MULTIPLE L_{p} ANALYTIC GENERALIZED
 FOURIER-FEYNMAN TRANSFORM ON A FRESNEL TYPE CLASS

Seung Jun Chang* and Il Yong Lee**

Abstract

In this paper, we define a class of functional defined on a very general function space $C_{a, b}[0, T]$ like a Fresnel class of an abstract Wiener space. We then define the multiple L_{p} analytic generalized Fourier-Feynman transform and the generalized convolution product of functionals on function space $C_{a, b}[0, T]$. Finally, we establish some relationships between the multiple L_{p} analytic generalized Fourier-Feynman transform and the generalized convolution product for functionals in $\mathcal{F}\left(C_{a, b}[0, T]\right)$.

1. Introduction

Let $C_{0}[0, T]$ denote one-parameter Wiener space, that is the space of \mathbb{R}-valued continuous functions $x(t)$ on $[0, T]$ with $x(0)=0$. The concept of an L_{1} analytic Fourier-Feynman transform(FFT) for functionals on the Wiener space was introduced by Brue in [2]. In [3], Cameron and Storvick introduced an L_{2} FFT on the Wiener space. In [10], Johnson and Skoug developed an L_{p} FFT theory for $1 \leq p \leq 2$ that extended the results in $[2,3]$ and established various relationships between the L_{1} and L_{2} theories. In [11], Huffman, Park and Skoug developed an L_{p} FFT theory on certain classes of functionals defined on Wiener space and they defined a convolution product for functionals in the classes, and they obtained various results for the FFT and convolution product [11,13,12]. On the other hand, in [1], Ahn investigated the L_{1} FFT theory on the Fresnel class $\mathcal{F}(B)$ of an abstract

[^0]Wiener space, and in [4] Chang, Song and Yoo studied the FFT and the first variation on an abstract Wiener space and the Fresnel class $\mathcal{F}(B)$.

In [6], Chang and Choi studied the multiple L_{p} analytic GFFT on the Banach algebra.

In recent paper [7], Chang and Skoug established various results involving generalized Feynman integrals, and the generalized FFTs(GFFT) for functionals defined on a very general function space $C_{a, b}[0, T]$ rather than on the Wiener space $C_{0}[0, T]$. The function space was introduced by Chang and Chung in [5].

In [8], Chang and Lee studied the GFFT and CGFFT on a Fresnel type class $\mathcal{F}\left(C_{a, b}[0, T]\right)$.

In Section 2 of this paper, we introduce the basic concepts and the notations for our research. In Section 3, we study the L_{p} analytic GFFT and the GCP on a function space $C_{a, b}[0, T]$. Finally, we establish some relationships between the multiple L_{p} analytic GFFT and the GCP for functionals in $\mathcal{F}\left(C_{a, b}[0, T]\right)$.

2. Definitions and preliminaries

Let $D=[0, T]$ and let (Ω, \mathcal{B}, P) be a probability measure space. A real-valued stochastic process Y on (Ω, \mathcal{B}, P) and D is called a generalized Brownian motion process if $Y(0, \omega)=0$ almost everywhere and for $0=t_{0}<$ $t_{1}<\cdots<t_{n} \leq T$, the n-dimensional random vector $\left(Y\left(t_{1}, \omega\right), \cdots, Y\left(t_{n}, \omega\right)\right)$ is normally distributed with the density function

$$
\begin{align*}
K(\vec{t}, \vec{\eta}) & =\left((2 \pi)^{n} \prod_{j=1}^{n}\left(b\left(t_{j}\right)-b\left(t_{j-1}\right)\right)\right)^{-1 / 2} \tag{2.1}\\
& \cdot \exp \left\{-\frac{1}{2} \sum_{j=1}^{n} \frac{\left(\left(\eta_{j}-a\left(t_{j}\right)\right)-\left(\eta_{j-1}-a\left(t_{j-1}\right)\right)\right)^{2}}{b\left(t_{j}\right)-b\left(t_{j-1}\right)}\right\}
\end{align*}
$$

where $\vec{\eta}=\left(\eta_{1}, \cdots, \eta_{n}\right), \eta_{0}=0, \vec{t}=\left(t_{1}, \cdots, t_{n}\right), a(t)$ is an absolutely continuous real-valued function on $[0, T]$ with $a(0)=0, a^{\prime}(t) \in L^{2}[0, T]$, and $b(t)$ is a strictly increasing, continuously differentiable real-valued function with $b(0)=0$ and $b^{\prime}(t)>0$ for each $t \in[0, T]$.

As explained in [15,p.18-20], Y induces a probability measure μ on the measurable space $\left(\mathbb{R}^{D}, \mathcal{B}^{D}\right)$ where \mathbb{R}^{D} is the space of all real valued functions $x(t), t \in D$, and \mathcal{B}^{D} is the smallest σ-algebra of subsets of \mathbb{R}^{D} with respect to which all the coordinate evaluation maps $e_{t}(x)=x(t)$ defined on \mathbb{R}^{D} are measurable. The triple $\left(\mathbb{R}^{D}, \mathcal{B}^{D}, \mu\right)$ is a probability measure space. This measure space is called the function space induced by the generalized Brownian motion process Y determined by $a(\cdot)$ and $b(\cdot)$.

We note that the generalized Brownian motion process Y determined by $a(\cdot)$ and $b(\cdot)$ is a Gaussian process with mean function $a(t)$ and covariance function $r(s, t)=\min \{b(s), b(t)\}$. By Theorem 14.2 [15,p.187], the probability measure μ induced by Y, taking a separable version, is supported by $C_{a, b}[0, T]$ (which is equivalent to the Banach space of continuous functions x on $[0, T]$ with $x(0)=0$ under the sup norm). Hence $\left(C_{a, b}[0, T]\right.$, $\left.\mathcal{B}\left(C_{a, b}[0, T]\right), \mu\right)$ is the function space induced by Y, where $\mathcal{B}\left(C_{a, b}[0, T]\right)$ is the Borel σ-algebra of $C_{a, b}[0, T]$.

A subset B of $C_{a, b}[0, T]$ is said to be scale-invariant measurable(s.i.m.) [9] provided ρB is $\mathcal{B}\left(C_{a, b}[0, T]\right)$-measurable for all $\rho>0$, and a scale-invariant measurable set N is said to be scale-invariant null set provided $\mu(\rho N)=0$ for all $\rho>0$. A property that holds except on a scale-invariant null set is said to hold scale-invariant almost everywhere(s-a.e.). If two functionals F and G defined on $C_{a, b}[0, T]$ are equal s-a.e., then we write $F \approx G$.

Let $L_{a, b}^{2}[0, T]$ be the set of functions on $[0, T]$ which are Lebesgue measurable and square integrable with respect to the Lebesgue-Stieltjes measures on $[0, T]$ induced by $a(\cdot)$ and $b(\cdot)$; i.e.,

$$
\begin{equation*}
L_{a, b}^{2}[0, T]=\left\{v: \int_{0}^{T} v^{2}(s) d b(s)<\infty \text { and } \int_{0}^{T} v^{2}(s) d|a|(s)<\infty\right\} \tag{2.2}
\end{equation*}
$$

where $|a|(t)$ denotes the total variation of the function a on the interval $[0, t]$.
For $u, v \in L_{a, b}^{2}[0, T]$, let

$$
\begin{equation*}
(u, v)_{a, b}=\int_{0}^{T} u(t) v(t) d[b(t)+|a|(t)] . \tag{2.3}
\end{equation*}
$$

Then $(\cdot, \cdot)_{a, b}$ is an inner product on $L_{a, b}^{2}[0, T]$ and $\|u\|_{a, b}=\sqrt{(u, u)_{a, b}}$ is a norm on $L_{a, b}^{2}[0, T]$. In particular, note that $\|u\|_{a, b}=0$ if and only if $u(t)=0$ a.e. on $[0, T]$. Furthermore, $\left(L_{a, b}^{2}[0, T],\|\cdot\|_{a, b}\right)$ is a separable Hilbert space.

Let $\left\{\phi_{j}\right\}_{j=1}^{\infty}$ be a complete orthonormal set of real-valued functions of bounded variation on $[0, T]$ such that

$$
\left(\phi_{j}, \phi_{k}\right)_{a, b}= \begin{cases}0 & , j \neq k \\ 1 & , j=k\end{cases}
$$

and for each $v \in L_{a, b}^{2}[0, T]$, let

$$
\begin{equation*}
v_{n}(t)=\sum_{j=1}^{n}\left(v, \phi_{j}\right)_{a, b} \phi_{j}(t) \tag{2.4}
\end{equation*}
$$

for $n=1,2, \cdots$. Then for each $v \in L_{a, b}^{2}[0, T]$, the Paley-Wiener-Zygmund (PWZ) stochastic integral $\langle v, x\rangle$ is defined by the formula

$$
\begin{equation*}
\langle v, x\rangle=\lim _{n \rightarrow \infty} \int_{0}^{T} v_{n}(t) d x(t) \tag{2.5}
\end{equation*}
$$

for all $x \in C_{a, b}[0, T]$ for which the limit exists; one can show that for each $v \in$ $L_{a, b}^{2}[0, T]$, the PWZ stochastic integral $\langle v, x\rangle$ exists for μ-a.e. $x \in C_{a, b}[0, T]$.

We denote the function space integral of a $\mathcal{B}\left(C_{a, b}[0, T]\right)$-measurable functional F by

$$
E[F]=\int_{C_{a, b}[0, T]} F(x) d \mu(x)
$$

whenever the integral exists.
Throughout this paper, we will assume that each functional F we consider satisfies the conditions:

$$
\begin{equation*}
F: C_{a, b}[0, T] \rightarrow \mathbb{C} \text { is s.i.m. and s-a.e. defined, } \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{x}[|F(\rho x)|]<\infty \text { for each } \rho>0 \tag{2.7}
\end{equation*}
$$

Next, we state the definition of the generalized analytic Feynman integral.

Definition 2.1. Let \mathbb{C} denote the complex numbers, let $\mathbb{C}_{+}=\{\lambda \in \mathbb{C}$: $\operatorname{Re} \lambda>0\}$ and let $\tilde{\mathbb{C}}_{+}=\{\lambda \in \mathbb{C}: \lambda \neq 0$ and Re $\lambda \geq 0\}$. Let F satisfy conditions (2.6) and (2.7) above. If there exists a function $J^{*}(\lambda)$ analytic in \mathbb{C}_{+}such that $J^{*}(\lambda)=E_{x}\left[F\left(\lambda^{-1 / 2} x\right)\right]$ for all $\lambda>0$, then $J^{*}(\lambda)$ is defined to be the analytic function space integral of F over $C_{a, b}[0, T]$ with parameter λ, and for $\lambda \in \mathbb{C}_{+}$we write

$$
\begin{equation*}
E^{\operatorname{an}_{\lambda}}[F] \equiv E_{x}^{\operatorname{an}_{\lambda}}[F(x)]=J^{*}(\lambda) . \tag{2.8}
\end{equation*}
$$

Let $q \neq 0$ be a real number and let F be a functional such that $E^{\text {an }_{\lambda}}[F]$ exists for all $\lambda \in \mathbb{C}_{+}$. If the following limit exists, we call it the generalized analytic Feynman integral of F with parameter q and we write

$$
\begin{equation*}
E^{\operatorname{anf}_{q}}[F] \equiv E_{x}^{\operatorname{anf}_{q}}[F(x)]=\lim _{\lambda \rightarrow-i q} E^{\operatorname{an}_{\lambda}}[F] \tag{2.9}
\end{equation*}
$$

where $\lambda \rightarrow-i q$ through values in \mathbb{C}_{+}.
Next, we state the definition of the GFFT.
Definition 2.2. For $\lambda \in \mathbb{C}_{+}$and $y \in C_{a, b}[0, T]$, let

$$
\begin{equation*}
T_{\lambda}(F)(y)=E_{x}^{\operatorname{an} \lambda}[F(y+x)] . \tag{2.10}
\end{equation*}
$$

For $p \in(1,2]$, we define the L_{p} analytic $G F F T, T_{q}^{(p)}(F)$ of F, by the formula $\left(\lambda \in \mathbb{C}_{+}\right)$

$$
\begin{equation*}
T_{q}^{(p)}(F)(y)=\text { l.i.m. } \cdot \lambda \rightarrow-i q=1 T_{\lambda}(F)(y) \tag{2.11}
\end{equation*}
$$

if it exists; i.e., for each $\rho>0$,

$$
\lim _{\lambda \rightarrow-i q} \int_{C_{a, b}[0, T]}\left|T_{\lambda}(F)(\rho y)-T_{q}^{(p)}(F)(\rho y)\right|^{p^{\prime}} d \mu(y)=0
$$

where $1 / p+1 / p^{\prime}=1$. We define the L_{1} analytic $G F F T, T_{q}^{(1)}(F)$ of F, by the formula $\left(\lambda \in \mathbb{C}_{+}\right)$

$$
\begin{equation*}
T_{q}^{(1)}(F)(y)=\lim _{\lambda \rightarrow-i q} T_{\lambda}(F)(y) \tag{2.12}
\end{equation*}
$$

if it exists.
We note that for $1 \leq p \leq 2, T_{q}^{(p)}(F)$ is defined only s-a.e.. We also note that if $T_{q}^{(p)}(F)$ exists and if $F \approx G$, then $T_{q}^{(p)}(G)$ exists and $T_{q}^{(p)}(G) \approx$ $T_{q}^{(p)}(F)$.

Definition 2.3. Let F and G be measurable functionals on $C_{a, b}[0, T]$. For $\lambda \in \tilde{\mathbb{C}}_{+}$, we define their $\operatorname{GCP}(F * G)_{\lambda}$ (if it exists) by

$$
(F * G)_{\lambda}(y)= \begin{cases}E_{x}^{\operatorname{an}_{\lambda}}\left[F\left(\frac{y+x}{\sqrt{2}}\right) G\left(\frac{y-x}{\sqrt{2}}\right)\right] & , \lambda \in \mathbb{C}_{+} \tag{2.13}\\ E_{x}^{\operatorname{anf}_{q}}\left[F\left(\frac{y+x}{\sqrt{2}}\right) G\left(\frac{y-x}{\sqrt{2}}\right)\right] & , \lambda=-i q, q \in \mathbb{R}-\{0\}\end{cases}
$$

Remark 2.1. (i) When $\lambda=-i q$, we denote $(F * G)_{\lambda}$ by $(F * G)_{q}$.
(ii)For any real $q \neq 0$, we briefly describe F_{q}^{*} and ${ }^{*} F_{q}$ of a functional F on $C_{a, b}[0, T]$ as follow:

$$
\begin{equation*}
F_{q}^{*}=(F * 1)_{q} \quad \text { and } \quad{ }^{*} F_{q}=(1 * F)_{q} . \tag{2.14}
\end{equation*}
$$

The following generalized analytic Feynman integral formula is used several times in this paper.

$$
\begin{equation*}
E_{x}\left[\exp \left\{i \lambda^{-1 / 2}\langle v, x\rangle\right\}\right]=\exp \left\{-\frac{1}{2 \lambda}\left(v^{2}, b^{\prime}\right)+i \lambda^{-1 / 2}\left(v, a^{\prime}\right)\right\} \tag{2.15}
\end{equation*}
$$

for all $\lambda \in \tilde{\mathbb{C}}_{+}$and $v \in L_{a, b}^{2}[0, T]$ where

$$
\begin{equation*}
\left(v, a^{\prime}\right)=\int_{0}^{T} v(t) a^{\prime}(t) d t=\int_{0}^{T} v(t) d a(t) \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(v^{2}, b^{\prime}\right)=\int_{0}^{T} v^{2}(t) b^{\prime}(t) d t=\int_{0}^{T} v^{2}(t) d b(t) \tag{2.17}
\end{equation*}
$$

In this paper, for each $\lambda \in \widetilde{\mathbb{C}}_{+}, \lambda^{-1 / 2}$ (or $\lambda^{1 / 2}$) is always chosen to have positive real part.

Let

$$
\begin{equation*}
C_{a, b}^{\prime}[0, T]=\left\{w \in C_{a, b}[0, T]: w(t)=\int_{0}^{t} z(s) d b(s) \text { for some } z \in L_{a, b}^{2}[0, T]\right\} . \tag{2.18}
\end{equation*}
$$

For $w \in C_{a, b}^{\prime}[0, T]$, with $w(t)=\int_{0}^{t} z(s) d b(s)$ for $t \in[0, T]$, let $D_{t}: C_{a, b}^{\prime}[0, T] \rightarrow$ $L_{a, b}^{2}[0, T]$ be defined by the formula

$$
\begin{equation*}
D_{t} w=z(t)=\frac{w^{\prime}(t)}{b^{\prime}(t)} \tag{2.19}
\end{equation*}
$$

Then $C_{a, b}^{\prime} \equiv C_{a, b}^{\prime}[0, T]$ with inner product

$$
\begin{equation*}
\left(w_{1}, w_{2}\right)_{C_{a, b}^{\prime}}=\int_{0}^{T} D_{t} w_{1} D_{t} w_{2} d b(t) \tag{2.20}
\end{equation*}
$$

is a separable Hilbert space. Furthermore, $\left(C_{a, b}^{\prime}[0, T], C_{a, b}[0, T], \mu\right)$ is an abstract Wiener space. For more details, see [14].

Note that for all $w, w_{1}, w_{2} \in C_{a, b}^{\prime}[0, T]$,

$$
\begin{equation*}
\left(D_{t} w, a^{\prime}\right)=\int_{0}^{T} D_{t} w d a(t)=\int_{0}^{T} D_{t} w D_{t} a d b(t)=(w, a)_{C_{a, b}^{\prime}} \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle D_{t} w_{1}, w_{2}\right\rangle=\int_{0}^{T} D_{t} w_{1} d w_{2}(t)=\int_{0}^{T} D_{t} w_{1} D_{t} w_{2} d b(t)=\left(w_{1}, w_{2}\right)_{C_{a, b}^{\prime}} \tag{2.23}
\end{equation*}
$$

Next, we define a class of functionals on $C_{a, b}[0, T]$ like a Fresnel class of an abstract Wiener space. Note that the linear operator given by equation (2.19) is an isomorphism. In fact, the inverse operator $D_{t}^{-1}: L_{a, b}^{2}[0, T] \rightarrow$ $C_{a, b}^{\prime}[0, T]$ is given by the formula

$$
\begin{equation*}
D_{t}^{-1} z=\int_{0}^{t} z(s) d b(s) \tag{2.24}
\end{equation*}
$$

and D_{t}^{-1} is a bounded operator since

$$
\begin{align*}
\left\|D_{t}^{-1} z\right\|_{C_{a, b}^{\prime}} & =\left\|\int_{0}^{t} z(s) d b(s)\right\|_{C_{a, b}^{\prime}}=\left(\int_{0}^{T} z^{2}(t) d b(t)\right)^{\frac{1}{2}} \tag{2.25}\\
& \leq\left(\int_{0}^{T} z^{2}(t) d[b(t)+|a|(t)]\right)^{\frac{1}{2}}=\|z\|_{a, b}
\end{align*}
$$

Thus by open mapping theorem, D_{t} is also bounded and there exist positive real numbers α and β such that $\alpha\|w\|_{C_{a, b}^{\prime}} \leq\left\|D_{t} w\right\|_{a, b} \leq \beta\|w\|_{C_{a, b}^{\prime}}$ for all
$w \in C_{a, b}^{\prime}[0, T]$. Hence we see that the Borel σ-algebra on $\left(C_{a, b}^{\prime}[0, T],\|\cdot\|_{C_{a, b}^{\prime}}\right)$ is given by

$$
\mathcal{B}\left(C_{a, b}^{\prime}[0, T]\right)=\left\{D_{t}^{-1}(E): E \in \mathcal{B}\left(L_{a, b}^{2}[0, T]\right)\right\}
$$

Let σ be a complex Borel measure on $\mathcal{B}\left(L_{a, b}^{2}[0, T]\right)$. Define a set function f on $\mathcal{B}\left(C_{a, b}^{\prime}[0, T]\right)$ by $f(B)=\sigma\left(D_{t}(B)\right)$ for each $B \in \mathcal{B}\left(C_{a, b}^{\prime}[0, T]\right)$. Then f is a complex Borel measure on $\mathcal{B}\left(C_{a, b}^{\prime}[0, T]\right)$. Conversely, let f be a complex Borel measure on $\mathcal{B}\left(C_{a, b}^{\prime}[0, T]\right)$. Then the set function σ defined on $\mathcal{B}\left(L_{a, b}^{2}[0, T]\right)$ by $\sigma(E)=f\left(D_{t}^{-1}(E)\right)$ for each $E \in \mathcal{B}\left(L_{a, b}^{2}[0, T]\right)$ is a complex Borel measure on $\mathcal{B}\left(L_{a, b}^{2}[0, T]\right)$.

Definition 2.4. Let
$\mathcal{M}\left(C_{a, b}^{\prime}[0, T]\right)=\left\{f: f=\sigma \circ D_{t}, \sigma\right.$ is a complex Borel measure on $\left.L_{a, b}^{2}[0, T]\right\}$.
The Banach algebra $\mathcal{F}\left(C_{a, b}[0, T]\right)$ consists of those functionals F on $C_{a, b}[0, T]$ expressible in the form

$$
\begin{equation*}
F(x)=\int_{C_{a, b}^{\prime}[0, T]} \exp \left\{i\left\langle D_{t} w, x\right\rangle\right\} d f(w) \tag{2.26}
\end{equation*}
$$

for s-a.e. $\quad x \in C_{a, b}[0, T]$ where the associated measure f is an element $\mathcal{M}\left(C_{a, b}^{\prime}[0, T]\right)$. We call $\mathcal{F}\left(C_{a, b}[0, T]\right)$ the Fresnel type class of the function space $C_{a, b}[0, T]$.

REMARK 2.2. (i) $\mathcal{M}\left(C_{a, b}^{\prime}[0, T]\right)$ is a Banach algebra under the total variation norm where convolution is taken as the multiplication.
(ii) One can show that the correspondence $f \rightarrow F$ is injective, carries convolution into pointwise multiplication and that $\mathcal{F}\left(C_{a, b}[0, T]\right)$ is a Banach algebra with norm

$$
\|F\|=\|f\|=\int_{C_{a, b}^{\prime}[0, T]}|d f(w)|
$$

3. Transforms and convolutions

In this section, we obtain several results for the GCP of functionals in the class $\mathcal{F}\left(C_{a, b}[0, T]\right)$.

Remark 3.1. Let F be an element of $\mathcal{F}\left(C_{a, b}[0, T]\right)$ whose associated measure f satisfies the condition

$$
\begin{equation*}
\int_{C_{a, b}^{\prime}[0, T]} \exp \left\{\left|2 q_{0}\right|^{-1 / 2}\|w\|_{C_{a, b}^{\prime}}\|a\|_{C_{a, b}^{\prime}}\right\}|d f(w)|<\infty \tag{3.1}
\end{equation*}
$$

for some $q_{0} \in \mathbb{R}-\{0\}$. Then for all $q \in \mathbb{R}$ with $|q| \geq\left|q_{0}\right|$, the generalized analytic Feynman integral $E^{\operatorname{anf}_{q}}[F]$ of F exists and is given by the formula

$$
\begin{equation*}
E^{\operatorname{anf}_{q}}[F]=\int_{C_{a, b}^{\prime}[0, T]} \exp \left\{-\frac{i}{2 q}\|w\|_{C_{a, b}^{\prime}}^{2}+i\left(\frac{i}{q}\right)^{\frac{1}{2}}(w, a)_{C_{a, b}^{\prime}}\right\} d f(w) \tag{3.2}
\end{equation*}
$$

In next theorem, we obtain the L_{p} analytic $\operatorname{GFFT} T_{q}^{(p)}(F)$ of a functional F in $\mathcal{F}\left(C_{a, b}[0, T]\right)$.

Theorem 3.1. Let q_{0} be a nonzero real number and let F be an element of $\mathcal{F}\left(C_{a, b}[0, T]\right)$ whose associated measure f satisfies the condition (3.1) above. Then for all $p \in[1,2]$ and all real q with $|q| \geq\left|q_{0}\right|$, the L_{p} analytic GFFT of $F, T_{q}^{(p)}(F)$ exists and is given by the formula
$T_{q}^{(p)}(F)(y)=\int_{C_{a, b}^{\prime}[0, T]} \exp \left\{i\left\langle D_{t} w, y\right\rangle-\frac{i}{2 q}\|w\|_{C_{a, b}^{\prime}}^{2}+i\left(\frac{i}{q}\right)^{\frac{1}{2}}(w, a)_{C_{a, b}^{\prime}}\right\} d f(w)$
for s-a.e. $y \in C_{a, b}[0, T]$. Furthermore, $T_{q}^{(p)}(F)$ is an element of $\mathcal{F}\left(C_{a, b}[0, T]\right)$ with associated measure ϕ defined by

$$
\begin{equation*}
\phi(B)=\int_{B} \exp \left\{-\frac{i}{2 q}\|w\|_{C_{a, b}^{\prime}}^{2}+i\left(\frac{i}{q}\right)^{\frac{1}{2}}(w, a)_{C_{a, b}^{\prime}}\right\} d f(w) \tag{3.4}
\end{equation*}
$$

for $B \in \mathcal{B}\left(C_{a, b}^{\prime}[0, T]\right)$.
Proof. For $\lambda>0$ and for s-a.e. $y \in C_{a, b}[0, T]$, using equation (2.10), the Fubini theorem and equation (2.15), we obtain

$$
\begin{align*}
& T_{\lambda}(F)(y)=E_{x}\left[F\left(y+\lambda^{-1 / 2} x\right)\right] \\
& =\int_{C_{a, b}^{\prime}[0, T]} E_{x}\left[\exp \left\{i\left\langle D_{t} w, y\right\rangle+i \lambda^{-1 / 2}\left\langle D_{t} w, x\right\rangle\right\}\right] d f(w) \tag{3.5}\\
& =\int_{C_{a, b}^{\prime}[0, T]} \exp \left\{i\left\langle D_{t} w, y\right\rangle-\frac{1}{2 \lambda}\left(\left(D_{t} w\right)^{2}, b^{\prime}\right)+\frac{i}{\sqrt{\lambda}}\left(D_{t} w, a^{\prime}\right)\right\} d f(w)
\end{align*}
$$

$$
=\int_{C_{a, b}^{\prime}[0, T]} \exp \left\{i\left\langle D_{t} w, y\right\rangle-\frac{1}{2 \lambda}\|w\|_{C_{a, b}^{\prime}}^{2}+\frac{i}{\sqrt{\lambda}}(w, a)_{C_{a, b}^{\prime}}\right\} d f(w) .
$$

But the last expression above is analytic through \mathbb{C}_{+}and is continuous on $\tilde{\mathbb{C}}_{+}$. Also, it is bounded on the region $\Gamma=\left\{\lambda \in \tilde{\mathbb{C}}_{+}:\left|\operatorname{Im}\left(\lambda^{-1 / 2}\right)\right| \leq\right.$ $\left.\left|2 q_{0}\right|^{-1 / 2}\right\}$. Thus equation (3.3) is established. Let ϕ be a set function on $\mathcal{B}\left(C_{a, b}^{\prime}[0, T]\right)$ defined by equation (3.4). By using condition (3.1) we see that

$$
\begin{equation*}
\|\phi\| \leq \int_{C_{a, b}^{\prime}[0, T]} \exp \left\{\left|2 q_{0}\right|^{-1 / 2}\|w\|_{C_{a, b}^{\prime}}\|a\|_{C_{a, b}^{\prime}}\right\}|d f(w)|<+\infty . \tag{3.6}
\end{equation*}
$$

Hence we have the desired result.
In our next theorem, we obtain the GCP of functionals in $\mathcal{F}\left(C_{a, b}[0, T]\right)$
Theorem 3.2. Let q_{0} be the nonzero real number and let F and G be elements of $\mathcal{F}\left(C_{a, b}[0, T]\right)$ whose associated measures f and g satisfy the condition

$$
\begin{equation*}
\int_{C_{a, b}^{\prime}[0, T]} \exp \left\{\left|4 q_{0}\right|^{-1 / 2}\|w\|_{C_{a, b}^{\prime}}\|a\|_{C_{a, b}^{\prime}}\right\}[|d f(w)|+|d g(w)|]<\infty . \tag{3.7}
\end{equation*}
$$

Then their $G C P(F * G)_{q}$ exists for all $p \in[1,2]$ and all real q with $|q| \geq\left|q_{0}\right|$ and is given by the formula

$$
\begin{align*}
& (F * G)_{q}(y) \\
& =\int_{C_{a, b}^{\prime}[0, T]} \int_{C_{a, b}^{\prime}[0, T]} \exp \left\{\frac{i}{\sqrt{2}}\left\langle D_{t} w_{1}+D_{t} w_{2}, y\right\rangle\right. \\
& \tag{3.8}\\
& \quad-\frac{i}{4 q}\left(\left\|w_{1}\right\|_{C_{a, b}^{\prime}}^{2}+\left\|w_{2}\right\|_{C_{a, b}^{\prime}}^{2}-2\left(w_{1}, w_{2}\right)_{C_{a, b}^{\prime}}\right) \\
& \left.\quad+i\left(\frac{i}{2 q}\right)^{\frac{1}{2}}\left(\left(w_{1}, a\right)_{C_{a, b}^{\prime}}-\left(w_{2}, a\right)_{C_{a, b}^{\prime}}\right)\right\} d f\left(w_{1}\right) d g\left(w_{2}\right) .
\end{align*}
$$

Proof. By using (2.13), the Fubini theorem, and (2.15), we have that for $\lambda>0$,

$$
\begin{aligned}
& (F * G)_{\lambda}(y) \\
& =E_{x}\left[F\left(\frac{y+\lambda^{-1 / 2} x}{\sqrt{2}}\right) G\left(\frac{y-\lambda^{-1 / 2} x}{\sqrt{2}}\right)\right] \\
& =\int_{C_{a, b}^{\prime}[0, T]} \int_{C_{a, b}^{\prime}[0, T]} \exp \left\{\frac{i}{\sqrt{2}}\left\langle D_{t} w_{1}+D_{t} w_{2}, y\right\rangle\right. \\
& \quad-\frac{i}{4 \lambda}\left(\left\|w_{1}\right\|_{C_{a, b}^{\prime}}^{2}+\left\|w_{2}\right\|_{C_{a, b}^{\prime}}^{2}-2\left(w_{1}, w_{2}\right)_{C_{a, b}^{\prime}}\right) \\
& \left.\quad+i\left(\frac{1}{2 \lambda}\right)^{\frac{1}{2}}\left(\left(w_{1}, a\right)_{C_{a, b}^{\prime}}-\left(w_{2}, a\right)_{C_{a, b}^{\prime}}\right)\right\} d f\left(w_{1}\right) d g\left(w_{2}\right)
\end{aligned}
$$

for s-a.e. $y \in C_{a, b}[0, T]$. But the last expression above is analytic throughout \mathbb{C}_{+}, and is continuous on $\tilde{\mathbb{C}}_{+}$. Thus we have the equation (3.10) above. Let a set function $h: \mathcal{B}\left(C_{a, b}^{\prime}[0, T] \times C_{a, b}^{\prime}[0, T]\right) \longrightarrow \mathbb{C}$ be defined by

$$
\begin{array}{r}
h(E)=\int_{E} \exp \left\{-\frac{i}{4 q}\left(\left\|w_{1}\right\|_{C_{a, b}^{\prime}}^{2}+\left\|w_{2}\right\|_{C_{a, b}^{\prime}}^{2}+2\left(w_{1}, w_{2}\right)_{C_{a, b}^{\prime}}\right)\right. \tag{3.10}\\
\left.\quad+i\left(\frac{i}{2 q}\right)^{\frac{1}{2}}\left(\left(w_{1}, a\right)_{C_{a, b}^{\prime}}-\left(w_{2}, a\right)_{C_{a, b}^{\prime}}\right)\right\} d f\left(w_{1}\right) d g\left(w_{2}\right)
\end{array}
$$

for each $E \in \mathcal{B}\left(C_{a, b}^{\prime}[0, T] \times C_{a, b}^{\prime}[0, T]\right)$. Then h is a complex Borel measure on $\mathcal{B}\left(C_{a, b}^{\prime}[0, T] \times C_{a, b}^{\prime}[0, T]\right)$. Now we define a function $\varphi: C_{a, b}^{\prime}[0, T] \times$ $C_{a, b}^{\prime}[0, T] \longrightarrow C_{a, b}^{\prime}[0, T]$ by

$$
\begin{equation*}
\varphi\left(w_{1}, w_{2}\right)=\frac{1}{\sqrt{2}}\left(w_{1}+w_{2}\right) \tag{3.11}
\end{equation*}
$$

Then φ is continuous and so it is Borel measurable. Let $\tilde{h}=h \circ \varphi^{-1}$. By the condition (3.7) above, we that for real q with $|q| \geq\left|q_{0}\right|$

$$
\begin{aligned}
\|\tilde{h}\| & =\int_{C_{a, b}^{\prime}[0, T]} \int_{C_{a, b}^{\prime}[0, T]}\left|d h\left(w_{1}, w_{2}\right)\right| \\
& \leq \int_{C_{a, b}^{\prime}[0, T]} \int_{C_{a, b}^{\prime}[0, T]} \left\lvert\, \exp \left\{-\frac{i}{4 q}\left(\left\|w_{1}\right\|_{C_{a, b}^{\prime}}^{2}+\left\|w_{2}\right\|_{C_{a, b}^{\prime}}^{2}-2\left(w_{1}, w_{2}\right)_{C_{a, b}^{\prime}}\right)\right.\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+i\left(\frac{i}{2 q}\right)^{\frac{1}{2}}\left(\left(w_{1}, a\right)_{C_{a, b}^{\prime}}-\left(w_{2}, a\right)_{C_{a, b}^{\prime}}\right)\right\}\left|\left|d f\left(w_{1}\right)\right|\right| d g\left(w_{2}\right) \mid \tag{3.12}\\
& \quad \leq \int_{C_{a, b}^{\prime}[0, T]} \exp \left\{\frac{1}{\sqrt{4 q_{0}}} \int_{0}^{T}\left|w_{1}(s)\right| d|a(s)|\right\}\left|d f\left(w_{1}\right)\right| \\
& \quad \cdot \int_{C_{a, b}^{\prime}[0, T]} \exp \left\{\frac{1}{\sqrt{4 q_{0}}} \int_{0}^{T}\left|w_{2}(s)\right| d|a(s)|\right\}\left|d g\left(w_{2}\right)\right|<\infty .
\end{align*}
$$

Hence $\tilde{h}=h \circ \varphi^{-1}$ belongs to $\mathcal{M}\left(C_{a, b}^{\prime}[0, T]\right)$ and

$$
\begin{equation*}
(F * G)_{q}(y)=\int_{C_{a, b}^{\prime}[0, T]} \exp \{i\langle r, y\rangle\} d h(r) \tag{3.13}
\end{equation*}
$$

for s-a.e. $y \in C_{a, b}^{\prime}[0, T]$. Hence $(F * G)_{q}$ exists and is given by (3.8) for all real q with $|q| \geq\left|q_{0}\right|$ and it belong to $\mathcal{F}\left(C_{a, b}[0, T]\right)$.

Remark 3.2. Let F, f, and q_{0} be as in Theorem 3.2. Then for all real q with $|q| \geq\left|q_{0}\right|,{ }^{*} F_{q}$ and F_{q}^{*} are in $\mathcal{F}\left(C_{a, b}[0, T]\right)$.

Theorem 3.3. Let F, G, f, g, and q_{0} be as in Theorem 3.2. Then for all $p \in[1,2]$ and all real q with $|q| \geq\left|q_{0}\right|$,

$$
\begin{equation*}
T_{q}^{(p)}\left((F * G)_{q}\right)(y)=\left(T_{q}^{(p)}\left(F_{q}^{*}\right)(y)\right)\left(T_{q}^{(p)}\left({ }^{*} G_{q}\right)(y)\right) \tag{3.14}
\end{equation*}
$$

for s-a.e. $y \in C_{a, b}[0, T]$, where F_{q}^{*} and ${ }^{*} G_{q}$ are given by (2.13). Also, both of the expressions in (3.14) are given by the expression

$$
\begin{align*}
& \int_{C_{a, b}^{\prime}[0, T]} \int_{C_{a, b}^{\prime}[0, T]} \exp \left\{\frac{1}{\sqrt{2}}\left\langle D_{t} w_{1}+D_{t} w_{2}, y\right\rangle-\frac{i}{2 q}\left(\left\|w_{1}\right\|_{C_{a, b}^{\prime}}^{2}+\left\|w_{2}\right\|_{C_{a, b}^{\prime}}^{2}\right)\right. \\
& \left.(3.15) \quad+2 i\left(\frac{i}{2 q}\right)^{\frac{1}{2}}\left(w_{1}, a\right)_{C_{a, b}^{\prime}}\right\} d f\left(w_{1}\right) d g\left(w_{2}\right) . \tag{3.15}
\end{align*}
$$

Proof. By using (2.10), (2.13), the Fubini theorem, and (2.15), we have that for $\lambda>0$,

$$
\begin{equation*}
T_{\lambda}\left((F * G)_{\lambda}\right)(y)=T_{\lambda}\left(F_{\lambda}^{*}\right)(y) T_{\lambda}\left(G_{\lambda}^{*}\right)(y) \tag{3.16}
\end{equation*}
$$

for s-a.e. $y \in C_{a, b}[0, T]$. But both of the expressions on the right-hand side of equation (3.16) are analytic functions of λ throughout \mathbb{C}_{+}, and are continuous functions of λ on $\tilde{\mathbb{C}}_{+}$for all $y \in C_{a, b}[0, T]$. By using (3.7), $T_{q}^{(p)}\left((F * G)_{q}\right)$ exists for all real q with $|q| \geq\left|q_{0}\right|$ and is given by (3.14) for all desired values of p and q.

Theorem 3.4. Let F, G, f, g, and q_{0} be as in Theorem 3.3. Then

$$
\begin{align*}
& \int_{C_{a, b}[0, T]}^{a n f_{-q}} T_{q}^{(p)}\left((F * G)_{q}\right)(y) d \mu(y) \\
& =\int_{C_{a, b}[0, T]}^{a n f_{-q}} T_{q}^{(p)}\left(F_{q}^{*}\right)(y) T_{q}^{(p)}\left({ }^{*} G_{q}\right)(y) d \mu(y) \tag{3.17}\\
& =\int_{C_{a, b}[0, T]}^{a f_{q}}\left(F_{-q}^{*}\right)_{\frac{q}{2}}^{*}(\sqrt{2} y)\left(G_{-q}^{*}\right)_{\frac{q}{2}}^{*}(-\sqrt{2} y) d \mu(y) .
\end{align*}
$$

Proof. Fix p and q. Then for $\lambda>0$, using (3.9), the Fubini theorem and (3.3), we have

$$
\begin{align*}
& \int_{C_{a, b}[0, T]} T_{q}^{(p)}\left((F * G)_{q}\right)(y / \sqrt{\lambda}) d \mu(y) \\
& =\int_{C_{a, b}[0, T]} \int_{C_{a, b}^{\prime}[0, T]} \int_{C_{a, b}^{\prime}[0, T]} \exp \left\{\frac{1}{\sqrt{2 \lambda}}\left\langle D_{t} w_{1}+D_{t} w_{2}, y\right\rangle\right. \\
& \left.\quad-\frac{i}{2 q}\left(\left\|w_{1}\right\|_{C_{a, b}^{\prime}}^{2}+\left\|w_{2}\right\|_{C_{a, b}^{\prime}}^{2}\right)+2 i\left(\frac{i}{2 q}\right)^{\frac{1}{2}}\left(w_{1}, a\right)_{C_{a, b}^{\prime}}\right\} d f\left(w_{1}\right) d g\left(w_{2}\right) d \mu(y) \\
& =\int_{C_{a, b}^{\prime}[0, T]} \int_{C_{a, b}^{\prime}[0, T]} \exp \left\{-\frac{1}{4 \lambda}\left(\left\|w_{1}\right\|_{C_{a, b}^{\prime}}^{2}+\left\|w_{2}\right\|_{C_{a, b}^{\prime}}^{2}+2\left(w_{1}, w_{2}\right)_{C_{a, b}^{\prime}}\right)\right. \\
& \frac{i}{\sqrt{2 \lambda}}\left(\left(w_{1}, a\right)_{C_{a, b}^{\prime}}+\left(w_{2}, a\right)_{C_{a, b}^{\prime}}\right)-\frac{i}{2 q}\left(\left\|w_{1}\right\|_{C_{a, b}^{\prime}}^{2}+\left\|w_{2}\right\|_{C_{a, b}^{\prime}}^{2}\right) \\
& \begin{array}{l}
\left.(3.18) \quad+2 i\left(\frac{i}{2 q}\right)^{\frac{1}{2}}\left(w_{1}, a\right)_{C_{a, b}^{\prime}}\right\} d f\left(w_{1}\right) d g\left(w_{2}\right) .
\end{array} \tag{3.18}
\end{align*}
$$

But the last expression is an analytic function of λ throughout $\tilde{\mathbb{C}}_{+}$and is
continuous throughout $\tilde{\mathbb{C}}_{+}$, and so letting $\lambda=-i(-q)=i q$, we obtain that

$$
\begin{aligned}
& \int_{C_{a, b}[0, T]}^{a n f_{-q}} T_{q}^{(p)}\left((F * G)_{q}\right)(y) d \mu(y) \\
& =\int_{C_{a, b}^{\prime}[0, T]} \int_{C_{a, b}^{\prime}[0, T]} \exp \left\{\frac{i}{4 q}\left(\left\|w_{1}\right\|_{C_{a, b}^{\prime}}^{2}+\left\|w_{2}\right\|_{C_{a, b}^{\prime}}^{2}+2\left(w_{1}, w_{2}\right)_{C_{a, b}^{\prime}}\right)\right.
\end{aligned}
$$

$$
\begin{gather*}
+i\left(\frac{-i}{2 q}\right)^{\frac{1}{2}}\left(\left(w_{1}, a\right)_{C_{a, b}^{\prime}}+\left(w_{2}, a\right)_{C_{a, b}^{\prime}}\right) \tag{3.19}\\
\left.-\frac{i}{2 q}\left(\left\|w_{1}\right\|_{C_{a, b}^{\prime}}^{2}+\left\|w_{2}\right\|_{C_{a, b}^{\prime}}^{2}\right)+2 i\left(\frac{i}{2 q}\right)^{\frac{1}{2}}\left(w_{1}, a\right)_{C_{a, b}^{\prime}}\right\} d f\left(w_{1}\right) d g\left(w_{2}\right) \\
=\int_{C_{a, b}^{\prime}[0, T]} \int_{C_{a, b}^{\prime}[0, T]} \exp \left\{-\frac{i}{4 q}\left(\left\|w_{1}\right\|_{C_{a, b}^{\prime}}^{2}+\left\|w_{2}\right\|_{C_{a, b}^{\prime}}^{2}-2\left(w_{1}, w_{2}\right)_{C_{a, b}^{\prime}}\right)\right. \\
\left.+i\left(\frac{-i}{2 q}\right)^{\frac{1}{2}}\left(\left(w_{1}, a\right)_{C_{a, b}^{\prime}}+\left(w_{2}, a\right)_{C_{a, b}^{\prime}}\right)+2 i\left(\frac{i}{2 q}\right)^{\frac{1}{2}}\left(w_{1}, a\right)_{C_{a, b}^{\prime}}\right\} d f\left(w_{1}\right) d g\left(w_{2}\right) .
\end{gather*}
$$

Clearly, the condition (3.7) will imply the existence of (3.19). On the other hand, using (2.14),(3.8), the Fubini theorem, and (3.2), we obtain that

$$
\begin{align*}
& \left(F_{-q}^{*}\right)_{\frac{q}{2}}^{*}(\sqrt{2} y)=\int_{C_{a, b}^{\prime}[0, T]} \exp \left\{\frac{i}{\sqrt{2}}\left\langle D_{t} w_{1}, y\right\rangle\right. \\
& \left.\quad+i\left(\frac{i}{2 q}\right)^{\frac{1}{2}}\left(w_{1}, a\right)_{C_{a, b}^{\prime}}+i\left(\frac{-i}{2 q}\right)^{\frac{1}{2}}\left(w_{1}, a\right)_{C_{a, b}^{\prime}}\right\} d f\left(w_{1}\right) \tag{3.20}
\end{align*}
$$

and

$$
\left(G_{-q}^{*}\right)_{\frac{a}{2}}^{*}(-\sqrt{2} y)=\int_{C_{a, b}^{\prime}[0, T]} \exp \left\{-\frac{i}{\sqrt{2}}\left\langle D_{t} w_{2}, y\right\rangle\right.
$$

$$
\begin{equation*}
\left.+i\left(\frac{i}{2 q}\right)^{\frac{1}{2}}\left(w_{2}, a\right)_{C_{a, b}^{\prime}}+i\left(\frac{-i}{2 q}\right)^{\frac{1}{2}}\left(w_{2}, a\right)_{C_{a, b}^{\prime}}\right\} d g\left(w_{2}\right) \tag{3.21}
\end{equation*}
$$

s-a.e. $y \in C_{a, b}[0, T]$. By using (3.20) and (3.21), we have that for $\lambda>0$

$$
\begin{align*}
& \int_{C_{a, b}[0, T]}\left(F_{-q}^{*}\right)_{\frac{q}{2}}^{*}(\sqrt{2} y / \sqrt{\lambda})\left(G_{-q}^{*}\right)_{\frac{q}{2}}^{*}(-\sqrt{2} y / \sqrt{\lambda}) d \mu(y) \\
& =\int_{C_{a, b}^{\prime}[0, T]} \int_{C_{a, b}^{\prime}[0, T]} \exp \left\{-\frac{1}{4 \lambda}\left(\left\|w_{1}\right\|_{C_{a, b}^{\prime}}^{2}+\left\|w_{2}\right\|_{C_{a, b}^{\prime}}^{2}-2\left(w_{1}, w_{2}\right)_{C_{a, b}^{\prime}}\right)\right. \\
& \quad+3.22) \tag{3.22}\\
& \quad+\frac{i}{\sqrt{2 \lambda}}\left(\left(w_{1}, a\right)_{C_{a, b}^{\prime}}-\left(w_{2}, a\right)_{C_{a, b}^{\prime}}\right)+i\left(\frac{i}{2 q}\right)^{\frac{1}{2}}\left(\left(w_{1}, a\right)_{C_{a, b}^{\prime}}-\left(w_{2}, a\right)_{C_{a, b}^{\prime}}\right) \\
& \left.\quad+i\left(\frac{-i}{2 q}\right)^{\frac{1}{2}}\left(\left(w_{1}, a\right)_{C_{a, b}^{\prime}}+\left(w_{2}, a\right)_{C_{a, b}^{\prime}}\right)\right\} d f\left(w_{1}\right) d g\left(w_{2}\right) .
\end{align*}
$$

But the last expression above is an analytic function of λ throughout $\tilde{\mathbb{C}}_{+}$ and is continuous throughout on $\tilde{\mathbb{C}}_{+}$and so letting $\lambda \rightarrow-i q$ we obtain that

$$
\begin{align*}
& \int_{C_{a, b}[0, T]}^{a n f_{q}}\left(F_{-q}^{*}\right)_{\frac{q}{2}}^{*}(\sqrt{2} y)\left(G_{-q}^{*}\right)_{\frac{q}{2}}^{*}(-\sqrt{2} y) d \mu(y) \tag{3.23}\\
= & \int_{C_{a, b}^{\prime}[0, T]} \int_{C_{a, b}^{\prime}[0, T]} \exp \left\{-\frac{i}{4 q}\left(\left\|w_{1}\right\|_{C_{a, b}^{\prime}}^{2}+\left\|w_{2}\right\|_{C_{a, b}^{\prime}}^{2}-2\left(w_{1}, w_{2}\right)_{C_{a, b}^{\prime}}\right)\right. \\
+ & \left.2 i\left(\frac{i}{2 q}\right)^{\frac{1}{2}}\left(w_{1}, a\right)_{C_{a, b}^{\prime}}+i\left(\frac{-i}{2 q}\right)^{\frac{1}{2}}\left(\left(w_{1}, a\right)_{C_{a, b}^{\prime}}+\left(w_{2}, a\right)_{C_{a, b}^{\prime}}\right)\right\} d f\left(w_{1}\right) d g\left(w_{2}\right)
\end{align*}
$$

Now (3.19) and (3.23) together yield (3.17).
REmARK 3.4. In Theorem 3.4 above, if $a(t) \equiv 0$, then for all $q \neq 0$,

$$
\begin{equation*}
T_{q}^{(p)}\left(F_{q}^{*}\right)(F)(y)=T_{q}^{(p)}(F)(y / \sqrt{2}) \operatorname{and} T_{q}^{(p)}\left({ }^{*} G_{q}\right)(F)(y)=T_{q}^{(p)}(G)(y / \sqrt{2}) \tag{3.24}
\end{equation*}
$$

for s-a.e. $y \in C_{a, b}[0, T]$. Furthermore

$$
\left(F_{-q}^{*}\right)_{\frac{q}{2}}^{*}(\sqrt{2} y)=F(y / \sqrt{2}) \quad \text { and } \quad\left(G_{-q}^{*}\right)_{\frac{q}{2}}^{*}(-\sqrt{2} y)=G(-y / \sqrt{2})
$$

Hence we have the following Parseval's identity

$$
\begin{aligned}
& \int_{C_{a, b}[0, T]}^{a n f_{-q}} T_{q}^{(p)}\left((F * G)_{q}\right)(y) d \mu(y) \\
& =\int_{C_{a, b}[0, T]}^{a n f_{-q}} T_{q}^{(p)}(F)(y / \sqrt{2}) T_{q}^{(p)}(G)(y / \sqrt{2}) d \mu(y) \\
& =\int_{C_{a, b}[0, T]}^{a n f_{q}} F(y / \sqrt{2}) G(-y / \sqrt{2}) d \mu(y) .
\end{aligned}
$$

4. Multiple L_{p} analytic GFFT and the GCP

In this section we establish some relationships between the multiple L_{p} analytic GFFT and the GCP of functionals in $\mathcal{F}\left(C_{a, b}[0, T]\right)$.

Definition 4.1 Let F be a measurable functional defined on $C_{a, b}[0, T]$ and define a transform $\left(T_{\gamma}\right)^{(n)}(\gamma>0)$ of F by

$$
\begin{equation*}
\left(T_{\gamma}\right)^{(n)}(F)=(\underbrace{T_{\gamma} \circ \cdots \circ T_{\gamma}}_{n-\text { times }})(F) \tag{4.1}
\end{equation*}
$$

that is, $\left(T_{\gamma}\right)^{(n)}$ means the n-times composition of $\left(T_{\gamma}\right)$, where T_{γ} is given by (2.10) in Definition 2.2 and n is a nonnegative integer. When γ is in \mathbb{C}_{+}, the transform $\left(T_{\gamma}\right)^{(n)}(F)$ means the analytic extension of $\left(T_{\gamma}\right)^{n}(F)(\gamma>0)$ as the function of $\lambda \in \mathbb{C}_{+}$. Let $\left(T_{\lambda}\right)^{(n)}(F)$ be analytic extension of $\left(T_{\gamma}\right)^{n}(F)$ as a function of $\lambda \in \mathbb{C}_{+}$. In case that $1<p \leq 2$, for each $q \in \mathbb{R}-\{0\}$, we define the multiple L_{p} analytic $\operatorname{GFFT}\left(T_{q}\right)^{(n)}(F)$ of F by

$$
\begin{equation*}
\left(T_{q}^{(p)}\right)^{(n)}(F)=\text { l.i.m. } \cdot \lambda \rightarrow-i q\left(T_{\lambda}\right)^{(n)}(F), \tag{4.2}
\end{equation*}
$$

where λ approaches $-i q$ through \mathbb{C}_{+}. In case that $p=1$, for each $q \in \mathbb{R}-\{0\}$, we define the multiple L_{1} analytic $\operatorname{GFFT}\left(T_{q}^{(1)}\right)^{(n)}(F)$ of F by

$$
\begin{equation*}
\left(T_{q}^{(1)}\right)^{n}(F)=\lim _{\lambda \rightarrow-i q}\left(T_{\lambda}\right)^{(n)}(F), \tag{4.3}
\end{equation*}
$$

where λ approaches $-i q$ through \mathbb{C}_{+}.
Note that $\left(T_{\lambda}\right)^{(0)}(F) \equiv F \equiv\left(T_{q}^{(p)}\right)^{(0)},\left(T_{\lambda}\right)^{(1)}(F) \equiv T_{\lambda}(F)$, and $\left(T_{q}^{(p)}\right)^{(1)} \equiv$ $T_{q}^{(p)}(F)$.

We have already shown that for $F \in \mathcal{F}\left(C_{a, b}[0, T]\right)$ with condition (3.1), the $L_{p} \operatorname{GFFT} T_{q}^{(p)}(F)$ belongs to the Fresnel type class $\mathcal{F}\left(C_{a, b}[0, T]\right)$.Hence by using the mathematical induction and proceeding as in the proof of Theorem 3.1, we can obtain the following theorem.

Theorem 4.1. Let q_{0} be a nonzero real number and let n be a nonnegative integer. Let $F \in \mathcal{F}\left(C_{a, b}[0, T]\right)$ be given by (3.26) whose associated measure f satisfies the condition

$$
\begin{equation*}
\int_{C_{a, b}^{\prime}[0, T]} \exp \left\{n\left|2 q_{0}\right|^{-1 / 2}\|w\|_{C_{a, b}^{\prime}}\|a\|_{C_{a, b}^{\prime}}\right\}|d f(w)|<\infty \tag{4.4}
\end{equation*}
$$

Then for all $p \in[1,2]$ and all real q with $|q| \geq\left|q_{0}\right|$, the multiple L_{p} analytic $\operatorname{GFFT}\left(T_{q}^{(p)}\right)^{(n)}(F)$ exists and is given by

$$
\begin{align*}
& \left(T_{q}^{(p)}\right)^{(n)}(F) \tag{4.5}\\
& =\int_{C_{a, b}^{\prime}[0, T]} \exp \left\{i\left\langle D_{t} w, y\right\rangle-\frac{i n}{2 q}\|w\|_{C_{a, b}^{\prime}}^{2}+i n\left(\frac{i}{q}\right)^{\frac{1}{2}}(w, a)_{C_{a, b}^{\prime}}\right\} d f(w)
\end{align*}
$$

for s-a.e. $y \in C_{a, b}[0, T]$. And $\left(T_{q}^{(p)}\right)^{(n)}(F)$ is an element of $\mathcal{F}\left(C_{a, b}[0, T]\right)$ with associated measure

$$
\phi_{n}(E)=\int_{E} \exp \left\{-\frac{i n}{2 q}\|w\|_{C_{a, b}^{\prime}}^{2}+i n\left(\frac{i}{q}\right)^{\frac{1}{2}}(w, a)_{C_{a, b}^{\prime}}\right\} d f(w)
$$

for $E \in \mathcal{B}\left(C_{a, b}^{\prime}[0, T]\right)$. Note that (4.5) is reduced to (3.3), if we take $n=1$ in (4.5).

Next, we obtain the GCP of the multiple L_{p} analytic GFFT's of functionals in $\mathcal{F}\left(C_{a, b}[0, T]\right)$.

Theorem 4.2. Let q_{0} be a nonzero real number and let n be nonnegative integer. Let F and G be elements of $\mathcal{F}\left(C_{a, b}[0, T]\right)$ whose associated measures f and g satisfy the condition

$$
\begin{equation*}
\int_{C_{a, b}^{\prime}[0, T]} \exp \left\{n\left|2 q_{0}\right|^{-1 / 2}\|w\|_{C_{a, b}^{\prime}}\|a\|_{C_{a, b}^{\prime}}\right\}[|d f(w)|+|d g(w)|]<\infty . \tag{4.6}
\end{equation*}
$$

Then for all $p \in[1,2]$, all q with $|q| \geq\left|q_{0}\right|$ and nonnegative integer m, the GCP $\left(\left(T_{q}^{(p)}\right)^{(n)}(F) *\left(\left(T_{q}^{(p)}\right)^{(m)}(G)\right)_{q}(y)\right.$ exists and is given by (4.7) below. Furthermore $\left(\left(T_{q}^{(p)}\right)^{(n)}(F) *\left(\left(T_{q}^{(p)}\right)^{(m)}(G)\right)_{q}(y)\right.$ is an elements of $\mathcal{F}\left(C_{a, b}[0, T]\right)$.

Proof. By using (4.5) and (3.8) we observe that for all $p \in[1,2]$ and all q with $|q| \geq\left|q_{0}\right|$

$$
\begin{aligned}
& \begin{aligned}
&\left(\left(T_{q}^{(p)}\right)^{(n)}(F) *\left(\left(T_{q}^{(p)}\right)^{(m)}(G)\right)_{q}(y)\right. \\
&=\int_{C_{a, b}^{\prime}[0, T]} \int_{C_{a, b}^{\prime}[0, T]} \exp \left\{\frac{i}{\sqrt{2}}\left\langle D_{t} w_{1}+D_{t} w_{2}, y\right\rangle-\frac{i n}{2 q}\left\|w_{1}\right\|_{C_{a, b}^{\prime}}^{2}-\frac{i m}{2 q}\left\|w_{2}\right\|_{C_{a, b}^{\prime}}^{2}\right. \\
&+\operatorname{in}\left(\frac{i}{q}\right)^{\frac{1}{2}}\left(w_{1}, a\right)_{C_{a, b}^{\prime}}+i m\left(\frac{i}{q}\right)^{\frac{1}{2}}\left(w_{2}, a\right)_{C_{a, b}^{\prime}} \\
&(4.7) \quad-\frac{i}{4 q}\left(\left\|w_{1}\right\|_{C_{a, b}^{\prime}}^{2}+\left\|w_{2}\right\|_{C_{a, b}^{\prime}}^{2}+2\left(w_{1}, w_{2}\right)_{C_{a, b}^{\prime}}\right) \\
&\left.+i\left(\frac{i}{2 q}\right)^{\frac{1}{2}}\left(\left(w_{1}, a\right)_{C_{a, b}^{\prime}}+\left(w_{2}, a\right)_{C_{a, b}^{\prime}}\right)\right\} d f\left(w_{1}\right) d g\left(w_{2}\right)
\end{aligned}
\end{aligned}
$$

for s-a.e. $y \in C_{a, b}[0, T]$. Furthermore, proceeding as in the proof of Theorem 3.2 above and using (4.6), we see that $\left(\left(T_{q}^{(p)}\right)^{(n)}(F) *\left(\left(T_{q}^{(p)}\right)^{(m)}(G)\right)_{q}(y)\right.$ is an element of $\mathcal{F}\left(C_{a, b}[0, T]\right)$

Note that (4.7) is reduced to (3.8), if we take $m=n=0$ in (3.8).
In our next theorem, we obtain the multiple L_{p} analytic GFFT of the convolution product for two functionals in $\mathcal{F}\left(C_{a, b}[0, T]\right)$.

Theorem 4.3. Let F, G, f, g and q_{0} be as in Theorem 4.2. Then for all $p \in[1,2]$ and all real q the following equation with $|q| \geq\left|q_{0}\right|$,

$$
\begin{aligned}
& \left(T_{q}^{(p)}\right)^{(n)}\left((F * G)_{q}\right)(y) \\
& =\int_{C_{a, b}^{\prime}[0, T]} \int_{C_{a, b}^{\prime}[0, T]} \exp \left\{\frac{i}{\sqrt{2}}\left\langle D_{t} w_{1}+D_{t} w_{2}, y\right\rangle\right. \\
& -\frac{i}{4 q}\left(\left\|w_{1}\right\|_{C_{a, b}^{\prime}}^{2}+\left\|w_{2}\right\|_{C_{a, b}^{\prime}}^{2}-2\left(w_{1}, w_{2}\right)_{C_{a, b}^{\prime}}\right) \\
& +i\left(\frac{i}{2 q}\right)^{\frac{1}{2}}\left(\left(w_{1}, a\right)_{C_{a, b}^{\prime}}-\left(w_{2}, a\right)_{C_{a, b}^{\prime}}\right) \\
& -\frac{i n}{4 q}\left(\left\|w_{1}\right\|_{C_{a, b}^{\prime}}^{2}+\left\|w_{2}\right\|_{C_{a, b}^{\prime}}^{2}+2\left(w_{1}, w_{2}\right)_{C_{a, b}^{\prime}}\right) \\
& \left.+i n\left(\frac{i}{2 q}\right)^{\frac{1}{2}}\left(\left(w_{1}, a\right)_{C_{a, b}^{\prime}}+\left(w_{2}, a\right)_{C_{a, b}^{\prime}}\right)\right\} d f\left(w_{1}\right) d g\left(w_{2}\right)
\end{aligned}
$$

holds of s-a.e. $y \in C_{a, b}[0, T]$, where n is a nonnegative integer. Futhermore, $\left(T_{q}^{(p)}\right)^{(n)}\left((F * G)_{q}\right)(y)$ is an element of $\mathcal{F}\left(C_{a, b}[0, T]\right)$.

Proof. By using equations (3.8) and (4.5), we can easily obtain the equation (4.8) above. Moreover, the condition (4.6) will imply the existence of the equation (4.8).

Finally, we show that the L_{p} analytic GFFT of the GCP of the multiple L_{p} analytic GFFT's of the transforms for functionals in $\mathcal{F}\left(C_{a, b}[0, T]\right)$.

Theorem 4.4. Let F, G, f, g and q_{0} be as in Theorem 4.2. Then for all $p \in[1,2]$ and all real q the following equation with $|q| \geq\left|q_{0}\right|$,

$$
\begin{align*}
& T_{q}^{(p)}\left(\left(\left(T_{q}^{(p)}\right)^{(n)}(F) *\left(T_{q}^{(p)}\right)^{(m)}(G)\right)_{q}\right)(y) \\
& =\left(T_{q / 2}^{(p)}\right)^{(n)}\left(T_{q}^{(p)}\left(F_{q}^{*}\right)\right)(y)\left(T_{q / 2}^{(p)}\right)^{(m)}\left(T_{q}^{(p)}\left({ }^{*} G_{q}\right)\right)(y) \tag{4.9}
\end{align*}
$$

holds for s-a.e. $y \in C_{a, b}[0, T]$, where F_{q}^{*} and ${ }^{*} G_{q}$ are as in (2.14). Also, both expressions in (4.9) are given by the expression

$$
\begin{aligned}
& \int_{C_{a, b}^{\prime}[0, T]} \int_{C_{a, b}^{\prime}[0, T]} \\
& \exp \left\{\frac{i}{\sqrt{2}}\left\langle D_{t} w_{1}+D_{t} w_{2}, y\right\rangle-\frac{i(n+1)}{2 q}\left\|w_{1}\right\|_{C_{a, b}^{\prime}}^{2}\right. \\
&-\frac{i(m+1)}{2 q}\left\|w_{2}\right\|_{C_{a, b}^{\prime}}^{2}+i n\left(\frac{i}{q}\right)^{\frac{1}{2}}\left(w_{1}, a\right)_{C_{a, b}^{\prime}} \\
&\left.\quad+i m\left(\frac{i}{q}\right)^{\frac{1}{2}}\left(w_{2}, a\right)_{C_{a, b}^{\prime}}+i \sqrt{2}\left(\frac{i}{q}\right)^{\frac{1}{2}}\left(w_{1}, a\right)_{C_{a, b}^{\prime}}\right\} d f\left(w_{1}\right) d g\left(w_{2}\right) .
\end{aligned}
$$

Furthermore, the transform $T_{q}^{(p)}\left(\left(T_{q}^{(p)}\right)^{(n)}(F) *\left(\left(T_{q}^{(p)}\right)^{(m)}(G)\right)_{q}\right)$ is an element of $\mathcal{F}\left(C_{a, b}[0, T]\right)$.

Proof. By using (4.7), (3.8) and (3.3), we can obtain the equation (4.9) above.

Remark 4.1. In Theorem 4.4 above, if $a(t) \equiv 0$, then

$$
\begin{equation*}
\left(T_{q / 2}^{(p)}\right)^{(n)}\left(T_{q}^{(p)}(F)(\cdot / \sqrt{2})\right)(y)=\left(T_{q}^{(p)}\right)^{(n+1)}(F)(y / \sqrt{2}) \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(T_{q / 2}^{(p)}\right)^{(m)}\left(T_{q}^{(p)}(G)\right)(\cdot / \sqrt{2})(y)=\left(T_{q}^{(p)}\right)^{(m+1)}(G)(y / \sqrt{2}) \tag{4.11}
\end{equation*}
$$

Hence by using (3.19), (4.10) and (4.11) we obtain that

$$
\begin{aligned}
& T_{q}^{(p)}\left(\left(T_{q}^{(p)}\right)^{(n)}(F) *\left(\left(T_{q}^{(p)}\right)^{(m)}(G)\right)_{q}\right)(y) \\
& =\left(T_{q}^{(p)}\right)^{(n+1)}(F)(y / \sqrt{2})\left(T_{q}^{(p)}\right)^{(m+1)}(G)(y / \sqrt{2})
\end{aligned}
$$

for s-a.e. $y \in C_{a, b}[0, T]$.

References

[1] J.M. Ahn, L_{1} analytic Fourier-Feynman transform on the Fresnel class of abstract Wiener space, Bull. Korean Math. Soc. 35 (1998), 99-117.
[2] M.D. Brue, A functional transform for Feynman integrals similar to the Fourier transform, Thesis, Univ. of Minnesota, Minneapolis, 1972.
[3] R.H. Cameron and D.A. Storvick, An L_{2} analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), 1-30.
[4] K.S. Chang, T.S. Song and I. Yoo, Analytic Fourier-Feynman transform and first variation on abstract Wiener space, J. Korean Math. Soc. 38 (2001), 485-501.
[5] S.J. Chang and D.M. Chung, Conditional function space integrals with applications, Rocky Mountain J. of Math. 26 (1996), 37-62.
[6] S.J. Chang and J.G. Choi, Multiple L_{p} analytic generalized Fourier-Feynman transform on the Banach algebra, Commun. Korean Math. Soc. 19 (2004), 93-111.
[7] S.J. Chang and D. Skoug, Generalized Fourier-Feynman transforms and a first variation on function space, Integral Transforms and Special Functions 14 (2003), 375-393.
[8] S.J. Chang and I.Y. Lee, Generalized Fourier-Feynman transforms and conditional generalized Fourier-Feynman transforms on a Fresnel type class, preprint.
[9] D.M. Chung, Scale-invariant measurability in abstract Wiener space, Pacific J. Math. 130 (1987), 27-40.
[10] G.W. Johnson and D.L. Skoug, An L_{p} analytic Fourier-Feynman transform, Michigan Math. J. 26 (1979), 103-127.
[11] T. Huffman, C. Park and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), 661-673.
[12] , Convolution and Fourier-Feynman transforms, Rocky Mountain J. Math. 27 (1997), 827-841.
[13] , Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals, Michigan Math. J. 43 (1996), 247-261.
[14] H.H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Math., vol. 463, Springer, 1975.
[15] J. Yeh, Stochastic Processes and the Wiener Integral, Marcel Dekker Inc., New York, 1973.

*

Department of Mathematics
Dankook University
Cheonan 330-714, Korea
E-mail: sejchang@dankook.ac.kr
**
Department of Mathematics
Dankook University
Cheonan 330-714, Korea
E-mail: iylee@dankook.ac.kr

[^0]: The present research was conducted by the research fund of Dankook University in 2004.

 Received by the editors on February 12, 2005.
 2000 Mathematics Subject Classifications: Primary 60J65, 28C20.
 Key words and phrases: generalized Brownian motion process, generalized analytic Feynman integral, generalized analytic Fourier-Feynman transform, generalized convolution product, multiple L_{p} analytic generalized Fourier-Feynman transform.

