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FOURIER-FEYNMAN TRANSFORMS FOR FUNCTIONALS
IN A GENERALIZED FRESNEL CLASS

IL Yoo AND Byoung Soo Kim

ABsTRACT. Huffman, Park and Skoug introduced various results for the
L, analytic Fourier-Feynman transform and the convolution for func-
tionals on classical Wiener space which belong to some Banach algebra
S introduced by Cameron and Storvick. Also Chang, Kim and Yoo ex-
tended the above results to an abstract Wiener space for functionals in the
Fresnel class F(B) which corresponds to S. Recently Kim, Song and Yoo
investigated more generalized relationships between the Fourier-Feynman
transform and the convolution product for functionals in a generalized
Fresnel class F4,,45 containing F(B).

In this paper, we establish various interesting relationships and expres-
sions involving the first variation and one or two of the concepts of the
Fourier-Feynman transform and the convolution product for functionals
in Fa, Ag-

1. Introduction

The concept of an Ly analytic Fourier-Feynman transform for functionals
on classical Wiener space (Cy[0,T],m) was introduced by Brue in [3]. In [4],
Cameron and Storvick introduced an Lo analytic Fourier-Feynman transform
on classical Wiener space. In [12], Johnson and Skoug developed an L, ana-
lytic Fourier-Feynman transform theory for 1 < p < 2 that extended the results
in [3,4] and gave various relationships between the L; and Lo theories. Also
Huffman, Park and Skoug defined a convolution product for functionals on clas-
sical Wiener space and they obtained various results on the Fourier-Feynman
transform and the convolution product [9, 10, 11]. In [17], Park, Skoug and
Storvick investigated various relationships among the first variation, the convo-
lution product and the Fourier-Feynman transform for functionals on classical
Wiener space which belong to the Banach algebra S introduced by Cameron
and Storvick in [5]. For a detailed survey of previous work on Fourier-Feynman
transform and related topics, see [18].
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The concept of abstract Wiener space (H, B,v) was introduced by Gross in
[8]. Ahn, Chang, Kim and Yoo [1, 7] obtained the relationships among the
Fourier-Feynman transform, the convolution and the first variation for func-
tionals in the Fresnel class F(B) which corresponds to the Banach algebra
S. Moreover they [6] introduced an L, analytic Fourier-Feynman transform
for functionals on a product abstract Wiener space and established the re-
lationships between the Fourier-Feynman transform and the convolution for
functionals in a generalized Fresnel class Fa, a, containing F(B) introduced
by Kallianpur and Bromley [13]. Recently Kim, Song and Yoo [15] investigate
more generalized relationships between the Fourier-Feynman transform and the
convolution product for functionals in the generalized Fresnel class F4, a,.

In this paper, we establish various interesting relationships and expressions
involving the first variation and one or two of the concepts of the Fourier-
Feynman transform and the convolution product for functionals in Fa, 4,.

2. Definitions and preliminaries

Let (H,B,v) be an abstract Wiener space [16] and let {e;} be a complete
orthonormal system in H such that the e;’s are in B, the dual of B. For each
h € H and = € B, we define a stochastic inner product (h,z)™ as follows:

lim 3 h,e;)(z,e;), if the limit exists
(2.1) (h,z)~ = nm§< 1 3)

0, otherwise,

where (-,-) denotes the natural dual pairing between B and B*. It is well
known [13, 14] that for each h(# 0) in H, (h,-)™ is a Gaussian random variable
on B with mean zero and variance |h|?, that is,

(2.2) . /B exp{i(h, )™} dv(z) = exp{—%|h|2}.

A subset E of a product abstract Wiener space B? is said to be scale-
invariant measurable provided {(ax1,B%2) : (x1,z2) € E} is abstract Wiener
measurable for every a > 0 and 8 > 0, and a scale-invariant measurable set
N is said to be scale-invariant null provided (v x v)({(az1, 8z2) : (z1,22) €
N}) =0 for every & > 0 and § > 0. A property that holds except on a scale-
invariant null set is said to hold scale-invariant almost everywhere (s-a.e.). If
two functionals F and G are equals s-a.e., we write F' = G.

Let C denote the complex numbers and let

Q={X=(A,X) €C?:Rer >0 for k=1,2}

-and
Q={X=(A, ) €C?: A #0,Re )y >0 for k =1,2}.
Let F be a complex-valued function on B? such that the integral

Jr(A1, A) = / FOTY 220, 05 %25) d(v x v)(21,22)
B
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exists as a finite number for all real numbers A\; > 0 and Xy > 0. If there
exists a function Jf(A1, A2) analytic on Q such that Jk:(A1, A2) = Jr(A1, A2)
for all Ay > 0 and Ay > 0, then J} (A4, )\2) is defined to be the analytic Wiener

integral of F' over B2 with parameter X = (A1, Az), and for X € Q we write
anw)‘
/ F(zy,22) d(v x v)(21,22) = Jp (A1, A2).
B2

Let ¢; and ¢ be nonzero real numbers and let F' be a functional on B2
anwy

such that [z, * F(x1,22)d(v x v)(x1,x2) exists for all X € Q. If the following
limit exists, then we call it the analytic Feynman integral of F' over B? with
parameter ¢ = (q1,¢2) and we write

anfg
/2 F(z1,22) d(v x v)(x1, z2)
B

anwA
=_ lim / F(z1,z2)d(v x v)(z1, x2),
A—{(—iq1,—igq2) J/ B2

where X = (A1, A2) approaches (—iq1, —ig2) through Q.
Notation 2.1. (i) For X = (A, A2) € Q and (y1,2) € B2, let

3 Ty = [ Flat v+ i) dy x v)(an,aa)

(ii) Let 1 < p < oo and let {G,,} and G be scale-invariant measurable
functionals such that, for each ¢ > 0 and 3 > 0,

(2.4) lim |Gz, Bz2) — Glazy, Bea)|P d(v x v)(z1,22) = 0,

T~ 00

where p and p’ are related by % + 51; = 1. Then we write
(2.5) Lim.(w?)(G,) ~ G
n—0oC
and call G the scale-invariant limit in the mean of order p’. A similar
definition is understood when n is replaced by the continuously varying
parameter X

Definition 2.2. Let ¢; and ¢; be nonzero real numbers. For 1 < p < co, we
define the L, analytic Fourier-Feynman transform Té.p ) (F) of F on B? by the
formula (X € Q)
(2:6) TP () = Lim  (@)TEF)nv2),

—(—iq1,—iq2

whenever this limit exists. We define the L, analytic Fourier-Feynman trans-
form TV (F) of F by (X € Q)

(2.7) TPy p) = lim o T(F) (o, ),

A (—iq1,—1qz2)
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for s-a.e. (y1,y2) € B2

Definition 2.3. Let F and G be functionals on B?. For ¢ = (q1,¢2) with
nonzero real numbers ¢; and g2, we define their convolution product (if it
exists) by

(F *G)g(y1,y2)

(2.8) :/;nf‘fF<y1;§l“1, yz\j;z) G<y1\;§$1’ yz\;;z)(i(y « 0)(z1,72).

Definition 2.4. Let F be a functional on B? and let wy,ws € B. Then

9 0
(2.9)  OF(zy,z2|wr, w2) = EF(II + twl,azg)lt:0+5£F(ml,m2 + twg)(tzo
(if it exists) is called the first variation of F(x;,z2) in the direction (wi,ws).

Let M(H) denote the space of complex-valued countably additive Borel
measures on H. Under the total variation norm | - || and with convolution as
multiplication, M(H) is a commutative Banach algebra with identity [2].

Now we state the generalized Fresnel class F4, 4, introduced by Kallianpur
and Bromley [13]. Let A; and A be bounded, non-negative self-adjoint oper-
ators on H. Let F4, a, be the space of all s-equivalence classes of functionals
F on B? which have the form

2
(2.10) F(z1,z2) =/ exp{Zi(A}/Qh, a:j)N} do(h)
H -
7=1
for some complex-valued countably additive Borel measure ¢ on H.

As is customary, we will identify a functional with its s-equivalence class and
think of F4, 4, as a collection of functionals on B? rather than as a collection
of equivalence classes. Moreover the map ¢ — [F| defined by (2.10) sets up
an algebra isomorphism between M (H) and F4, a, if the range of 4; + Ay is
dense in H. In this case, F4, 4, becomes a Banach algebra under the norm
IFl = lloll [13].

Let F(B) denote the Fresnel class of functionals F on B of the form

(2.11) Flaz) = /H expli(h, )™} do(h)

for some ¢ € M(H). If A; is the identity operator on H and Az = 0, then
Fa,,4, is essentially the Fresnel class F(B).

Let 1 < p < o0, § = (q1,92) and ¢; = (gj1,gj2) where g;, g;1 and g;2 are
nonzero extended real numbers for j = 1,2 throughout this paper. We adopt
the convention i%.o = 0. Thus if g; = £oo for j = 1,2, then

(2.12) TP (F) (91, 32) = Fly1,92)
and
(2.13) (F*Gatvn,va) = F( 5 5)6( 5. 75).
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We finish this section by introducing three results on the existence of the
Fourier-Feynman transform and convolution product in [15] which play an im-
portant role in this paper.

Theorem 2.5. Let F' € Fa, a, be given by (2.10). Then the analytic Fourier-

Feynman transform T (v )(F) exists, belongs to Fa, 4, and is given by the for-
mula

2

(2.14) T (F) (1, 2) = /H exp{ 3 (AL 2h,;)™ } dor(h)
j=1

for s-a.e. (y1,y2) € B2, where o, is the measure defined by

(2.15) o(E / exp{zz:[ T |A;/2h|2}}do(h)

j=1

.

for E € B(H).

Theorem 2.6. Let F,G € Fa,,a, be given by (2.10) with corresponding finite
Borel measures o and p in M(H). Then the convolution product (F«G)g exists,
belongs to Fa, a, and is given by the formula

@16) (P xGoalman) = [ exp{3 4} hyy)} duet)

ji=1
for s-a.e. (y1,y2) € B?, where pe = po ¢! with ¢ : H? — H is a function

defined by ¢(A 1/2h Al/zk Al-/2 h + k) and p is the measure defined by
V2

2.17)  w(E z/exp{i[ 1AM (h - k)l]}da(h)dp(k)

7j=1
for E € B(H?).

Since Tg)(F) and Tg)(G) belong to Fa, 4, by Theorem 2.5, we apply
Theorem 2.6 to obtain the following corollary.
Corollary 2.7. Let F' and G be given as in Theorem 2.6. Then
2
(218)  (T(F) * T (O)alyr, v2) = /H exp{ > i(A4} k1) } dpuso(h)
j=1

for s-a.e. (y1,v2) € B2, where pyc = p:0 ¢~ and ¢ is given as in Theorem 2.6
and pg 13 the measure defined by

w(E) = [ exp{Z[——l ”W—%%m;”w
- 4Emj-”(h — K)2] } do(h) do(k)

(2.19)
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for E € B(H?).

3. The first variation of functionals in a generalized Fresnel class

In this section we establish various interesting relationships and expressions
involving the first variation and one or two of the concepts of the Fourier-
Feynman transform and the convolution product for functionals in Fa,,4,.

We begin this section by showing the existence of the first variation for
functionals in Fa, 4,.

Theorem 3.1. Let F € Fa, 4, be given by (2.10), where o satisfies the con-
dition
(3.1) / |AYh dlo|(h) < oo

JH

for 5 = 1,2. Then, for s-a.e. (wy,ws) € B2, the first variation 0F exists,
belongs to Fa, a, as a function of (y1,y2) and is given by the formula

2
(3.2) OF (y1,y2|w1, w2) / eXp{Z 1/2h, yj)N}de(h)

for s-a.e. (y1,y2) € B2, where o, is the measure defined by

(3.3) / [szz A1, w;)~| do(h)

=1
for E € B(H).
Proof. For s-a.e. (w1, ws2) € B?, we have

OF (y1, y2 w1, wa)

P 2
=§ (/H eXP{Z (A1/2h yJ) + it(A;/Qh’ wl)w} da(h)) |t=0

j=1

(/ exp{éz 1/zh 2 Uj) +it(A;/2h,w2)N}da(h))

for s-a.e. (y1,¥2) € B%. Then we obtain

t=0

2

2
SF(y1, y2lwi, wa) = / [Z 1/2h wy) ] exp{Zi(A;/zh,yj)N} do(h)
; pt

provided we can interchange the differentiations and the integrations above.
But this is justified because

/H [(AY2h, w;)™ | dlo|(h) < oo
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for s-a.e. (w1, w2) € B? and for j = 1,2, which we know easily from the fact
that

1/2 ~ 2\1/2 1/2
| s diol avtas) = (3) [ 143kl

which is finite by (3.1). Now it is easy to see that §F(y1,ya|wi, ws2) can be
rephrased as (3.2) where o, is the measure defined by (3.3). O

In view of Theorems 2.5, 2.6, 3.1 and Corollary 2.7, many of the functionals
that occur in this paper are elements of Fa, 4, as a function of (y1,y2) € B2.
For example, let F' and G be any functionals in F 4, 4,. Then,

; ®)(FY and T
(1) by Theorem 2.5, the functionals T, (F') and T’ (F) belong to Fa, 4,,

(2) by Theorem 2.6, the functional (T (F) « Ty (G))7 belongs to Fa, 4,,

(3) finally, by Theorem 3.1, the functional & (Tg)(F) * Téf)(G))g(yl, ya|
w1, wz) belongs to Fa, 4, as a function of (yi,y2).

By similar arguments, all of the functionals that arise in (3.4), (3.6), (3.7),
(3.9), (3.10), (3.12) and (3.14) below belong to F4, 4, as a function of (y1,y2).

Applying Theorem 3.1 to the functional in (2.14) we have the following
result.

Corollary 3.2. Let F be given as in Theorem 3.1. Then, for s-a.e. (w1, ws) €
B2, the first variation 6Tq£" )(F ) exists and is given by the formula

2
(34) ST (F)(yr, yahwn, we) = /HEXD{Zi(A}/Qh, yj)N} do+(h)
j=1
for s-a.e. (y1,y2) € B2, where oy, is the measure defined by
2 . 2 ;
) 2 ~ 1/2

(3.5) o (E) = / {Z z(Aj/ hyw;) } exp{Z[—TlA/ hﬂ } do(h)

BNl = 24
for E € B(H).

Applying Corollary 3.2 repeatedly, we obtain the following result.

Corollary 3.3. Let n be a natural number and let F € F4, 4, with

/ LAY R | AV dlo| () < oo,
H
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for all nonnegative integers n1 and ns with n1 +ng = 1,2,...,n. Then, for
s-a.e. (wy,wz) € B%, 1=1,...,n, we have

5nT£p)(F)(' '|w117U{12) w ([ w1y, Wn—1)2) (Y1, Y2 wn1, wn2)

/H 1/2h )™ ]

=1 j=1
2 .
1/2 Y aL2 2]
exp{;[ h,y;)~ 2(]j|A] h| }da(h)
for s-a.e. (y1,y2) € B2,

From now on, we show various interesting relationships and expressions in-
volving the concepts of the Fourier-Feynman transform and the first variation.

In our next two theorems, we show that the Fourier-Feynman transforms of
JTg )(F) with respect to the first and second argument of variation equal to
the variation of the Fourier-Feynman transforms.

Theorem 3.4. Let F be given as in Theorem 3.1. Then, for s-a.e. (w1, ws) €
B2

3.7 TPWBTL(F)(C, hwy, w2) (g, y2) = 6TF (F) (1, yalwr, wo)
for (y1,y2) € B2, where §= (q1,q2) with 1/q; = 1/g;1 +1/q;2 for j =1,2.

Proof. Since 5Tq£f)(F) (y1, y2lw1, w2) belongs to Fa, 4, as a function of (y1,y2),
we apply Theorem 2.5 to the expression (3.4) to obtain

TPETE (F)(-,-fwy, wa)] (v1, y2)

_ /H exp{i[ (A hy ;)™ — ijm;“hﬁ]}datv(h)-

Using the definition of the measure oy, in (3.5) and the relationship between
gj1, gj2 and gj, we see that the last expression is equal to

S om0 - 4] e
j=1

which is equal to the right hand side of (3.7), by Corollary 3.2, and this com-
pletes the proof. O

Mw

=1

Theorem 3.5. Let F be given as in Theorem 3.1. Then, for s-a.e. (w1, ws) €
BQ

(38)  TPOTY (F)y1,val )] (w1, we) = STL (F)(ys, yolws, wo)
for (yl,yg) € B2,
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Proof. Using (3.4) we have, for all X = (A1, A2) with A;,de > 0 and s-ae.
(y1,92) € B?,

T [TE) (F) (g1, yal-, )] (wr, ws)

:/ (5Tq(f) (F)(yl, y2|)\_1/2{L‘1 + wy, )\_1/2.’122 -+ ’11)2) d(l/ X I/)(CL‘l, 132)

/BZ/ Z (A0 A 2 4 ) ]

exp{z[z(A;/Qh, i)~ — |Al/2h| }} o(h) d(v x v)(z1,72).

Jj=1

Fubini theorem together with the fact that [;(A 1/ %h )~ dv(zj) =0 for j =
1,2 enable us to conclude that

TlSTE (F) (g1, yal- )] (wn, we)

=/H[ZQ:“AJI'/2’WJ ]eXP{XQ:[ A hyyy)™ = %;le;/ghIQHda(h).

j=1 j=1

But the right hand side of the last expression is independent of the vector X and
S0 Tq(.f ) [5Té(f )(F)(y1, |, )] (w1, ws) is given by the same expression. Finally by
Corollary 3.2 we obtain (3.8). O

Using Corollary 2.7 and Theorem 3.1, we obtain an expression for the first
variation of the convolution product as follows.

Theorem 3.6. Let F,G € Fa, a, with corresponding finite Borel measures ¢
and p respectively, where o and p satisfy the conditions

/ |AY2h] dlo](h) < oo, / A2k dlo] (k) < o0
o H
for j =1,2. Then, for s-a.e. (w1, wy) € B?

MITP(F) * T(@))glyr, yalwn, wo)
2 . 2 .
(AP (h+ k), w;) | ex (AR B), )™
(3.9) / [2 7! J p{;[\/ﬁ Y
1/2 1 1/2 i /2
- @mj AP = g A5/ PHI? = 143 B)2] } do(k) do(k)

for s-a.e. (y1,y2) € B2.
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Proof. Let ui. be the measure given as in Corollary 2.7. Then

[ 143 bl el ) = / flA”Q(Hk)ldlal( ) diol ()
L 1/2 0 o 1/2
<= (ol [ 143 hldiolw) + bl | 15778 alol )]

which is finite. Hence we apply Theorem 3.1 to the expression (2.18) to obtain

5(T£P> (F) * TEP’ (G)) (v, y2lwr, w2)
2

/ [ZZ 1/2h 05) ]GXP{ZQ: (4 by }dﬂtc(h)-

4=1 =1

Finally by the definition of u;. in Corollary 2.7, we have the result. O

In our next two theorems, we obtain expressions for the convolution product
with respect to the first and second argument of the first variation.

Theorem 3.7. Let F' and G be given as in Theorem 3.6. Then, for s-a.e.
(wl,w2) € B2

(STP(F) (-, Jwr, we) % ST (G)(,-lwn, wa)) gy, v2)
2
- i }/2 AL/?
—/HQ[;( »][]2;( k)]
(3.10) 2 . y . p
1 1/2 ~ 1 1/2; 12
eXp{;[ji(Aj (h+8),3)™ = 3—1A}*H)
= g AV K = A= D]} do(h) do(h)

for s-a.e. (y1,v2) € B2

Proof. Applying Theorem 2.6 to the expressions (3.4) for F' and G, we see that
the left hand side of (3.10) is given by

/H exp{iz’(A;“h,yj)N}duc(m

where p. = po ¢! and p is given by (2.17) with the measure o and p are
replaced by oy, and p;,, defined in (3.5). Hence we have the result. J



FOURIER-FEYNMAN TRANSFORMS FOR A GENERALIZED FRESNEL CLASS

85

Theorem 3.8. Let F' and G be given as in Theorem 3.6. Then, for s-a.e.

(wl,w2)632
BT (F)(yr, y2l-, ) * OTE (G (1, w2l ) gwr, wo)
2 . .
1 1/2 7 1/2 o
- —(A:?h, - .
/m{[Zﬁ(a w)] [ 754 k]
(3.11) 2 )
Zz— 1/2h Al/z }exp{Z[z A1/2 (h+k) y,)
= o
_ b 1/2
qulej h|? - ]A k|]}da

for s-a.e. (y1,y2) € B2.

Proof. For all X = (A1, Az) with Ay, A2 > 0 and s-a.e. (wy,w2) and (y1,y2), we

have

(JTg)(F)(yl,y2|.’ ) * 5T§f)(G)(y1, yal-, ) (wr, ws)

+)\_1/2:c1 wz+)\'1/2x2
= | TP (F)(yy, | LT 22
q ( )(yl Y2 /2 /o
wy — Al_l/le wa — /\2—1/2302

5Tq§f)(G) (yl,yz 7 , NG ) d(v x v)(z1,z2).

But using the expressions (3.4) for F and G, we see that the last expression is

equal to

2 1 w; AT 1/2 - 5 ’lU] )\;-1/21:‘7 -
Jo [ I =) T[S =) ]

Jj=1 j=1

~ ) i /2
eXP{Z[‘l( ;/2(h + k), y;)~ — Z;lA;/Zh\z _ ng_j\Aj/ k|2]}

=1

do(h) dp(k) d(v x v)(z1, z2).

Fubini theorem together with the facts that AY 2h, z;)~dv(z;) =0 and
B\*%j J 2

[ ) (A k) e = (AR, AR
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enable us to conclude that

(STE (F)(y1, w2l ) % OTL (G (w1, a2l ))a(wr, wa)

2 .
_ /H 2{[2%(,4;/%,% ][275 AV, w,)]

j=1
1 2
i 172 : 1/2
- E}IAj hJ? - T k| ]}da

The last expression is an analytic function of X € Q. Hence letting X —
(—iq1, —1g2) we have the result. d

In our next two theorems, we obtain relationships involving the Fourier-
Feynman transform of & (Tg (F) *Tq%p )(G)); with respect to the first and second
argument of the first variation.

Theorem 3.9. Let F and G be given as in Theorem 3.6. Then, for s-a.e.
(w1, wz) € B? and (y1,y2) € B?

T ST (F) T (G))gls wr, w2)) (1, v2)
= 6Tq£p)[(Tg)(F) * Tg)(G))i] (v1, 2w, we)

(3.12) _sr@ (py (YL Y2 |WL W2\oe) (YL Y2
4 ( )<\/§’\/_ f’f) qz( )(\/ﬁ’\/ﬁ>
)y ( 4o ) gy (YL 2| W
1P )8 OG5 vl v va)
where q—;- = (gj1,q}2) with ¢}y is a nonzero extended real number such that

/g +1/g5u = 1/qj; for j,1=1,2.
Proof. The first equality is obtained by Theorem 3.4. The second expression
in (3.12) is equal to

0

(101 () « T (@ + tun,10)|

+ (TP (F) = TGl + )|

But by Theorem 3.13 of [15]

t=0

TENT (F) « T (@)l (s + twn, o)

—7® (% Titwr Y2 T® (o (Y +tw1,gz_
DE( 5 BTG (s ﬁ)
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and
TP (F) « T (G))al s 2 + tws)
(») y1 Y2 Htws\, (p) Y1 Y2 +twe
=TP(F)( %= (@ Y1 Yp T T2
o (e )
Hence we obtain the second equality in (3.12). a

Theorem 3.10. Let F and G be given as in Theorem 3.6. Then, for s-a.e.
(w1, w2) € B? and (y1,y2) € B?

T® (5T (F) » TP(G)) gy, 2l )] (wi, w2)

(3.13) g o,
- (Tti'l( )*Tq}( Naly1, yalwi, wa).

Proof. Since 5(Tg)(F) * Tg)(G))q(yl, y2|w1,ws) does not belong to Fa, 4, as
a function of (w1, ws), we can not apply Theorem 3.5 in this case. But note
that by Corollary 2.7 and Theorem 3.1 '

5(Tg>(F) * quf)(G))q“(yl, Yya|wi, we)
2 2
= [ [S0 *hwy) exp{ 3043 o)  del)
j=1 j=1

where p. is the measure given as in Corollary 2.7. Now for all X = (A1, A2)
with A1, A2 > 0, we have

T\ [6(T (F) « TP (G))gy1, vel, ) (wi, w2)

/132/ Zz 1/2h AT 1/2m + w;)~ ]exp{jzi:lz 1/2h y;)~ }
dpse(h) d(z/ x v)(x1,x2).

Fubini theorem together with the facts that |, B(A;/ ’h, z;)~ dv(z;) = 0 for
7 = 1,2 enable us to conclude that

TAB(ID (F) « T (C))gwr, val- ) (wn, w2)
2 2

:/H[ZZ(AI/% w;)™ }eXp{Zi(A;/Zh,yj)N}dutc(h)
=1 ot

which is equal to the expression for 6(Tq£f’ ) (F) « Tq%’ )(G))q(yl, y2|wi, we) given
in the first part of this proof. Hence we obtain (3.13). O

In the following theorem, we obtain relationships involving the Fourier-
Feynman transform of (6Tq£f)(F)(-, Jwy, we) * 6Tl§f)(G)(-, Jwy,we))g with re-
spect to (y1,y2).
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Theorem 3.11. Let F and G be given as in Theorem 3.6. Then, for s-a.e.
(w1, ws) € B? and (y1,y2) € B?

TP (OTS (F) (-, Jwn, wa) * 6T (G) (- Jwn, w2))a(v1, o)
Y
= TPBT (F)(- o, wa)] (L, 22)

(3.14) ) [57() z){i y\f
13 [5Tci‘: (G)(-,'lwl,wz)]<ﬁ,%)
= 5T§’)(F)(%, %1101,102)57’5{)(0)(%, \y/—%'wl,uu)
where q;’- = (¢j1,952) with ¢j; s a nonzero extended real number such that

q+1/g = 1/qj for j,1=1,2.

Proof. The first equality is obtained by Corollary 3.9 of [15] and the second
equality is obtained by Theorem 3.4. a

In the following theorem, we obtain relationships involving the Fourier-
Feynman transform of (5Tq£f’>(F)(y1, yal, ) * 5Tq£f) (G){y1, y2!-, )5 with respect
to (wl, wg).

Theorem 3.12. Let F and G be given as in Theorem 3.6. Then, for s-a.e.
(wlaw2) € B2 and (ylayQ) € 32

(3.15)
T OTE (F)(y1, 2], ) % ST (G (wn, vl ) awn, wo)
= TP (F) (12 5 75 )01 (@) (wove| 5. %)

= T;p)[dT;‘f)(F)(ylayﬂ'y‘)](\ljl— f)T(p)[éT(p)(G)(yl,ygl-,-)](%’ %)

Proof. The second equality is obtained by Theorem 3.5. To prove the first
equality let X = (A1, A2) with Ay, A2 > 0. Then for s-a.e. (wy,wsz) and (y1,v2),
we have

TASTY (F)(y1, 12, +) % ST (G) (11, 92l ) g(wn, w2)
= [ T )12k, 6T (G2l g
()\1—1/2z1 + wl,)\z_l/sz + we) d(v X v)(z1, 22).

By Theorem 3.8 the last expression is equal to

2 .

? 1/2 —-1/2 ~

— h)\ T+ w;

/B/H Ef ? J)]
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2 i 2 i
2 : 1/2 -1/2 2 : 1/2 1/2

2 . .
1/2 1 1/2, 2 ¢ 1/24,2
exp{ [(A (h+1),5)" = A PHE = 14 k|]}

do () dp(k) d(v x v)(x1,32).

By the same method as in the proof of Theorem 3.8, if we evaluate the Wiener
integral in the last expression, we obtain :

Joll s ][5 ]

) 1/25 2 1 1/2 2:| }
— —|A R — —|Ak do(h) dp(k).
o V5T = o AP do() dp(h)
But the last expression is an analytic function of X € Q. Hence letting X —
(—ig1, —ig2) we have

TP GTE (F) w1, val ) % 6TL (G) (w1, val-» ) )g(ws, wa)
2 2
ol e
2

oxp {3505 h9,15)” = 50— A5 ] o) ot

which is equal to the second expression of (3.15) by Corollary 3.2 and this
completes the proof. 0

Remark 3.13. As we commented in Section 2, if A; is the identity operator
in H and Ay = 0, then F4, 4, is essentially the Fresnel class F(B). Hence
we obtain all the results in Section 4 of [1] as corollaries of the results in this
section.
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