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MULTIPLE Lp ANALYTIC GENERALIZED
FOURIER–FEYNMAN TRANSFORM

ON A FRESNEL TYPE CLASS

Seung Jun Chang* and Il Yong Lee**

Abstract. In this paper, we define a class of functional defined on a very
general function space Ca,b[0, T ] like a Fresnel class of an abstract Wiener
space. We then define the multiple Lp analytic generalized Fourier–Feynman
transform and the generalized convolution product of functionals on function
space Ca,b[0, T ]. Finally, we establish some relationships between the multi-
ple Lp analytic generalized Fourier–Feynman transform and the generalized
convolution product for functionals in F(Ca,b[0, T ]).

1. Introduction

Let C0[0, T ] denote one-parameter Wiener space, that is the space of

R-valued continuous functions x(t) on [0, T ] with x(0) = 0. The concept

of an L1 analytic Fourier–Feynman transform(FFT) for functionals on the

Wiener space was introduced by Brue in [2]. In [3], Cameron and Storvick

introduced an L2 FFT on the Wiener space. In [10], Johnson and Skoug

developed an Lp FFT theory for 1 ≤ p ≤ 2 that extended the results in

[2,3] and established various relationships between the L1 and L2 theories.

In [11], Huffman, Park and Skoug developed an Lp FFT theory on certain

classes of functionals defined on Wiener space and they defined a convolution

product for functionals in the classes, and they obtained various results for

the FFT and convolution product [11,13,12]. On the other hand, in [1], Ahn

investigated the L1 FFT theory on the Fresnel class F(B) of an abstract
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Wiener space, and in [4] Chang, Song and Yoo studied the FFT and the

first variation on an abstract Wiener space and the Fresnel class F(B).

In [6], Chang and Choi studied the multiple Lp analytic GFFT on the

Banach algebra.

In recent paper [7], Chang and Skoug established various results involv-

ing generalized Feynman integrals, and the generalized FFTs(GFFT) for

functionals defined on a very general function space Ca,b[0, T ] rather than

on the Wiener space C0[0, T ]. The function space was introduced by Chang

and Chung in [5].

In [8], Chang and Lee studied the GFFT and CGFFT on a Fresnel type

class F(Ca,b[0, T ]).

In Section 2 of this paper, we introduce the basic concepts and the nota-

tions for our research. In Section 3, we study the Lp analytic GFFT and the

GCP on a function space Ca,b[0, T ]. Finally, we establish some relationships

between the multiple Lp analytic GFFT and the GCP for functionals in

F(Ca,b[0, T ]).

2. Definitions and preliminaries

Let D = [0, T ] and let (Ω,B, P ) be a probability measure space. A

real-valued stochastic process Y on (Ω,B, P ) and D is called a generalized

Brownian motion process if Y (0, ω)=0 almost everywhere and for 0 = t0 <

t1 < · · · < tn ≤ T , the n-dimensional random vector (Y (t1, ω), · · · , Y (tn, ω))

is normally distributed with the density function

(2.1)

K(~t, ~η) =
(
(2π)n

n∏

j=1

(b(tj)− b(tj−1))
)−1/2

· exp
{
−1

2

n∑

j=1

((ηj − a(tj))− (ηj−1 − a(tj−1)))2

b(tj)− b(tj−1)

}

where ~η = (η1, · · ·, ηn), η0 = 0, ~t = (t1, · · · , tn), a(t) is an absolutely

continuous real-valued function on [0, T ] with a(0) = 0, a′(t) ∈ L2[0, T ], and

b(t) is a strictly increasing, continuously differentiable real-valued function

with b(0) = 0 and b′(t) > 0 for each t ∈ [0, T ].
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As explained in [15,p.18-20], Y induces a probability measure µ on the

measurable space (RD,BD) where RD is the space of all real valued func-

tions x(t), t ∈ D, and BD is the smallest σ-algebra of subsets of RD with

respect to which all the coordinate evaluation maps et(x) = x(t) defined on

RD are measurable. The triple (RD,BD, µ) is a probability measure space.

This measure space is called the function space induced by the generalized

Brownian motion process Y determined by a(·) and b(·).
We note that the generalized Brownian motion process Y determined by

a(·) and b(·) is a Gaussian process with mean function a(t) and covariance

function r(s, t) = min{b(s), b(t)}. By Theorem 14.2 [15,p.187], the prob-

ability measure µ induced by Y , taking a separable version, is supported

by Ca,b[0, T ] (which is equivalent to the Banach space of continuous func-

tions x on [0, T ] with x(0) = 0 under the sup norm). Hence (Ca,b[0, T ],

B(Ca,b[0, T ]), µ) is the function space induced by Y , where B(Ca,b[0, T ]) is

the Borel σ-algebra of Ca,b[0, T ].

A subset B of Ca,b[0, T ] is said to be scale-invariant measurable(s.i.m.)[9]

provided ρB is B(Ca,b[0, T ])-measurable for all ρ > 0, and a scale-invariant

measurable set N is said to be scale-invariant null set provided µ(ρN) = 0

for all ρ > 0. A property that holds except on a scale-invariant null set is

said to hold scale-invariant almost everywhere(s-a.e.). If two functionals F

and G defined on Ca,b[0, T ] are equal s-a.e., then we write F ≈ G.

Let L2
a,b[0, T ] be the set of functions on [0, T ] which are Lebesgue measur-

able and square integrable with respect to the Lebesgue-Stieltjes measures

on [0, T ] induced by a(·) and b(·); i.e.,

(2.2) L2
a,b[0, T ] =

{
v :

∫ T

0

v2(s)db(s) < ∞ and
∫ T

0

v2(s)d|a|(s) < ∞
}

where |a|(t) denotes the total variation of the function a on the interval [0, t].

For u, v ∈ L2
a,b[0, T ], let

(2.3) (u, v)a,b =
∫ T

0

u(t)v(t)d[b(t) + |a|(t)].
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Then (·, ·)a,b is an inner product on L2
a,b[0, T ] and ‖u‖a,b =

√
(u, u)a,b is a

norm on L2
a,b[0, T ]. In particular, note that ‖u‖a,b = 0 if and only if u(t) = 0

a.e. on [0, T ]. Furthermore, (L2
a,b[0, T ], ‖ · ‖a,b) is a separable Hilbert space.

Let {φj}∞j=1 be a complete orthonormal set of real-valued functions of

bounded variation on [0, T ] such that

(φj , φk)a,b =
{

0 , j 6= k

1 , j = k
,

and for each v ∈ L2
a,b[0, T ], let

(2.4) vn(t) =
n∑

j=1

(v, φj)a,bφj(t)

for n = 1, 2, · · · . Then for each v ∈ L2
a,b[0, T ], the Paley-Wiener-Zygmund

(PWZ) stochastic integral 〈v, x〉 is defined by the formula

(2.5) 〈v, x〉 = lim
n→∞

∫ T

0

vn(t)dx(t)

for all x ∈ Ca,b[0, T ] for which the limit exists; one can show that for each v ∈
L2

a,b[0, T ], the PWZ stochastic integral 〈v, x〉 exists for µ-a.e. x ∈ Ca,b[0, T ].

We denote the function space integral of a B(Ca,b[0, T ])-measurable func-

tional F by

E[F ] =
∫

Ca,b[0,T ]

F (x)dµ(x)

whenever the integral exists.

Throughout this paper, we will assume that each functional F we consider

satisfies the conditions:

(2.6) F : Ca,b[0, T ] → C is s.i.m. and s-a.e. defined,

and

(2.7) Ex

[|F (ρx)|] < ∞ for each ρ > 0.

Next, we state the definition of the generalized analytic Feynman integral.
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Definition 2.1. Let C denote the complex numbers, let C+ = {λ ∈ C :

Reλ > 0} and let C̃+ = {λ ∈ C : λ 6= 0 and Reλ ≥ 0}. Let F satisfy

conditions (2.6) and (2.7) above. If there exists a function J∗(λ) analytic in

C+ such that J∗(λ) = Ex[F (λ−1/2x)] for all λ > 0, then J∗(λ) is defined to

be the analytic function space integral of F over Ca,b[0, T ] with parameter

λ, and for λ ∈ C+ we write

(2.8) Eanλ [F ] ≡ Eanλ
x [F (x)] = J∗(λ).

Let q 6= 0 be a real number and let F be a functional such that Eanλ [F ]

exists for all λ ∈ C+. If the following limit exists, we call it the generalized

analytic Feynman integral of F with parameter q and we write

(2.9) Eanfq [F ] ≡ Eanfq
x [F (x)] = lim

λ→−iq
Eanλ [F ]

where λ → −iq through values in C+.

Next, we state the definition of the GFFT.

Definition 2.2. For λ ∈ C+ and y ∈ Ca,b[0, T ], let

(2.10) Tλ(F )(y) = Eanλ
x [F (y + x)].

For p ∈ (1, 2], we define the Lp analytic GFFT, T
(p)
q (F ) of F , by the formula

(λ ∈ C+)

(2.11) T (p)
q (F )(y) = l.i.m.λ→−iqTλ(F )(y)

if it exists; i.e., for each ρ > 0,

lim
λ→−iq

∫

Ca,b[0,T ]

∣∣Tλ(F )(ρy)− T (p)
q (F )(ρy)

∣∣p′dµ(y) = 0

where 1/p + 1/p′ = 1. We define the L1 analytic GFFT, T
(1)
q (F ) of F , by

the formula (λ ∈ C+)

(2.12) T (1)
q (F )(y) = lim

λ→−iq
Tλ(F )(y)

if it exists.

We note that for 1 ≤ p ≤ 2, T
(p)
q (F ) is defined only s-a.e.. We also note

that if T
(p)
q (F ) exists and if F ≈ G, then T

(p)
q (G) exists and T

(p)
q (G) ≈

T
(p)
q (F ).
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Definition 2.3. Let F and G be measurable functionals on Ca,b[0, T ].

For λ ∈ C̃+,we define their GCP (F ∗G)λ (if it exists) by

(2.13) (F ∗G)λ(y) =





Eanλ
x [F (y+x√

2
)G(y−x√

2
)] , λ ∈ C+

E
anfq
x [F (y+x√

2
)G(y−x√

2
)] , λ = −iq, q ∈ R− {0}

.

Remark 2.1. (i) When λ = −iq, we denote(F ∗G)λ by (F ∗G)q.

(ii)For any real q 6= 0,we briefly describe F ∗q and ∗Fq of a functional F

on Ca,b[0, T ] as follow:

(2.14) F ∗q = (F ∗ 1)q and ∗Fq = (1 ∗ F )q.

The following generalized analytic Feynman integral formula is used sev-

eral times in this paper.

(2.15) Ex[exp{iλ−1/2〈v, x〉}] = exp
{
− 1

2λ
(v2, b′) + iλ−1/2(v, a′)

}

for all λ ∈ C̃+ and v ∈ L2
a,b[0, T ] where

(2.16) (v, a′) =
∫ T

0

v(t)a′(t)dt =
∫ T

0

v(t)da(t)

and

(2.17) (v2, b′) =
∫ T

0

v2(t)b′(t)dt =
∫ T

0

v2(t)db(t).

In this paper, for each λ ∈ C̃+, λ−1/2(or λ1/2) is always chosen to have

positive real part.

Let

(2.18)

C ′a,b[0, T ] =
{
w ∈ Ca,b[0, T ] : w(t) =

∫ t

0

z(s)db(s) for some z ∈ L2
a,b[0, T ]

}
.

For w ∈ C ′a,b[0, T ], with w(t) =
∫ t

0
z(s)db(s) for t ∈ [0, T ], let Dt : C ′a,b[0, T ] →

L2
a,b[0, T ] be defined by the formula

(2.19) Dtw = z(t) =
w′(t)
b′(t)

.
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Then C ′a,b ≡ C ′a,b[0, T ] with inner product

(2.20) (w1, w2)C′a,b
=

∫ T

0

Dtw1Dtw2db(t)

is a separable Hilbert space. Furthermore, (C ′a,b[0, T ], Ca,b[0, T ], µ) is an

abstract Wiener space. For more details, see [14].

Note that for all w, w1, w2 ∈ C ′a,b[0, T ],

(2.21) ((Dtw)2, b′) =
∫ T

0

(Dtw)2db(t) = ‖w‖2C′a,b
,

(2.22) (Dtw, a′) =
∫ T

0

Dtwda(t) =
∫ T

0

DtwDtadb(t) = (w, a)C′a,b

and

(2.23)

〈Dtw1, w2〉 =
∫ T

0

Dtw1dw2(t) =
∫ T

0

Dtw1Dtw2db(t) = (w1, w2)C′a,b
.

Next, we define a class of functionals on Ca,b[0, T ] like a Fresnel class of

an abstract Wiener space. Note that the linear operator given by equation

(2.19) is an isomorphism. In fact, the inverse operator D−1
t : L2

a,b[0, T ] →
C ′a,b[0, T ] is given by the formula

(2.24) D−1
t z =

∫ t

0

z(s)db(s)

and D−1
t is a bounded operator since

(2.25)

‖D−1
t z‖C′a,b

=
∥∥∥∥

∫ t

0

z(s)db(s)
∥∥∥∥

C′a,b

=
( ∫ T

0

z2(t)db(t)
) 1

2

≤
( ∫ T

0

z2(t)d[b(t) + |a|(t)]
) 1

2

= ‖z‖a,b.

Thus by open mapping theorem, Dt is also bounded and there exist positive

real numbers α and β such that α‖w‖C′a,b
≤ ‖Dtw‖a,b ≤ β‖w‖C′a,b

for all
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w ∈ C ′a,b[0, T ]. Hence we see that the Borel σ-algebra on (C ′a,b[0, T ], ‖·‖C′a,b
)

is given by

B(C ′a,b[0, T ]) = {D−1
t (E) : E ∈ B(L2

a,b[0, T ])}.

Let σ be a complex Borel measure on B(L2
a,b[0, T ]). Define a set function

f on B(C ′a,b[0, T ]) by f(B) = σ(Dt(B)) for each B ∈ B(C ′a,b[0, T ]). Then

f is a complex Borel measure on B(C ′a,b[0, T ]). Conversely, let f be a com-

plex Borel measure on B(C ′a,b[0, T ]). Then the set function σ defined on

B(L2
a,b[0, T ]) by σ(E) = f(D−1

t (E)) for each E ∈ B(L2
a,b[0, T ]) is a complex

Borel measure on B(L2
a,b[0, T ]).

Definition 2.4. Let

M(C ′a,b[0, T ]) = {f : f = σ◦Dt, σ is a complex Borel measure on L2
a,b[0, T ]}.

The Banach algebra F(Ca,b[0, T ]) consists of those functionals F on Ca,b[0, T ]

expressible in the form

(2.26) F (x) =
∫

C′a,b[0,T ]

exp{i〈Dtw, x〉}df(w)

for s-a.e. x ∈ Ca,b[0, T ] where the associated measure f is an element

M(C ′a,b[0, T ]). We call F(Ca,b[0, T ]) the Fresnel type class of the function

space Ca,b[0, T ].

Remark 2.2. (i) M(C ′a,b[0, T ]) is a Banach algebra under the total vari-

ation norm where convolution is taken as the multiplication.

(ii) One can show that the correspondence f → F is injective, carries

convolution into pointwise multiplication and that F(Ca,b[0, T ]) is a Banach

algebra with norm

‖F‖ = ‖f‖ =
∫

C′a,b[0,T ]

|df(w)|.

3. Transforms and convolutions

In this section, we obtain several results for the GCP of functionals in

the class F(Ca,b[0, T ]) .
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Remark 3.1. Let F be an element of F(Ca,b[0, T ]) whose associated

measure f satisfies the condition

(3.1)
∫

C′a,b[0,T ]

exp
{|2q0|−1/2‖w‖C′a,b

‖a‖C′a,b

}|df(w)| < ∞

for some q0 ∈ R − {0}. Then for all q ∈ R with |q| ≥ |q0|, the generalized

analytic Feynman integral Eanfq [F ] of F exists and is given by the formula

(3.2) Eanfq [F ] =
∫

C′a,b[0,T ]

exp
{
− i

2q
‖w‖2C′a,b

+ i

(
i

q

) 1
2

(w, a)C′a,b

}
df(w).

In next theorem, we obtain the Lp analytic GFFT T
(p)
q (F ) of a functional

F in F(Ca,b[0, T ]).

Theorem 3.1. Let q0 be a nonzero real number and let F be an element

of F(Ca,b[0, T ]) whose associated measure f satisfies the condition (3.1)

above. Then for all p ∈ [1, 2] and all real q with |q| ≥ |q0|, the Lp analytic

GFFT of F , T
(p)
q (F ) exists and is given by the formula

(3.3)

T (p)
q (F )(y) =

∫

C′a,b[0,T ]

exp
{

i〈Dtw, y〉− i

2q
‖w‖2C′a,b

+i

(
i

q

) 1
2

(w, a)C′a,b

}
df(w)

for s-a.e. y ∈ Ca,b[0, T ]. Furthermore, T
(p)
q (F ) is an element of F(Ca,b[0, T ])

with associated measure φ defined by

(3.4) φ(B) =
∫

B

exp
{
− i

2q
‖w‖2C′a,b

+ i

(
i

q

) 1
2

(w, a)C′a,b

}
df(w)

for B ∈ B(C ′a,b[0, T ]).

Proof. For λ > 0 and for s-a.e. y ∈ Ca,b[0, T ], using equation (2.10), the

Fubini theorem and equation (2.15), we obtain

(3.5)

Tλ(F )(y) = Ex[F (y + λ−1/2x)]

=
∫

C′a,b[0,T ]

Ex[exp{i〈Dtw, y〉+ iλ−1/2〈Dtw, x〉}]df(w)

=
∫

C′a,b[0,T ]

exp
{

i〈Dtw, y〉 − 1
2λ

((Dtw)2, b′) +
i√
λ

(Dtw, a′)
}

df(w)
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=
∫

C′a,b[0,T ]

exp
{

i〈Dtw, y〉 − 1
2λ
‖w‖2C′a,b

+
i√
λ

(w, a)C′a,b

}
df(w).

But the last expression above is analytic through C+ and is continuous

on C̃+. Also, it is bounded on the region Γ = {λ ∈ C̃+ : |Im(λ−1/2)| ≤
|2q0|−1/2}. Thus equation (3.3) is established. Let φ be a set function on

B(C ′a,b[0, T ]) defined by equation (3.4). By using condition (3.1) we see that

(3.6) ‖φ‖ ≤
∫

C′a,b[0,T ]

exp
{|2q0|−1/2‖w‖C′a,b

‖a‖C′a,b

}|df(w)| < +∞.

Hence we have the desired result. ¤

In our next theorem, we obtain the GCP of functionals in F(Ca,b[0, T ])

Theorem 3.2. Let q0 be the nonzero real number and let F and G be

elements of F(Ca,b[0, T ]) whose associated measures f and g satisfy the

condition

(3.7)
∫

C′a,b[0,T ]

exp
{|4q0|−1/2‖w‖C′a,b

‖a‖C′a,b

}
[|df(w)|+ |dg(w)|] < ∞.

Then their GCP (F ∗G)q exists for all p ∈ [1, 2] and all real q with |q| ≥ |q0|
and is given by the formula

(3.8)

(F ∗G)q(y)

=
∫

C′a,b[0,T ]

∫

C′a,b[0,T ]

exp
{

i√
2
〈Dtw1 + Dtw2, y〉

− i

4q
(‖w1‖2C′a,b

+ ‖w2‖2C′a,b
− 2(w1, w2)C′a,b

)

+ i

(
i

2q

) 1
2

((w1, a)C′a,b
− (w2, a)C′a,b

)
}

df(w1)dg(w2).

Proof. By using (2.13), the Fubini theorem, and (2.15), we have that for

λ > 0,
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(3.9)

(F ∗G)λ(y)

= Ex

[
F

(
y + λ−1/2x√

2

)
G

(
y − λ−1/2x√

2

)]

=
∫

C′a,b[0,T ]

∫

C′a,b[0,T ]

exp
{

i√
2
〈Dtw1 + Dtw2, y〉

− i

4λ
(‖w1‖2C′a,b

+ ‖w2‖2C′a,b
− 2(w1, w2)C′a,b

)

+ i

(
1
2λ

) 1
2

((w1, a)C′a,b
− (w2, a)C′a,b

)
}

df(w1)dg(w2)

for s-a.e. y ∈ Ca,b[0, T ]. But the last expression above is analytic throughout

C+, and is continuous on C̃+. Thus we have the equation (3.10) above. Let

a set function h : B(C ′a,b[0, T ]× C ′a,b[0, T ]) −→ C be defined by

(3.10) h(E) =
∫

E

exp
{
− i

4q
(‖w1‖2C′a,b

+ ‖w2‖2C′a,b
+ 2(w1, w2)C′a,b

)

+i

(
i

2q

) 1
2

((w1, a)C′a,b
− (w2, a)C′a,b

)
}

df(w1)dg(w2)

for each E ∈ B(C ′a,b[0, T ]× C ′a,b[0, T ]). Then h is a complex Borel measure

on B(C ′a,b[0, T ] × C ′a,b[0, T ]). Now we define a function ϕ : C ′a,b[0, T ] ×
C ′a,b[0, T ] −→ C ′a,b[0, T ] by

(3.11) ϕ(w1, w2) =
1√
2
(w1 + w2).

Then ϕ is continuous and so it is Borel measurable. Let h̃ = h ◦ϕ−1. By

the condition (3.7) above, we that for real q with |q| ≥ |q0|

‖h̃‖ =
∫

C′a,b[0,T ]

∫

C′a,b[0,T ]

|dh(w1, w2)|

≤
∫

C′a,b[0,T ]

∫

C′a,b[0,T ]

∣∣∣∣ exp
{
− i

4q
(‖w1‖2C′a,b

+ ‖w2‖2C′a,b
− 2(w1, w2)C′a,b

)
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(3.12)

+ i

(
i

2q

) 1
2

((w1, a)C′a,b
− (w2, a)C′a,b

)
}∣∣∣∣|df(w1)||dg(w2)|

≤
∫

C′a,b[0,T ]

exp
{

1√
4q0

∫ T

0

|w1(s)|d|a(s)|
}
|df(w1)|

·
∫

C′a,b[0,T ]

exp
{

1√
4q0

∫ T

0

|w2(s)|d|a(s)|
}
|dg(w2)| < ∞.

Hence h̃ = h ◦ ϕ−1 belongs to M(C ′a,b[0, T ]) and

(3.13) (F ∗G)q(y) =
∫

C′a,b[0,T ]

exp{i〈r, y〉}d h(r)

for s-a.e. y ∈ C ′a,b[0, T ]. Hence (F ∗ G)q exists and is given by (3.8) for all

real q with |q| ≥ |q0| and it belong to F(Ca,b[0, T ]). ¤

Remark 3.2. Let F , f , and q0 be as in Theorem 3.2. Then for all real

q with |q| ≥ |q0|, ∗Fq and F ∗q are in F(Ca,b[0, T ]).

Theorem 3.3. Let F , G, f , g, and q0 be as in Theorem 3.2. Then for

all p ∈ [1, 2] and all real q with |q| ≥ |q0|,

(3.14) T (p)
q ((F ∗G)q)(y) =

(
T (p)

q (F ∗q )(y)
)(

T (p)
q (∗Gq)(y)

)

for s-a.e. y ∈ Ca,b[0, T ], where F ∗q and ∗Gq are given by (2.13). Also, both

of the expressions in (3.14) are given by the expression

∫

C′a,b[0,T ]

∫

C′a,b[0,T ]

exp
{

1√
2
〈Dtw1 + Dtw2, y〉 − i

2q
(‖w1‖2C′a,b

+ ‖w2‖2C′a,b
)

+ 2i

(
i

2q

) 1
2

(w1, a)C′a,b

}
df(w1)dg(w2).(3.15)

Proof. By using (2.10), (2.13), the Fubini theorem, and (2.15), we have

that for λ > 0,

(3.16) Tλ((F ∗G)λ)(y) = Tλ(F ∗λ )(y)Tλ(G∗λ)(y)
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for s-a.e. y ∈ Ca,b[0, T ]. But both of the expressions on the right-hand

side of equation (3.16) are analytic functions of λ throughout C+, and are

continuous functions of λ on C̃+ for all y ∈ Ca,b[0, T ]. By using (3.7),

T
(p)
q ((F ∗G)q) exists for all real q with |q| ≥ |q0| and is given by (3.14) for

all desired values of p and q. ¤

Theorem 3.4. Let F , G, f , g, and q0 be as in Theorem 3.3. Then

(3.17)

∫ anf−q

Ca,b[0,T ]

T (p)
q ((F ∗G)q)(y)dµ(y)

=
∫ anf−q

Ca,b[0,T ]

T (p)
q (F ∗q )(y)T (p)

q (∗Gq)(y)dµ(y)

=
∫ anfq

Ca,b[0,T ]

(F ∗−q)
∗
q
2
(
√

2y)(G∗−q)
∗
q
2
(−
√

2y)dµ(y).

Proof. Fix p and q. Then for λ > 0, using (3.9), the Fubini theorem and

(3.3), we have

∫

Ca,b[0,T ]

T (p)
q ((F ∗G)q)(y/

√
λ)dµ(y)

=
∫

Ca,b[0,T ]

∫

C′a,b[0,T ]

∫

C′a,b[0,T ]

exp
{

1√
2λ
〈Dtw1 + Dtw2, y〉

− i

2q
(‖w1‖2C′a,b

+ ‖w2‖2C′a,b
) + 2i

(
i

2q

) 1
2

(w1, a)C′a,b

}
df(w1)dg(w2)dµ(y)

=
∫

C′a,b[0,T ]

∫

C′a,b[0,T ]

exp
{
− 1

4λ
(‖w1‖2C′a,b

+ ‖w2‖2C′a,b
+ 2(w1, w2)C′a,b

)

i√
2λ

((w1, a)C′a,b
+ (w2, a)C′a,b

)− i

2q
(‖w1‖2C′a,b

+ ‖w2‖2C′a,b
)

+ 2i

(
i

2q

) 1
2

(w1, a)C′a,b

}
df(w1)dg(w2).

(3.18)

But the last expression is an analytic function of λ throughout C̃+ and is
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continuous throughout C̃+ , and so letting λ = −i(−q) = iq, we obtain that

∫ anf−q

Ca,b[0,T ]

T (p)
q ((F ∗G)q)(y)dµ(y)

=
∫

C′a,b[0,T ]

∫

C′a,b[0,T ]

exp
{

i

4q
(‖w1‖2C′a,b

+ ‖w2‖2C′a,b
+ 2(w1, w2)C′a,b

)

+ i

(−i

2q

) 1
2

((w1, a)C′a,b
+ (w2, a)C′a,b

)

(3.19)

− i

2q
(‖w1‖2C′a,b

+ ‖w2‖2C′a,b
) + 2i

(
i

2q

) 1
2

(w1, a)C′a,b

}
df(w1)dg(w2)

=
∫

C′a,b[0,T ]

∫

C′a,b[0,T ]

exp
{
− i

4q
(‖w1‖2C′a,b

+ ‖w2‖2C′a,b
− 2(w1, w2)C′a,b

)

+ i

(−i

2q

) 1
2

((w1, a)C′a,b
+ (w2, a)C′a,b

) + 2i

(
i

2q

) 1
2

(w1, a)C′a,b

}
df(w1)dg(w2).

Clearly, the condition (3.7) will imply the existence of (3.19). On the other

hand, using (2.14),(3.8), the Fubini theorem, and (3.2), we obtain that

(F ∗−q)
∗
q
2
(
√

2y) =
∫

C′a,b[0,T ]

exp
{

i√
2
〈Dtw1, y〉

+ i

(
i

2q

) 1
2

(w1, a)C′a,b
+ i

(−i

2q

) 1
2

(w1, a)C′a,b

}
df(w1)

(3.20)

and

(G∗−q)
∗
q
2
(−
√

2y) =
∫

C′a,b[0,T ]

exp
{
− i√

2
〈Dtw2, y〉

+ i

(
i

2q

) 1
2

(w2, a)C′a,b
+ i

(−i

2q

) 1
2

(w2, a)C′a,b

}
dg(w2)

(3.21)

s-a.e. y ∈ Ca,b[0, T ]. By using (3.20) and (3.21), we have that for λ > 0
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∫

Ca,b[0,T ]

(F ∗−q)
∗
q
2
(
√

2y/
√

λ)(G∗−q)
∗
q
2
(−
√

2y/
√

λ)dµ(y)

=
∫

C′a,b[0,T ]

∫

C′a,b[0,T ]

exp
{
− 1

4λ
(‖w1‖2C′a,b

+ ‖w2‖2C′a,b
− 2(w1, w2)C′a,b

)

+
i√
2λ

((w1, a)C′a,b
− (w2, a)C′a,b

) + i

(
i

2q

) 1
2

((w1, a)C′a,b
− (w2, a)C′a,b

)

(3.22)

+ i

(−i

2q

) 1
2

((w1, a)C′a,b
+ (w2, a)C′a,b

)
}

df(w1)dg(w2).

But the last expression above is an analytic function of λ throughout C̃+

and is continuous throughout on C̃+ and so letting λ → −iq we obtain that

∫ anfq

Ca,b[0,T ]

(F ∗−q)
∗
q
2
(
√

2y)(G∗−q)
∗
q
2
(−
√

2y)dµ(y)

(3.23)

=
∫

C′a,b[0,T ]

∫

C′a,b[0,T ]

exp
{
− i

4q
(‖w1‖2C′a,b

+ ‖w2‖2C′a,b
− 2(w1, w2)C′a,b

)

+ 2i

(
i

2q

) 1
2

(w1, a)C′a,b
+ i

(−i

2q

) 1
2

((w1, a)C′a,b
+ (w2, a)C′a,b

)
}

df(w1)dg(w2).

Now (3.19) and (3.23) together yield (3.17). ¤

Remark 3.4. In Theorem 3.4 above, if a(t) ≡ 0, then for all q 6= 0,

(3.24)

T (p)
q (F ∗q )(F )(y) = T (p)

q (F )(y/
√

2)andT (p)
q (∗Gq)(F )(y) = T (p)

q (G)(y/
√

2)

for s-a.e. y ∈ Ca,b[0, T ]. Furthermore

(F ∗−q)
∗
q
2
(
√

2y) = F (y/
√

2) and (G∗−q)
∗
q
2
(−
√

2y) = G(−y/
√

2).

Hence we have the following Parseval’s identity
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∫ anf−q

Ca,b[0,T ]

T (p)
q ((F ∗G)q)(y)dµ(y)

=
∫ anf−q

Ca,b[0,T ]

T (p)
q (F )(y/

√
2)T (p)

q (G)(y/
√

2)dµ(y)

=
∫ anfq

Ca,b[0,T ]

F (y/
√

2)G(−y/
√

2)dµ(y).

4. Multiple Lp analytic GFFT and the GCP

In this section we establish some relationships between the multiple Lp

analytic GFFT and the GCP of functionals in F(Ca,b[0, T ]).

Definition 4.1 Let F be a measurable functional defined on Ca,b[0, T ]

and define a transform (Tγ)(n)(γ > 0) of F by

(4.1) (Tγ)(n)(F ) = (Tγ ◦ · · · ◦ Tγ︸ ︷︷ ︸
n−times

)(F )

that is, (Tγ)(n) means the n-times composition of (Tγ), where Tγ is given

by (2.10) in Definition 2.2 and n is a nonnegative integer. When γ is in C+,

the transform (Tγ)(n)(F ) means the analytic extension of (Tγ)n(F )(γ > 0)

as the function of λ ∈ C+. Let (Tλ)(n)(F ) be analytic extension of (Tγ)n(F )

as a function of λ ∈ C+. In case that 1 < p ≤ 2, for each q ∈ R − {0}, we

define the multiple Lp analytic GFFT (Tq)(n)(F ) of F by

(4.2) (T (p)
q )(n)(F ) = l.i.m.λ→−iq(Tλ)(n)(F ),

where λ approaches−iq through C+. In case that p = 1, for each q ∈ R−{0},
we define the multiple L1 analytic GFFT (T (1)

q )(n)(F ) of F by

(4.3) (T (1)
q )n(F ) = lim

λ→−iq
(Tλ)(n)(F ),

where λ approaches −iq through C+.

Note that (Tλ)(0)(F ) ≡ F ≡ (T (p)
q )(0), (Tλ)(1)(F ) ≡ Tλ(F ), and (T (p)

q )(1) ≡
T

(p)
q (F ).
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We have already shown that for F ∈ F(Ca,b[0, T ]) with condition (3.1),

the Lp GFFT T
(p)
q (F ) belongs to the Fresnel type class F(Ca,b[0, T ]).Hence

by using the mathematical induction and proceeding as in the proof of The-

orem 3.1, we can obtain the following theorem.

Theorem 4.1. Let q0 be a nonzero real number and let n be a nonneg-

ative integer. Let F ∈ F(Ca,b[0, T ]) be given by (3.26) whose associated

measure f satisfies the condition

(4.4)
∫

C′a,b[0,T ]

exp
{
n|2q0|−1/2‖w‖C′a,b

‖a‖C′a,b

}|df(w)| < ∞.

Then for all p ∈ [1, 2] and all real q with |q| ≥ |q0|, the multiple Lp analytic

GFFT (T (p)
q )(n)(F ) exists and is given by

(4.5)
(T (p)

q )(n)(F )

=
∫

C′a,b[0,T ]

exp
{

i〈Dtw, y〉 − in

2q
‖w‖2C′a,b

+ in

(
i

q

) 1
2

(w, a)C′a,b

}
df(w)

for s-a.e. y ∈ Ca,b[0, T ]. And (T (p)
q )(n)(F ) is an element of F(Ca,b[0, T ])

with associated measure

φn(E) =
∫

E

exp
{
− in

2q
‖w‖2C′a,b

+ in

(
i

q

) 1
2

(w, a)C′a,b

}
df(w)

for E ∈ B(C ′a,b[0, T ]). Note that (4.5) is reduced to (3.3), if we take n = 1

in (4.5).

Next, we obtain the GCP of the multiple Lp analytic GFFT’s of func-

tionals in F(Ca,b[0, T ]).

Theorem 4.2. Let q0 be a nonzero real number and let n be nonnegative

integer. Let F and G be elements of F(Ca,b[0, T ]) whose associated measures

f and g satisfy the condition

(4.6)
∫

C′a,b[0,T ]

exp
{
n|2q0|−1/2‖w‖C′a,b

‖a‖C′a,b

}
[|df(w)|+ |dg(w)|] < ∞.
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Then for all p ∈ [1, 2], all q with |q| ≥ |q0| and nonnegative integer m,

the GCP ((T (p)
q )(n)(F ) ∗ ((T (p)

q )(m)(G))q(y) exists and is given by (4.7)

below. Furthermore ((T (p)
q )(n)(F ) ∗ ((T (p)

q )(m)(G))q(y) is an elements of

F(Ca,b[0, T ]).

Proof. By using (4.5) and (3.8) we observe that for all p ∈ [1, 2] and all

q with |q| ≥ |q0|

((T (p)
q )(n)(F ) ∗ ((T (p)

q )(m)(G))q(y)

=
∫

C′a,b[0,T ]

∫

C′a,b[0,T ]

exp
{

i√
2
〈Dtw1 + Dtw2, y〉 − in

2q
‖w1‖2C′a,b

− im

2q
‖w2‖2C′a,b

+ in

(
i

q

) 1
2

(w1, a)C′a,b
+ im

(
i

q

) 1
2

(w2, a)C′a,b

− i

4q
(‖w1‖2C′a,b

+ ‖w2‖2C′a,b
+ 2(w1, w2)C′a,b

)

(4.7)

+ i

(
i

2q

) 1
2

((w1, a)C′a,b
+ (w2, a)C′a,b

)
}

df(w1)dg(w2)

for s-a.e. y ∈ Ca,b[0, T ]. Furthermore, proceeding as in the proof of Theorem

3.2 above and using (4.6), we see that ((T (p)
q )(n)(F ) ∗ ((T (p)

q )(m)(G))q(y) is

an element of F(Ca,b[0, T ]) ¤

Note that (4.7) is reduced to (3.8), if we take m = n = 0 in (3.8).

In our next theorem, we obtain the multiple Lp analytic GFFT of the

convolution product for two functionals in F(Ca,b[0, T ]).

Theorem 4.3. Let F , G, f , g and q0 be as in Theorem 4.2. Then for

all p ∈ [1, 2] and all real q the following equation with |q| ≥ |q0|,
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(T (p)
q )(n)((F ∗G)q)(y)

=
∫

C′a,b[0,T ]

∫

C′a,b[0,T ]

exp
{

i√
2
〈Dtw1 + Dtw2, y〉

− i

4q
(‖w1‖2C′a,b

+ ‖w2‖2C′a,b
− 2(w1, w2)C′a,b

)

+ i

(
i

2q

) 1
2

((w1, a)C′a,b
− (w2, a)C′a,b

)

(4.8)

− in

4q
(‖w1‖2C′a,b

+ ‖w2‖2C′a,b
+ 2(w1, w2)C′a,b

)

+ in

(
i

2q

) 1
2

((w1, a)C′a,b
+ (w2, a)C′a,b

)
}

df(w1)dg(w2)

holds of s-a.e. y ∈ Ca,b[0, T ], where n is a nonnegative integer. Futhermore,

(T (p)
q )(n)((F ∗G)q)(y) is an element of F(Ca,b[0, T ]).

Proof. By using equations (3.8) and (4.5), we can easily obtain the equa-

tion (4.8) above. Moreover, the condition (4.6) will imply the existence of

the equation (4.8). ¤

Finally, we show that the Lp analytic GFFT of the GCP of the multiple

Lp analytic GFFT’s of the transforms for functionals in F(Ca,b[0, T ]).

Theorem 4.4. Let F , G, f , g and q0 be as in Theorem 4.2. Then for

all p ∈ [1, 2] and all real q the following equation with |q| ≥ |q0|,

(4.9)
T (p)

q (((T (p)
q )(n)(F ) ∗ (T (p)

q )(m)(G))q)(y)

= (T (p)
q/2)

(n)(T (p)
q (F ∗q ))(y)(T (p)

q/2)
(m)(T (p)

q (∗Gq))(y)

holds for s-a.e. y ∈ Ca,b[0, T ], where F ∗q and ∗Gq are as in (2.14). Also,

both expressions in (4.9) are given by the expression
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∫

C′a,b[0,T ]

∫

C′a,b[0,T ]

exp
{

i√
2
〈Dtw1 + Dtw2, y〉 − i(n + 1)

2q
‖w1‖2C′a,b

− i(m + 1)
2q

‖w2‖2C′a,b
+ in

(
i

q

) 1
2

(w1, a)C′a,b

+ im

(
i

q

) 1
2

(w2, a)C′a,b
+ i
√

2
(

i

q

) 1
2

(w1, a)C′a,b

}
df(w1)dg(w2).

Furthermore, the transform T
(p)
q ((T (p)

q )(n)(F ) ∗ ((T (p)
q )(m)(G))q) is an ele-

ment of F(Ca,b[0, T ]).

Proof. By using (4.7), (3.8) and (3.3), we can obtain the equation (4.9)

above. ¤

Remark 4.1. In Theorem 4.4 above, if a(t) ≡ 0, then

(4.10) (T (p)
q/2)

(n)(T (p)
q (F )(·/

√
2))(y) = (T (p)

q )(n+1)(F )(y/
√

2)

and

(4.11) (T (p)
q/2)

(m)(T (p)
q (G))(·/

√
2)(y) = (T (p)

q )(m+1)(G)(y/
√

2)

Hence by using (3.19), (4.10) and (4.11) we obtain that

T (p)
q ((T (p)

q )(n)(F ) ∗ ((T (p)
q )(m)(G))q)(y)

= (T (p)
q )(n+1)(F )(y/

√
2)(T (p)

q )(m+1)(G)(y/
√

2)

for s-a.e. y ∈ Ca,b[0, T ].
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