβ−2α cos β)z
1−z [20]

ST [1,1](A,B) =: S(j,k)(A,B) p(z) ≺ 1+Az
1+Bz [17]

Organization of the paper is as follows. In Section 2, we first provide the
sharp bounds on the growth and distortion problems. Various radii related
problems for the functions class ST [j,k](A,B) and K[j,k](A,B) are discussed in
Section 3. Sharp Zalcman-type bounds for ST [j,k] and pre-Schwarzian norm
for functions in K[j,k](α) are illustrated in Sections 4 and 5, respectively.

2. Main results

Lemma 2.1. Suppose that p(z) is analytic in D. Then p(z) ≺ 1+Azj+k−1

1+Bzj+k−1 if
and only if

(2.1)

∣∣∣∣∣p(z)− 1−ABr2(j+k−1)

1−B2r2(j+k−1)

∣∣∣∣∣ ≤
{

(A−B)rj+k−1

1−B2r2(j+k−1) ; B 6= 0;

Arj+k−1; B = 0, (|z| ≤ r < 1).
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The estimate (2.1) is sharp bound for |z| = r.

Proof. Define w(z) by

w(z) =
1 +Azj+k−1

1 +Bzj+k−1
, j = 0, 1, 2, . . . ; k ≥ 1, z ∈ D.

This implies that

w(z) +Bzj+k−1w(z) = 1 +Azj+k−1.

Taking modulus on both sides of the above equation and squaring the resulting
equation yields

|w(z)|2 − 2

[
w(z)

(
1−ABr2(j+k−1)

1−B2r2(j+k−1)

)]
≤ A2r2(j+k−1) − 1

1−B2r2(j+k−1)
.

Further computation gives

|w(z)|2 − 2

[
w(z)

(
1−ABr2(j+k−1)

1−B2r2(j+k−1)

)]
+

∣∣∣∣1−ABr2(j+k−1)

1−B2r2(j+k−1)

∣∣∣∣2
≤ A2r2(j+k−1) − 1

1−B2r2(j+k−1)
+

∣∣∣∣1−ABr2(j+k−1)

1−B2r2(j+k−1)

∣∣∣∣2 .
This implies that∣∣∣∣w(z)− 1−ABr2(j+k−1)

1−B2r2(j+k−1)

∣∣∣∣ ≤ (A−B)rj+k−1

1−B2r2(j+k−1)
, (|z| ≤ r < 1).

Hence using the application of subordination relation we have

p(z) ≺ 1 +Azj+k−1

1 +Bzj+k−1

if and only if∣∣∣∣p(z)− 1−ABr2(j+k−1)

1−B2r2(j+k−1)

∣∣∣∣ ≤ (A−B)rj+k−1

1−B2r2(j+k−1)
, (B 6= 0, |z| ≤ r < 1).

For the case B = 0, then

p(z) ≺ 1 +Azj+k−1

if and only if

|p(z)− 1| ≤ Arj+k−1, (|z| ≤ r < 1).

This completes the proof of Lemma 2.1. �

Remark 2.2. The family ST [j,k](A,B) is defined under the condition −1 ≤
B < A ≤ 1 such that the set of values of the functional zf ′(z)

fj,k(z) lies in the

right side of the half plane inside the disk with center 1−ABr2(j+k−1)

1−B2r2(j+k−1) and radius
(A−B)rj+k−1

1−B2r2(j+k−1) . So that ST [j,k](A,B) ⊂ S∗ whenever −1 ≤ B < A ≤ 1.
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Remark 2.3. The family K[j,k](A,B) is defined under the condition −1 ≤ B <

A ≤ 1 such that the set of values of the functional and (zf ′(z))′

f ′j,k(z) lies in the right

side of the half plane inside the disk with center (B−A)r2(j+k−1)

1−B2r2(j+k−1) and radius
(A−B)rj+k−1

1−B2r2(j+k−1) . So that K[j,k](A,B) ⊂ K whenever −1 ≤ B < A ≤ 1.

The next theorem based on growth and distortion theorems for the family
ST [j,k](A,B) and K[j,k](A,B).

Theorem 2.4. If f(z) ∈ K[j,k](A,B), then

L(r) ≤ |f ′j,k(r)| ≤ H(r),

where

L(r) := (1 +Brj+k−1)
−(1+B)(A−B)

2B2(j+k−1) (1−Brj+k−1)
−(1−B)(A−B)

2B2(j+k−1) ,

H(r) := (1 +Brj+k−1)
(B−1)(A−B)

2B2(j+k−1) (1−Brj+k−1)
(−1−B)(A−B)

2B2(j+k−1) .

Proof. Suppose f(z) ∈ K[j,k](A,B). Then

(2.2) <

{
(zf ′(z))′

f ′j,k(z)

}
≥ 0, (z ∈ D).

Therefore, upon replacing z by ενz in (2.2), we get

(2.3) <

{
f ′(ενz) + zενf ′′(ενz)

f ′j,k(ενz)

}
≥ 0, (z ∈ D, ν = 0, 1, . . . , k − 1).

From the relation f ′j,k(ενz) = ενj−νf ′j,k(ενz), (2.3) yields

(2.4) <

{
εν−νjf ′(ενz) + zε2ν−νjf ′′(ενz)

f ′j,k(z)

}
≥ 0, (z ∈ D).

Which implies that,

<

{∑k−1
ν=0 ε

ν−νjf ′(ενz) + z
∑k−1
ν=0 ε

2ν−νjf ′′(ενz)

f ′j,k(z)

}
≥ 0,

or,

<

{
f ′j,k(z) + zf ′′j,k(z)

f ′j,k(z)

}
≥ 0, (z ∈ D),

this implies fj,k(z) ∈ K[j,k](A,B). Hence, application of subordination and
([7], Theorem 2), conclude that

g(|z| < r) ≤ G(|z| ≤ rj+k−1), r < 1.
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The functional g(z) =
zf ′′j,k(z)

f ′j,k(z) is a disc with center at (A−B)r2(j+k−1)

1−B2r2(j+k−1) and its

radius is (A−B)rj+k−1

1−B2r2(j+k−1) . Thus, for z ∈ D we have∣∣∣∣g(z)− (A−B)|z|2(j+k−1)

1−B2|z|2(j+k−1)

∣∣∣∣ ≤ (A−B)|z|j+k−1

1−B2|z|2(j+k−1)
.(2.5)

After simplification we get the result for 0 < |z| = r < 1,∣∣∣∣∣f ′′j,k(r)

f ′j,k(r)
− (A−B)r2(j+k−1)−1

1−B2r2(j+k−1)

∣∣∣∣∣ ≤ (A−B)rj+k−2

1−B2r2(j+k−1)
.(2.6)

Upon integrating with respect to r (2.6), we get∣∣∣∣log f ′j,k(r) +
(A−B)

2B2(j + k − 1)
log(1−B2r2(j+k−1))

∣∣∣∣
≤ (A−B)

2B(j + k − 1)
log

(
1 +Brj+k−1

1−Brj+k−1

)
,

or

−(A−B)

2B(j + k − 1)
log

(
1 +Brj+k−1

1−Brj+k−1

)
≤ log |f ′j,k(r)|+ (A−B)

2B2(j + k − 1)
log(1−B2r2(j+k−1))

≤ (A−B)

2B(j + k − 1)
log

(
1 +Brj+k−1

1−Brj+k−1

)
,

or

−(A−B)

2B2(j + k − 1)

[
log(1 +Brj+k−1)1+B(1−Brj+k−1)1−B]

≤ log |f ′j,k(r)| ≤ (A−B)

2B2(j + k − 1)

[
log(1 +Brj+k−1)B−1(1−Brj+k−1)−1−B] ,

or

(1 +Brj+k−1)
−(A−B)(1+B)

2B2(j+k−1) (1−Brj+k−1)
−(A−B)(1−B)

2B2(j+k−1)

≤ |f ′j,k(r)| ≤ (1 +Brj+k−1)
(A−B)(B−1)

2B2(j+k−1) (1−Brj+k−1)
(A−B)(−1−B)

2B2(j+k−1) .

This completes the proof of Theorem 2.4. �

Theorem 2.5. Suppose that f(z) ∈ K[j,k](A,B). Then

1

r

∫ r

0

1−Axj+k−1

1−Bxj+k−1
(1 +Bxj+k−1)

−(A−B)(1+B)

2B2(j+k−1) (1−Bxj+k−1)
−(A−B)(1−B)

2B2(j+k−1) dx

≤ |f ′(z)|

≤ 1

r

∫ r

0

1 +Axj+k−1

1 +Bxj+k−1
(1 +Bxj+k−1)

(A−B)(B−1)

2B2(j+k−1) (1−Bxj+k−1)
(A−B)(−1−B)

2B2(j+k−1) dx.
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Proof. Suppose f(z) ∈ K[j,k](A,B). The function 1+Azj+k−1

1+Bzj+k−1 maps the disc

|z| ≤ r on to the interior of the circle with the line segment[
1−Arj+k−1

1−Brj+k−1
,

1 +Arj+k−1

1 +Brj+k−1

]
as diameter and (zf ′(z))′

f ′j,k(z) ≺
1+Azj+k−1

1+Bzj+k−1 . From the above fact, we have

1−Arj+k−1

1−Brj+k−1
≤

∣∣∣∣∣ (zf ′(z))′f ′j,k(z)

∣∣∣∣∣ ≤ 1 +Arj+k−1

1 +Brj+k−1
.

By Theorem 2.4, we get

1−Arj+k−1

1−Brj+k−1
(1 +Brj+k−1)

−(A−B)(1+B)

2B2(j+k−1) (1−Brj+k−1)
−(A−B)(1−B)

2B2(j+k−1)

≤ |(zf ′(z))′|

≤ 1 +Arj+k−1

1 +Brj+k−1
(1 +Brj+k−1)

(A−B)(B−1)

2B2(j+k−1) (1−Brj+k−1)
(A−B)(−1−B)

2B2(j+k−1) .

On integrating both sides of the above inequalities, we get

1

r

∫ r

0

1−Axj+k−1

1−Bxj+k−1
(1 +Bxj+k−1)

−(A−B)(1+B)

2B2(j+k−1) (1−Bxj+k−1)
−(A−B)(1−B)

2B2(j+k−1) dx

≤ |f ′(z)|

≤ 1

r

∫ r

0

1 +Axj+k−1

1 +Bxj+k−1
(1 +Bxj+k−1)

(A−B)(B−1)

2B2(j+k−1) (1−Bxj+k−1)
(A−B)(−1−B)

2B2(j+k−1) dx.

This completes the proof of Theorem 2.5. �

Theorem 2.6. Let f(z) ∈ ST [j,k](A,B). Then∫ r

0

1−Axj+k−1

1−Bxj+k−1
(1 +Bxj+k−1)

−(A−B)(1+B)

2B2(j+k−1) (1−Bxj+k−1)
−(A−B)(1−B)

2B2(j+k−1) dx

≤ |f(z)|

≤
∫ r

0

1 +Axj+k−1

1 +Bxj+k−1
(1 +Bxj+k−1)

(A−B)(B−1)

2B2(j+k−1) (1−Bxj+k−1)
(A−B)(−1−B)

2B2(j+k−1) dx,

Proof. Using the well-known result

f(z) ∈ K[j,k](A,B)⇔ zf ′(z) ∈ ST [j,k](A,B),

get the desired proof of Theorem 2.6. �

3. Radius problems

In this section, we shall deal with various radii related problems associated
with the above defined families. In general, our aim is to determine the largest
number R ∈ (0, 1) such that for any given two subfamilies E and F of H, with
each f ∈ E , we have r−1f(rz) ∈ F , where r ≤ R. We call R as the F-radius of
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E . The number R is best possible if there exists a function f0 ∈ F such that
r−1f0(rz) /∈ E , where r > R.

3.1. ST [j,k](α)-radius for the family ST [j,k](A,B)

Theorem 3.1. For 0 ≤ α < 1, ST [j,k](α)-radius of functions in the family
ST [j,k](A,B) is given by

(3.1) R1(α) := min

{
2(1− α)

(A−B) +
√

(A−B)2 + 4(AB − αB2)(1− α)
, 1

}
.

Following function shows that the estimate is best possible.

(3.2) f(z) =

{
z(1 +Bzj+k−1)

A−B
B(j+k−1) ; B 6= 0,

z exp(Az
j+k−1

j+k−1 ); B = 0.

Proof. Let f ∈ ST [j,k](α). Then

(3.3) <
{
zf ′(z)

fj,k(z)

}
> α (0 ≤ α < 1, z ∈ D).

Definition 1 together with Lemma 2.1, gives

(3.4) <
(
zf ′(z)

fj,k(z)

)
≥ 1−ABr2(j+k−1)

1−B2r2(j+k−1)
− (B −A)rj+k−1

1−B2r2(j+k−1)
.

From (3.3) and the inequality (3.4), we see that

<
(
zf ′(z)

fj,k(z)

)
≥ 1−ABr2(j+k−1)

1−B2r2(j+k−1)
− (B −A)rj+k−1

1−B2r2(j+k−1)
≥ α

is true if

(AB − αB2)r2(j+k−1) + (B −A)rj+k−1 + (α− 1) ≤ 0.

Further simplification yields

R1(α) =
2(1− α)

(A−B) +
√

(A−B)2 + 4(AB − αB2)(1− α)
.

Indeed, for the sharpness, we consider

zf ′(z)

fj,k(z)
=

1 +Azj+k−1

1 +Bzj+k−1
= 1 +

(A−B)zj+k−1

1 +Bzj+k−1
.

The case when B 6= 0, we have

f ′(z)

fj,k(z)
− 1

z
=

(A−B)zj+k−2

1 +Bzj+k−1
,

or

log

(
f

z

)
=

(A−B)

B(j + k − 1)
log(1 +Bzj+k−1).

This implies that

f(z) = z(1 +Bzj+k−1)
(A−B)

B(j+k−1) .
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The case when B = 0, we have

f ′(z)

fj,k(z)
− 1

z
= Azj+k−2.

On integration, we get

f(z) = z exp

(
Azj+k−1

(j + k − 1)

)
.

�

If we put α = 0 in Theorem 3.1, then the following result obtain:

Theorem 3.2. The ST [j,k]-radius of functions in the family of ST [j,k](A,B)
is given by

(3.5) R2 =
2

(A−B) +
√

(A−B)2 + 4AB
.

The radius is sharp for the function defined in (3.2).

3.2. K[j,k](α)-radius for the family K[j,k](A,B)

Theorem 3.3. For 0 ≤ α < 1, the K[j,k](α)-radius of functions in the family
of K[j,k](A,B) is given by

(3.6) R3(α) := min

{
2(α− 1)

(A−B) +
√

(A−B)2 + 4(−A+B +B2 − αB2)(α− 1)
, 1

}
.

The bound is sharp for the function defined in (3.2).

Proof. From (2.5) we have

<

(
zf ′′j,k(z)

f ′j,k(z)

)
≥ (A−B +B2)r2(j+k−1) − (A−B)rj+k−1 − 1

1−B2r2(j+k−1)
.(3.7)

If f ∈ K[j,k](α), then

(3.8) <

(
1 +

zf ′′j,k(z)

f ′j,k(z)

)
> α.

From (3.7) and (3.8), we see that

<

(
1 +

zf ′′j,k(z)

f ′j,k(z)

)
≥ (A−B −B2)r2(j+k−1) − (A−B)rj+k−1 − 1

1−B2r2(j+k−1)
≥ α

is true if

(−A+B +B2 − αB2)r2(j+k−1) + (A−B)rj+k−1 + (α− 1) ≤ 0.

Upon simplification we get the required result (3.6). �

If we put α = 0 in Theorem 3.3, then the following result obtain:
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Theorem 3.4. The K[j,k]-radius of functions in the family of K[j,k](A,B) is

(3.9) R4 =
2

(A−B) +
√

(A−B)2 + 4(A−B +B2)
.

The radius is sharp for the function defined in (3.2).

3.3. Radius of (j, k)-symmetric strongly starlikeness of order γ

A function f ∈ H is said to be (j, k)-symmetric strongly starlike of order
γ; 0 < γ ≤ 1 if it satisfies the subordination relation

zf ′(z)

fj,k(z)
≺
(

1 + zj+k−1

1− zj+k−1

)γ
(j = 0, 1, 2, . . . , k − 1; k ≥ 1, z ∈ D).

Or, equivalently, we have ∣∣∣∣arg
zf ′(z)

fj,k(z)

∣∣∣∣ ≤ π

2
γ.

For our requirement we recall the following important result due to Gangad-
haran et al.

Lemma 3.5 ([6]). If c is any point in | argw| ≤ π
2 γ and if Rc ≤ <[c] sin π

2 γ −
=[c] cos π2 γ, =[c] ≥ 0. The disk |w−c| ≤ Rc is contained in the sector | argw| ≤
π
2 γ, 0 < γ ≤ 1. In particular when =[c] = 0, the condition becomes Rc ≤
c sin π

2 γ.

In this subsection we compute radius of (j, k)-symmetric strongly starlike-
ness for the class ST [j,k](A,B).

Theorem 3.6. Let f ∈ ST [j,k](A,B) and 0 < γ ≤ 1. Then the radius of
(j, k)-symmetric strongly starlike of order γ in |z| < R(γ) given by

R5(γ) =
2 sin π

2 γ

(B −A) +
√

(B −A)2 + 4AB sin2 π
2 γ
.

Proof. From Lemma 2.1, we have∣∣∣∣ zf ′(z)fj,k(z)
− 1−ABr2(j+k−1)

1−B2r2(j+k−1)

∣∣∣∣ ≤ (B −A)rj+k−1

1−B2r2(j+k−1)
.

Set

c =
1−ABr2(j+k−1)

1−B2r2(j+k−1)
and Rc =

(B −A)rj+k−1

1−B2r2(j+k−1)
.

Since =(AB) = 0, Lemma 3.5 yields

(B −A)rj+k−1

1−B2r2(j+k−1)
≤ 1−ABr2(j+k−1)

1−B2r2(j+k−1)
sin
(π

2
γ
)

or
−ABr2(j+k−1) sin

π

2
γ − (B −A)rj+k−1 + sin

π

2
γ ≥ 0.

Since sin π
2 γ ≥ 0, therefore, the above inequality gives the required radius

R5(γ). This completes the proof of Theorem 3.6. �
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3.4. Radius of (j, k)-symmetric parabolic starlikeness of order β

A function f ∈ H is said to be (j, k)-symmetric parabolic starlike of order
β, denoted by SP[j,k](β), if it satisfy the following inequality

(3.10) <
(
zf ′(z)

fj,k(z)

)
>

∣∣∣∣ zf ′(z)fj,k(z)
− 1

∣∣∣∣+ β, (β ∈ [−1, 1), z ∈ D).

Geometrically, the values of the functional zf ′(z)
fj,k(z) lies in the parabolic region

(3.11) Θ =

{
w = u+ iv : v2 < 2(1− β)

(
u− 1 + β

2

)}
.

The SP[j,k](β)-radius of functions in the family of ST [j,k](A,B) are determined.

Theorem 3.7. For β < 1, A,B ∈ R, A < B and |B| ≤ 1. Let R6 be given by

R6 := min

{
1,

2(1− β)

(B −A) +
√

(B −A)2 + 4B2(1− α)2

}
,

R7 is defined in (0, 1] such that 1 ≥ (B(1+β)−2A)rj+k−1 +β for all r ∈ [0, R7]
and R8 is defined in (0, 1] such that A+B(1− 2β) ≥ 2B2(1− β)r2(j+k−1) for
all r ∈ [0, R8]. If f ∈ ST [j,k](A,B), then the SP[j,k](β)-radius is given by

R9 =

{
R7; R7 ≤ R6,

R8; R7 > R6.

Proof. Since
zf ′(z)

fj,k(z)
≺ 1 +Azj+k−1

1 +Bzj+k−1
,

it follows from Lemma 2.1 that

(3.12)

∣∣∣∣ zf ′(z)fj,k(z)
− 1−ABr2(j+k−1)

1−B2r2(j+k−1)

∣∣∣∣ ≤ (B −A)rj+k−1

1−B2r2(j+k−1)
, (|z| ≤ r < 1).

By letting w(z) = zf ′(z)
fj,k(z) = u + ιv, the points lies the boundary of the disk in

(3.12) are given by,

w(z) =
1−ABr2(j+k−1)

1−B2r2(j+k−1)
+

(B −A)rj+k−1

1−B2r2(j+k−1)
eiθ

and hence,

(3.13)
<(w(z)) =

1−ABr2(j+k−1) + (B −A)rj+k−1 cos θ

1−B2r2(j+k−1)
,

=(w(z)) =
(B −A)rj+k−1

1−B2r2(j+k−1)
sin θ.

For f ∈ SP[j,k](β), we have

<
(
zf ′(z)

fj,k(z)

)
>

∣∣∣∣ zf ′(z)fj,k(z)
− 1

∣∣∣∣+ β, β ∈ [−1, 1), z ∈ D.
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Or, equivalently

(3.14) u > |(u+ ιv)− 1|+ β.

Squaring both side of (3.14) yields

v2 < 2u(1− β) + β2 − 1.

Or

(3.15) =(w(z))2 < 2(1− β)

(
<w(z)− 1 + β

2

)
.

Putting (3.13) in (3.15) we get,

(3.16)

(
(B −A)rj+k−1

1−B2r2(j+k−1)
sin θ

)2

< 2(1− β)

(
1−ABr2(j+k−1) + (B −A)rj+k−1 cos θ

1−B2r2(j+k−1)

)
+ β2 − 1.

Which leads to

L(x) := (B −A)2r2(j+k−1)x2 + 2(1− β)(B −A)(1−B2r2(j+k−1))rj+k−1x

+ 2(1− β)(1−ABr2(j+k−1))(1−B2r2(j+k−1))

+ (β2 − 1)(1−B2r2(j+k−1))2 − (B −A)2r2(j+k−1) ≥ 0,

where we set x = cos θ. It is suffices to find r(= R) such that L(x) ≥ 0 for all
x ∈ [−1, 1]. Note that

L′(x) = 2(B −A)2r2(j+k−1)x+ 2(1− β)(B −A)(1−B2r2(j+k−1))rj+k−1,

which vanishes for

x = x0 =
−(1− β)(1−B2r2(j+k−1))

(B −A)rj+k−1
.

With β < 1, A < B and |B| ≤ 1, we have x0 ≤ 0. If x0 ≤ −1, we need
L(−1) ≥ 0 and if −1 < x0 < 0, we need L(x0) ≥ 0.

Indeed, if x0 ≤ −1, then we have

(βB2 −B2)r2(j+k−1) − (B −A)rj+k−1 + (1− β) ≥ 0

which is equivalent to

R6 = r ≤ 2(1− β)

(B −A) +
√

(B −A)2 + 4B2(1− α)2
.

Therefore, the condition L(−1) ≥ 0 is equivalent to

2(1−ABr2(j+k−1) −Brj+k−1 +Arj+k−1) ≥ (1 + β)(1−B2r2(j+k−1)).

That is

1 ≥ (B(1 + β)− 2A)rj+k−1 + β.
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Also, we have L(x0) ≥ 0 implies that

(B −A)2r2(j+k−1)

(
(1− β)(1−B2r2(j+k−1))

(B −A)rj+k−1

)2

− 2(1− β)(B −A)

(1−B2r2(j+k−1))rj+k−1 ×
(

(1− β)(1−B2r2(j+k−1))

(B −A)rj+k−1

)
+ 2(1− β)

(1−ABr2(j+k−1))(1−B2r2(j+k−1)) + (β2 − 1)(1−B2r2(j+k−1))2

− (B −A)2r2(j+k−1) ≥ 0.

This leads to
A+B(1− 2β) ≥ 2B2(1− β)r2(j+k−1).

If R7 ≤ R6, then (3.12) will be lies in parabolic region (3.11) if and only if
r ≤ R7. If R7 > R6, then (3.12) will be lies in parabolic region (3.11) if and
only if r ≤ R8. This completes the proof. �

4. Zalcman conjecture for the family of ST [j,k]

In 1960, Lawrence Zalcman conjectured that the coefficients of the family S
satisfy the quantity |a2

n−a2n−1| ≤ (n−1)2, for each n ≥ 2 with sharp bound for
Koebe function and its rotation. Note that this conjecture implies the classical
Fekete-Szegö inequality, namely, |a2

2−a3| ≤ 1. Though the conjecture is settled
for certain subfamilies of S, the original problem is still open for n > 6. For
recent development of the problem we refer [10,14,21] and the reference therein.
In this section, we considered the family of (j, k)-symmetric starlike function
ST [j,k] to evaluate the Zalcman functional for n = 3. The problem is open for
larger n.

Theorem 4.1. If f ∈ ST [j,k], then

(2− ψ2,j)
2(3− ψ3,j)

2(4− ψ4,j)(5− ψ5,j)|a2
3 − a5|

≤ (4− ψ4,j)(5− ψ5,j)(16ψ2
2,j + 4(2− ψ2,j)

2 + 16ψ2,j(2− ψ2,j))

− (3− ψ3,j)(2− ψ2,j)(16ψ2,jψ3,jψ4,j + 8[ψ4,jψ3,j(2− ψ2,j)

+ ψ4,jψ2,j(3− ψ3,j) + ψ3,jψ2,j(4− ψ4,j)]

+ 4(3− ψ3,j)[ψ4,j(2− ψ2,j) + ψ2,j(4− ψ4,j)] + 4ψ3,j(4− ψ4,j)

+ 2(4− ψ4,j)(3− ψ3,j)(2− ψ2,j)).

Proof. It is known that f ∈ ST [j,k] if and only if zf ′(z)
fj,k(z) ∈ P. By (1.4) we have

zf ′(z)

fj,k(z)
= p(z),

which implies that

zf ′(z) =

(
1 +

∞∑
n=1

pnz
n

)
× fj,k(z).
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Using (1.1) and (1.4), we have

(4.1) an =
1

n− ψn,j

n−1∑
m=1

pmψn−m,j an−m; ψ1,j = 1, n ≥ 2.

From (4.1) we have

a3 =
1

(2− ψ2,j)(3− ψ3,j)
(p2

1ψ2,j + p2(2− ψ2,j)),

a5 =
1

(2− ψ2,j)(3− ψ3,j)(4− ψ4,j)(5− ψ5,j)
(p4

1ψ2,jψ3,jψ4,j

+ p2
1p2[ψ4,jψ3,j(2− ψ2,j) + ψ4,jψ2,j(3− ψ3,j) + ψ3,jψ2,j(4− ψ4,j)]

+ p1p3(3− ψ3,j)[ψ4,j(2− ψ2,j) + ψ2,j(4− ψ4,j)]

+ p2
2ψ3,j(4− ψ4,j) + p4(4− ψ4,j)(3− ψ3,j)(2− ψ2,j)),

and hence, we have

(2− ψ2,j)
2(3− ψ3,j)

2(4− ψ4,j)(5− ψ5,j)(a
2
3 − a5)

= (4− ψ4,j)(5− ψ5,j)(p
4
1ψ

2
2,j + p2

2(2− ψ2,j)
2 + 2p2

1p2ψ2,j(2− ψ2,j))

− (3− ψ3,j)(2− ψ2,j)(p
4
1ψ2,jψ3,jψ4,j + p2

1p2[ψ4,jψ3,j(2− ψ2,j)

+ ψ4,jψ2,j(3− ψ3,j) + ψ3,jψ2,j(4− ψ4,j)]

+ p1p3(3− ψ3,j)[ψ4,j(2− ψ2,j) + ψ2,j(4− ψ4,j)]

+ p2
2ψ3,j(4− ψ4,j) + p4(4− ψ4,j)(3− ψ3,j)(2− ψ2,j)).

The inequality |pn| ≤ 2, which follows the required result. �

Remark 4.2. If we put j = k = 1, then we have the result of [5] .

5. Pre-Schwarzian norm estimate for the family K[j,k](α)

Pre-Schwarzian derivative and its norm have wide applications in the the-
ory of Teichmüller space (cf. [9, 25]). We recall here that, the norm of Pre-
Schwarzian derivative is given by Tf = f ′′/f ′, where ‖Tf‖= sup|z|<1(1 −
|z|2)|Tf (z)|. For f ∈ S, we have ‖Tf‖ ≤ 6 and for f ∈ K, we have ‖Tf‖ ≤ 4.
Converse part of the above results which follows from Beckers theorem [4]
shows that if f ∈ H and ‖Tf‖ ≤ 1, then f ∈ S. Yamashita [24] proved that if
f ∈ K(α), then ‖f‖ = 4(1 − α) and for f ∈ S∗(α) then ‖f‖ = 6 − 4α. In a
recent paper, Aghalary and Orouji [1] have estimated the sharp bound ‖Tf‖ for
functions in the class of α-spiral like functions of order ρ. Wherein the authors
have also pointed various connections with other subfamilies of S.

In this section we considered the functions class K[j,k](A,B), which is defined
by subordination as follows. For −1 ≤ B < A ≤ 1 with A 6= B, every f ∈ H is
said to be in K[j,k](A,B) if it satisfying the subordination relation:

1 +
zf ′′(z)

f ′j,k(z)
≺ 1 +Az

1 +Bz
, z ∈ D.
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If we take A = 1− 2α and B = −1, then the class is defined by:

K[j,k](α) :=

{
f ∈ S : 1 +

zf ′′(z)

f ′j,k(z)
≺ 1 + (1− 2α)z

1− z

}
.

Consider the function Φ(z) : D→ C given by

Φ(z) =

{
1−(1−z)2α−1

2α−1 ; α 6= 1/2,

log 1
1−z ; α = 1/2,

for which 1 + zΦ′′(z)
Φ′(z) = 1+(1−2α)z

1−z , then Φ(z) ∈ K[j,k](α). Note that Φ treat

as an extremal function for the family K[j,k](α). For f ∈ K[j,k](α), we have
|a2| ≤ 1− α and equality holds if and only if

(5.1) f(z) = µ̄Φ(µz),

µ is unimodular constant that is µ is complex number with |µ|2 = µµ̄ = 1.
Thus, we have the following theorem.

Theorem 5.1. For 0 ≤ α < 1, the following two statements holds true.

i) Suppose that f ∈ K[j,k](α), then ‖Tf‖ = 2(1 + η) if and only if f is of
the form (5.1).

ii) If f ∈ K[j,k](α) is not of the form (5.1), then

(5.2) ‖Tf‖ ≤ 2(1 + η)
1 + C +D

D − C + 3
for η = 1− 2α,

where

(5.3) 0 ≤ C =
2|a2|
1 + η

≤ 1,

(5.4) 0 ≤ D =
|2a3(3 + 3η)− 4a2

2(2 + η)|
(1 + η)(1 + η − 2|a2|)

≤ 1 + C < 2,

so that
1

3
≤ 1 + C +D

D − C + 3
≤ 1 + C

2
< 1.

Proof. Let us consider the function

(5.5) F (z) ≡ Fα(z) =
1 + ηz

1− z
, where η = 1− 2α, z ∈ D.

Clearly F is univalent in D with F ′(0) = η+ 1 and F ′′(z) = 2(η+ 1). Geomet-
rically, F maps conformally D onto <(F (z)) > α. For f ∈ K[j,k](α) then we
set

g(z) = 1 +
zf ′′(z)

f ′j,k(z)
, z ∈ D.

Therefore, the composed function, φ ≡ F−1 ◦ g : D −→ D, is analytic in
D with φ(0) = 0 and g = F ◦ φ which means g is subordinate to F. Since
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g′(0) = 2a2, g
′′(0) = 12a3 − 8a2

2. It is clear that φ(z) = g(z)−1
g(z)+η which follows

that

(5.6) φ′(0) =
2a2

1 + η
and φ′′(0) =

4a3(3 + 3η)− 8a2
2(2 + η)

(1 + η)2
.

Hence, the function φ(z) satisfy the Schwarz lemma shows that

C =: |φ′(0)| = |2a2|
1 + η

≤ 1,

and further C = 1, i.e., equality holds if and only if

(5.7) φ(z) ≡ µz

with |µ| = 1 or f is of the form (5.1). Further, it follows from g = F ◦ φ that

(5.8)
f ′′(z)

f ′j,k(z)
=
φ(z)(1 + η)

z(1− φ(z))

is analytic in D. We need to prove that ‖f‖ = 2(1 + η) for which f of the form
(5.1). In fact, from (5.8) we have

(1− |z|2)

∣∣∣∣∣ f ′′(z)f ′j,k(z)

∣∣∣∣∣ = (1 + η)
(1− |z|2)|φ(z)|
|z|(|1− φ(z)|)

=
(1 + η)(1− |z|2)

|1− µz|
= (1 + η)(1 + x) ≤ 2(1 + η).

Hence, the required result of (i) holds true for z = µ̄x, as x→ 1 .
Next to proof of (ii), where φ(z) is not of the form of (5.1). It follows from

[23] that

(5.9) |φ(z)| ≤ |z|Q(|z|), z ∈ D,

where Q(x) = x2+Dx+C
Cx2+Dx+1 , 0 ≤ x ≤ 1. Here D = |φ′′(0)|

2(1−|φ′(0)|) , which together with

(5.6) provides the expression of D in terms of a2 and a3. By the application

of Schwarz-Pick inequality at origin to χ(z) = φ(z)
z , where |χ| < 1, we observe

that
D

1 + |φ′(0)|
=

|χ′(0)|
1− |χ(0)|2

≤ 1.

Thus, D ≤ 1 + C = 1 + |φ′(0)| = 1 + |2a2|
1+η < 2, by |φ′(0)| = C < 1. Combining

(5.8) and (5.9), we have

(5.10) (1− |z|2)

∣∣∣∣∣ f ′′(z)f ′j,k(z)

∣∣∣∣∣ ≤ (1 + η)
|φ(z)|(1− |z|2)

|z|(1− |φ(z)|)
= (1 + η)G(|z|),

where G(x) = (1+x)(x2+Dx+C)
x2+x(D−C+1)+1 , 0 ≤ x ≤ 1. To prove that

(5.11) G(x) ≤ G(1) =
2(C +D + 1)

D − C + 3
.
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LetH(x) be the enumerator of theG′(x). ThenH(0), H ′(0), H ′′(0) are positive.
Hence H(x) ≥ 0 or G(x) is increasing in 0 ≤ x ≤ 1, which yields the condition
(5.11). Combining (5.10) with (5.11), finally we get the result,

‖Tf‖ ≤ 2(1 + η)
1 + C +D

D − C + 3
.

This completes the proof of Theorem 5.1. �

References

[1] R. Aghalary and Z. Orouji, Norm estimates of the pre-Schwarzian derivatives for α-

spiral-like functions of order ρ, Complex Anal. Oper. Theory 8 (2014), no. 4, 791–801.
https://doi.org/10.1007/s11785-013-0288-4

[2] M. F. Ali and A. Vasudevarao, Integral means and Dirichlet integral for certain classes

of analytic functions, J. Aust. Math. Soc. 99 (2015), no. 3, 315–333. https://doi.org/
10.1017/S1446788715000154

[3] V. V. Anh, k-fold symmetric starlike univalent functions, Bull. Austral. Math. Soc. 32
(1985), no. 3, 419–436. https://doi.org/10.1017/S0004972700002537
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heitskreises, Math. Scand. 3 (1955), 150–154. https://doi.org/10.7146/math.scand.a-

10435

[23] S. Yamashita, The Pick version of the Schwarz lemma and comparison of the Poincaré
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