Browse > Article
http://dx.doi.org/10.11568/kjm.2022.30.2.239

CONDITIONAL FORUIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT FOR A VECTOR VALUED CONDITIONING FUNCTION  

Kim, Bong Jin (Department of Data Science, Daejin University)
Publication Information
Korean Journal of Mathematics / v.30, no.2, 2022 , pp. 239-247 More about this Journal
Abstract
Let C0[0, T] denote the Wiener space, the space of continuous functions x(t) on [0, T] such that x(0) = 0. Define a random vector $Z_{\vec{e},k}:C_0[0,\;T] {\rightarrow}{\mathbb{R}}^k$ by $$Z_{\vec{e},k}(x)=({\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^T}\;e_1(t)dx(t),\;{\ldots},\;{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^T}\;ek(t)dx(t))$$ where ej ∈ L2[0, T] with ej ≠ 0 a.e., j = 1, …, k. In this paper we study the conditional Fourier-Feynman transform and a conditional convolution product for a cylinder type functionals defined on C0[0, T] with a general vector valued conditioning functions $Z_{\vec{e},k}$ above which need not depend upon the values of x at only finitely many points in (0, T] rather than a conditioning function X(x) = (x(t1), …, x(tn)) where 0 < t1 < … < tn = T. In particular we show that the conditional Fourier-Feynman transform of the conditional convolution product is the product of conditional Fourier-Feynman transforms.
Keywords
conditioal analytic Feynman integral; conditional convolution product; conditional Fourier-Feynman transform; conditional Wiener integral; simple formula for conditional Wiener integral;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R.H.Cameron and D.A.Storvick, An L2 analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), 1-30.
2 S.J.Chang and J.G.Choi, Rotation of Gaussian paths on Wiener space with applications, Banach J. Math. Anal. 12 (3) (2018), 651-672.   DOI
3 D.H.Cho, A generalized simple formula for evaluating Radon-Nikydym derivatives over paths, J. Korean Math. Soc. 58 (3) (2021), 609-631.   DOI
4 B.A.Fuks, Theory of analytic functions of several complex variables, Amer. Math. Soc. Providence, Rhodo Island, 1963.
5 Huffman, C.Park and D.Skoug, Generalized transforms and convolutions , Internat J. Math. and Math Sci. 20 (1997), 19-32.   DOI
6 C.Park and D.Skoug, Conditional Wiener integrals II , Pacific J. Math. Soc. 167 (1995), 293-312.   DOI
7 C.Park and D.Skoug, Conditional Fourier-Feynman transforms and conditional convolution products, J.Korean Math. Soc. 38 (2001), 61-76.
8 B.J.Kim and B.S.Kim Conditional integral transforms and convolutions for a general vector-valued conditioning functions, Korean J. Math. 24 (2016), 573-586.   DOI
9 K.S.Chang, D.H.Cho, B.S.Kim, T.S.Song and I.Yoo, Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space, Integral Transforms and Special Functins, 14 (3) (2003), 217-235.   DOI
10 D.M.Chung and D.A.Skoug, Conditional analytic Feynman integrals and a related Scrodinger integral equation, Siam. J. Math. Anal. 20 (1989), 950-965.   DOI
11 D.Skoug and D.Storvick, A survey of results involving transforms and convolutions in function space, Rocky Mountain J. Math. 34 (2004), 1147-1175.   DOI