• Title/Summary/Keyword: Analytic Wiener integral

Search Result 40, Processing Time 0.022 seconds

FOURIER-FEYNMAN TRANSFORMS FOR FUNCTIONALS IN A GENERALIZED FRESNEL CLASS

  • Yoo, Il;Kim, Byoung-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.75-90
    • /
    • 2007
  • Huffman, Park and Skoug introduced various results for the $L_p$ analytic Fourier-Feynman transform and the convolution for functionals on classical Wiener space which belong to some Banach algebra S introduced by Cameron and Strovic. Also Chang, Kim and Yoo extended the above results to an abstract Wiener space for functionals in the Fresnel class F(B) which corresponds to S. Recently Kim, Song and Yoo investigated more generalized relationships between the Fourier-Feynman transform and the convolution product for functionals in a generalized Fresnel class $F_{A_1,A'_2}$ containing F(B). In this paper, we establish various interesting relationships and expressions involving the first variation and one or two of the concepts of the Fourier-Feynman transform and the convolution product for functionals in $F_{A_1,A_2}$.

Conditional Integral Transforms on a Function Space

  • Cho, Dong Hyun
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.4
    • /
    • pp.413-431
    • /
    • 2012
  • Let $C^r[0,t]$ be the function space of the vector-valued continuous paths $x:[0,t]{\rightarrow}\mathbb{R}^r$ and define $X_t:C^r[0,t]{\rightarrow}\mathbb{R}^{(n+1)r}$ and $Y_t:C^r[0,t]{\rightarrow}\mathbb{R}^{nr}$ by $X_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}),\;x(t_n))$ and $Y_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}))$, respectively, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n=t$. In the present paper, using two simple formulas for the conditional expectations over $C^r[0,t]$ with the conditioning functions $X_t$ and $Y_t$, we establish evaluation formulas for the analogue of the conditional analytic Fourier-Feynman transform for the function of the form $${\exp}\{{\int_o}^t{\theta}(s,\;x(s))\;d{\eta}(s)\}{\psi}(x(t)),\;x{\in}C^r[0,t]$$ where ${\eta}$ is a complex Borel measure on [0, t] and both ${\theta}(s,{\cdot})$ and ${\psi}$ are the Fourier-Stieltjes transforms of the complex Borel measures on $\mathbb{R}^r$.

CONDITIONAL FORUIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT FOR A VECTOR VALUED CONDITIONING FUNCTION

  • Kim, Bong Jin
    • Korean Journal of Mathematics
    • /
    • v.30 no.2
    • /
    • pp.239-247
    • /
    • 2022
  • Let C0[0, T] denote the Wiener space, the space of continuous functions x(t) on [0, T] such that x(0) = 0. Define a random vector $Z_{\vec{e},k}:C_0[0,\;T] {\rightarrow}{\mathbb{R}}^k$ by $$Z_{\vec{e},k}(x)=({\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^T}\;e_1(t)dx(t),\;{\ldots},\;{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^T}\;ek(t)dx(t))$$ where ej ∈ L2[0, T] with ej ≠ 0 a.e., j = 1, …, k. In this paper we study the conditional Fourier-Feynman transform and a conditional convolution product for a cylinder type functionals defined on C0[0, T] with a general vector valued conditioning functions $Z_{\vec{e},k}$ above which need not depend upon the values of x at only finitely many points in (0, T] rather than a conditioning function X(x) = (x(t1), …, x(tn)) where 0 < t1 < … < tn = T. In particular we show that the conditional Fourier-Feynman transform of the conditional convolution product is the product of conditional Fourier-Feynman transforms.

CONDITIONAL INTEGRALS ON ABSTRACT WIENER AND HILBERT SPACES WITH APPLICATION TO FEYNMAN INTEGRALS

  • Chung, Dong-Myung;Kang, Soon-Ja;Lim, Kyung-Pil
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.319-344
    • /
    • 2004
  • In this paper, we define conditional integrals on abstract Wiener and Hilbert spaces and then obtain a formula for evaluating the integrals. We use this formula to establish the existence of conditional Feynman integrals for the classes $A^{q}$(B) and $A^{q}$(H) of functions on abstract Wiener and Hilbert spaces and then specialize this result to provide the fundamental solution to the Schrodinger equation with the forced harmonic oscillator.tor.

CONDITIONAL FOURIER-FEYNMAN TRANSFORMS AND CONDITIONAL CONVOLUTION PRODUCTS

  • Park, Chull;David Skoug
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.61-76
    • /
    • 2001
  • In this paper we define the concept of a conditional Fourier-Feynman transform and a conditional convolution product and obtain several interesting relationships between them. In particular we show that the conditional transform of the conditional convolution product is the product of conditional transforms, and that the conditional convolution product of conditional transforms is the conditional transform of the product of the functionals.

  • PDF

MULTIPLE Lp ANALYTIC GENERALIZED FOURIER-FEYNMAN TRANSFORM ON A FRESNEL TYPE CLASS

  • Chang, Seung Jun;Lee, Il Yong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.79-99
    • /
    • 2006
  • In this paper, we define a class of functional defined on a very general function space $C_{a,b}[0,T]$ like a Fresnel class of an abstract Wiener space. We then define the multiple $L_p$ analytic generalized Fourier-Feynman transform and the generalized convolution product of functionals on function space $C_{a,b}[0,T]$. Finally, we establish some relationships between the multiple $L_p$ analytic generalized Fourier-Feynman transform and the generalized convolution product for functionals in $\mathcal{F}(C_{a,b}[0,T])$.

  • PDF

GENERALIZED ANALYTIC FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTIONS ON A FRESNEL TYPE CLASS

  • Chang, Seung-Jun;Lee, Il-Yong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.223-245
    • /
    • 2011
  • In this paper, we de ne an $L_p$ analytic generalized Fourier Feynman transform and a convolution product of functionals in a Ba-nach algebra $\cal{F}$($C_{a,b}$[0, T]) which is called the Fresnel type class, and in more general class $\cal{F}_{A_1;A_2}$ of functionals de ned on general functio space $C_{a,b}$[0, T] rather than on classical Wiener space. Also we obtain some relationships between the $L_p$ analytic generalized Fourier-Feynman transform and convolution product for functionals in $\cal{F}$($C_{a,b}$[0, T]) and in $\cal{F}_{A_1,A_2}$.

A BANACH ALGEBRA AND ITS EQUIVALENT SPACES OVER PATHS WITH A POSITIVE MEASURE

  • Cho, Dong Hyun
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.809-823
    • /
    • 2020
  • Let C[0, T] denote the space of continuous, real-valued functions on the interval [0, T] and let C0[0, T] be the space of functions x in C[0, T] with x(0) = 0. In this paper, we introduce a Banach algebra ${\bar{\mathcal{S}}}_{{\alpha},{\beta};{\varphi}}$ on C[0, T] and its equivalent space ${\bar{\mathcal{F}}}({\mathcal{H}}) $, a space of transforms of equivalence classes of measures, which generalizes Fresnel class 𝓕(𝓗), where 𝓗 is an appropriate real separable Hilbert space of functions on [0, T]. We also investigate their properties and derive an isomorphism between ${\bar{\mathcal{S}}}_{{\alpha},{\beta};{\varphi}}$ and ${\bar{\mathcal{F}}}({\mathcal{H}}) $. When C[0, T] is replaced by C0[0, T], ${\bar{\mathcal{F}}}({\mathcal{H}}) $ and ${\bar{\mathcal{S}}}_{{\alpha},{\beta};{\varphi}}$ reduce to 𝓕(𝓗) and Cameron-Storvick's Banach algebra 𝓢, respectively, which is the space of generalized Fourier-Stieltjes transforms of the complex-valued, finite Borel measures on L2[0, T].

THE PRODUCT OF ANALYTIC FUNCTIONALS IN Z'

  • Li, Chenkuan;Zhang, Yang;Aguirre, Manuel;Tang, Ricky
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.455-466
    • /
    • 2008
  • Current studies on products of analytic functionals have been based on applying convolution products in D' and the Fourier exchange formula. There are very few results directly computed from the ultradistribution space Z'. The goal of this paper is to introduce a definition for the product of analytic functionals and construct a new multiplier space $F(N_m)$ for $\delta^{(m)}(s)$ in a one or multiple dimension space, where Nm may contain functions without compact support. Several examples of the products are presented using the Cauchy integral formula and the multiplier space, including the fractional derivative of the delta function $\delta^{(\alpha)}(s)$ for $\alpha>0$.

A NONCOMMUTATIVE BUT INTERNAL MULTIPLICATION ON THE BANACH ALGEBRA $A_t$

  • Ryu, Kun-Sik;Skoug, David
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.11-17
    • /
    • 1989
  • In [1], Johnson and Lapidus introduced a family { $A_{t}$ :t>0} of Banach algebras of functionals on Wiener space and showed that for every F in $A_{t}$ , the analytic operator-valued function space integral $K_{\lambda}$$^{t}$ (F) exists for all nonzero complex numbers .lambda. with nonnegative real part. In [2,3] Johnson and Lapidus introduced a noncommtative multiplication having the property that if F.mem. $A_{t}$ $_{1}$ and G.mem. $A_{t}$ $_{2}$ then $F^{*}$G.mem. A$t_{1}$+$_{t}$ $_{2}$ and (Fig.) Note that for F, G in $A_{t}$ , $F^{*}$G is not in $A_{t}$ but rather is in $A_{2t}$ and so the multiplication * is not internal to the Banach algebra $A_{t}$ . In this paper we introduce an internal noncommutative multiplication on $A_{t}$ having the property that for F, G in $A_{t}$ , F G is in $A_{t}$ and (Fig.) for all nonzero .lambda. with nonnegative real part. Thus is an auxiliary binary operator on $A_{t}$ .TEX> .

  • PDF