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GENERALIZED ANALYTIC FOURIER-FEYNMAN

TRANSFORMS AND CONVOLUTIONS

ON A FRESNEL TYPE CLASS

Seung Jun Chang and Il Yong Lee

Abstract. In this paper, we define an Lp analytic generalized Fourier-
Feynman transform and a convolution product of functionals in a Ba-
nach algebra F(Ca,b[0, T ]) which is called the Fresnel type class, and

in more general class FA1,A2 of functionals defined on general function
space Ca,b[0, T ] rather than on classical Wiener space. Also we obtain
some relationships between the Lp analytic generalized Fourier-Feynman
transform and convolution product for functionals in F(Ca,b[0, T ]) and

in FA1,A2 .

1. Introduction

Let C0[0, T ] denote one-parameter Wiener space; that is the space of R-
valued continuous functions x(t) on [0, T ] with x(0) = 0. The concept of an
L1 analytic Fourier-Feynman transform (FFT) for functionals on Wiener space
was introduced by Brue in [2]. Further work involving the L2–L2 theory and
the Lp–Lp′ theory, 1/p+1/p′ = 1, includes [3, 16]. In [13], Huffman, Park and
Skoug defined a convolution product (CP) for functionals on Wiener space, and
they obtained various results for the FFT and CP [13, 14, 15]. On the other
hand, in [1], Ahn investigated the L1 FFT theory on the Fresnel class F(B) of
an abstract Wiener space, and in [11] Chang, Song and Yoo studied the FFT
and the first variation on an abstract Wiener space and corresponding Fresnel
class F(B). There has been a tremendous amount of papers in the literature on
the FFT and CP theory on classical and abstract Wiener spaces. Furthermore,
in [18], Kallianpur and Bromley introduced a larger class FA1,A2 than the
Fresnel class F(B) for a successful treatment of certain physical problems by
means of a Feynman integral.

In recent paper [8], Chang and Skoug established various results involving
generalized analytic Feynman integrals and generalized analytic FFTs(GFFT)
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for functionals defined on a very general function space Ca,b[0, T ] rather than
on the Wiener space C0[0, T ]. The function space Ca,b[0, T ] was introduced by
Chang and Chung in [6]. In [4], Chang and Choi studied a multiple Lp analytic
GFFT on the Banach algebra S(L2

a,b[0, T ]) which was introduced in [8]. On the

other hand, in [9, 10], Chang and Lee defined a Fresnel type class F(Ca,b[0, T ])
of functionals defined on Ca,b[0, T ] and studied GFFT, conditional GFFT, and
multiple Lp analytic GFFT on the Fresnel type class F(Ca,b[0, T ]).

In this paper, we define an Lp analytic GFFT and a CP of functionals defined
on a product function space C2

a,b[0, T ] ≡ Ca,b[0, T ] × Ca,b[0, T ] and establish
various relationships between the GFFT and CP of functionals in FA1,A2 which
is a class of functionals defined on the function space C2

a,b[0, T ]. The Wiener

process used in [3, 13–18, 1, 4, and 5] is stationary in time and is free of drift,
while the stochastic process used in [6–11], and in this paper, is nonstationary
in time and is subject to the drift a(t). Of course, if a(t) ≡ 0 and b(t) = t on
[0, T ], the Ca,b[0, T ] reduces to Wiener space C0[0, T ].

2. Definitions and preliminaries

Let D = [0, T ] and let (Ω,B, P ) be a probability measure space. A real-
valued stochastic process Y on (Ω,B, P ) and D is called a generalized Brownian
motion process if Y (0, ω)=0 almost everywhere and for 0 = t0 < t1 < · · · <
tn ≤ T , the n-dimensional random vector (Y (t1, ω), . . . , Y (tn, ω)) is normally
distributed with the density function

(2.1)

K (⃗t, η⃗) =
(
(2π)n

n∏
j=1

(
b(tj)− b(tj−1)

))−1/2

· exp
{
−1

2

n∑
j=1

((ηj − a(tj))− (ηj−1 − a(tj−1)))
2

b(tj)− b(tj−1)

}
,

where η⃗ = (η1, . . . , ηn), η0 = 0, t⃗ = (t1, . . . , tn), a(t) is an absolutely continuous
real-valued function on [0, T ] with a(0) = 0, a′(t) ∈ L2[0, T ], and b(t) is a
strictly increasing, continuously differentiable real-valued function with b(0) =
0 and b′(t) > 0 for each t ∈ [0, T ].

As explained in [21, pp. 18–20], Y induces a probability measure µ on the
measurable space (RD,BD) where RD is the space of all real-valued functions
x(t), t ∈ D, and BD is the smallest σ-algebra of subsets of RD with respect to
which all the coordinate evaluation maps et(x) = x(t) defined on RD are mea-
surable. The triple (RD,BD, µ) is a probability measure space. This measure
space is called the function space induced by the generalized Brownian motion
process Y determined by a(·) and b(·).

We note that the generalized Brownian motion process Y determined by a(·)
and b(·) is a Gaussian process with mean function a(t) and covariance function
r(s, t) = min{b(s), b(t)}. By Theorem 14.2 [21, p. 187], the probability measure
µ induced by Y , taking a separable version, is supported by Ca,b[0, T ] (which is
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equivalent to the Banach space of continuous functions x on [0, T ] with x(0) = 0
under the sup norm). Hence (Ca,b[0, T ],B(Ca,b[0, T ]), µ) is the function space
induced by Y where B(Ca,b[0, T ]) is the Borel σ-algebra of Ca,b[0, T ].

Given two C-valued measurable functions F and G on Ca,b[0, T ], F is said
to be equal to G scale almost everywhere(s-a.e.) if for each ρ > 0, µ({x ∈
Ca,b[0, T ] : F (ρx) ̸= G(ρx)}) = 0 [12, 17]. We write that F ≈ G if F=G s-a.e..

Let L2
a,b[0, T ] be the set of functions on [0, T ] which are Lebesgue measurable

and square integrable with respect to the Lebesgue-Stieltjes measures on [0, T ]
induced by a(·) and b(·); i.e.,

(2.2) L2
a,b[0, T ] =

{
v :

∫ T

0

v2(s)db(s) <∞ and

∫ T

0

v2(s)d|a|(s) <∞
}
,

where |a|(t) denotes the total variation of the function a(·) on the interval [0, t].
For u, v ∈ L2

a,b[0, T ], let

(2.3) (u, v)a,b =

∫ T

0

u(t)v(t)d[b(t) + |a|(t)].

Then (·, ·)a,b is an inner product on L2
a,b[0, T ] and ∥u∥a,b =

√
(u, u)a,b is a norm

on L2
a,b[0, T ]. In particular, note that ∥u∥a,b = 0 if and only if u(t) = 0 a.e. on

[0, T ]. Furthermore, (L2
a,b[0, T ], ∥ · ∥a,b) is a separable Hilbert space.

Let {ϕj}∞j=1 be a complete orthogonal set of real-valued functions of bounded
variation on [0, T ] such that

(ϕj , ϕk)a,b =

{
0 , j ̸= k

1 , j = k.

Then for each v ∈ L2
a,b[0, T ], the Paley-Wiener-Zygmund (PWZ) stochastic

integral ⟨v, x⟩ is defined by the formula

(2.4) ⟨v, x⟩ = lim
n→∞

∫ T

0

n∑
j=1

(v, ϕj)a,bϕj(t)dx(t)

for all x ∈ Ca,b[0, T ] for which the limit exists.

Remark 2.1. For each v ∈ L2
a,b[0, T ], the PWZ stochastic integral ⟨v, x⟩ exists

for µ-a.e. x ∈ Ca,b[0, T ] and ⟨v, x⟩ is a Gaussian random variable on Ca,b[0, T ]

with mean
∫ T

0
v(s)da(s) and variance

∫ T

0
v2(s)db(s). Note that for all u, v ∈

L2
a,b[0, T ],

(2.5)

∫
Ca,b[0,T ]

⟨u, x⟩⟨v, x⟩dµ(x)

=

∫ T

0

u(s)v(s)db(s) +

∫ T

0

u(s)da(s)

∫ T

0

v(s)da(s).
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Hence we see that for all u, v ∈ L2
a,b[0, T ],

∫ T

0
u(s)v(s)db(s) = 0 if and only if

⟨u, x⟩ and ⟨v, x⟩ are independent random variables.

Now, we state the definition of the generalized analytic Feynman integral.

Definition 2.2. Let C denote the complex numbers, let C+ = {λ ∈ C :

Re(λ) > 0} and let C̃+ = {λ ∈ C : λ ̸= 0 and Re(λ) ≥ 0}. Let F : Ca,b[0, T ] →
C be a measurable functional such that for each λ > 0, the function space
integral

J(λ) =

∫
Ca,b[0,T ]

F (λ−1/2x)dµ(x)

exists. If there exists a function J∗(λ) analytic in C+ such that J∗(λ) = J(λ)
for all λ > 0, then J∗(λ) is defined to be the analytic function space integral
of F over Ca,b[0, T ] with parameter λ, and for λ ∈ C+ we write

(2.6) Eanλ [F ] ≡ Eanλ
x [F (x)] = J∗(λ).

Let q ̸= 0 be a real number and let F be a functional such that Eanλ [F ] exists
for all λ ∈ C+. If the following limit exists, we call it the generalized analytic
Feynman integral of F with parameter q and we write

(2.7) Eanfq [F ] ≡ Eanfq
x [F (x)] = lim

λ→−iq
Eanλ [F ],

where λ→ −iq through values in C+.

Next, see [8, 9], we state the definition of the GFFT.

Definition 2.3. Let q ∈ R− {0}. For λ ∈ C+ and y ∈ Ca,b[0, T ], let

(2.8) Tλ(F )(y) = Eanλ
x [F (y + x)].

For p ∈ (1, 2], we define the Lp analytic GFFT, T
(p)
q (F ) of F , by the formula

(λ ∈ C+)

(2.9) T (p)
q (F )(y) = l.i.m.λ→−iqTλ(F )(y)

if it exists; i.e., for each ρ > 0,

lim
λ→−iq

∫
Ca,b[0,T ]

∣∣Tλ(F )(ρy)− T (p)
q (F )(ρy)

∣∣p′

dµ(y) = 0,

where 1/p+ 1/p′ = 1. We define the L1 analytic GFFT, T
(1)
q (F ) of F , by the

formula (λ ∈ C+)

(2.10) T (1)
q (F )(y) = lim

λ→−iq
Tλ(F )(y)

if it exists.

We note that for 1 ≤ p ≤ 2, T
(p)
q (F ) is defined only s-a.e.. We also note that

if T
(p)
q (F ) exists and if F ≈ G, then T

(p)
q (G) exists and T

(p)
q (G) ≈ T

(p)
q (F ).

Next we give the definition of the CP on Ca,b[0, T ].
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Definition 2.4. Let F and G be measurable functionals on Ca,b[0, T ]. For

λ ∈ C̃+, we define their CP (F ∗G)λ (if it exists) by

(2.11) (F ∗G)λ(y) =

{
Eanλ

x

[
F
(
y+x√

2

)
G
(
y−x√

2

)]
, λ ∈ C+

E
anfq
x

[
F
(
y+x√

2

)
G
(
y−x√

2

)]
, λ = −iq, q ∈ R, q ̸= 0.

Remark 2.5. (i) When λ = −iq, we denote (F ∗G)λ by (F ∗G)q.
(ii) Our definition of the CP is different than the definition given by Yeh in

[20] and used by Yoo in [22]. In [20] and [22], Yeh and Yoo studied relationships
between their CP and Fourier-Wiener transform.

The following generalized analytic Feynman integral formula is used several
times in this paper.

(2.12) Ex[exp{iλ−1/2⟨v, x⟩}] = exp

{
− (v2, b′)

2λ
+ iλ−1/2(v, a′)

}
for all λ ∈ C̃+ and v ∈ L2

a,b[0, T ] where

(2.13) (v, a′) =

∫ T

0

v(s)a′(s)ds =

∫ T

0

v(s)da(s)

and

(2.14) (v2, b′) =

∫ T

0

v2(s)b′(s)ds =

∫ T

0

v2(s)db(s).

In this paper, for each λ ∈ C̃+, λ
− 1

2 or λ
1
2 is chosen to have nonnegative real

part.

3. Transforms and convolutions of functionals in a Banach algebra

In this section we introduce a Banach algebra F(Ca,b[0, T ]) and evaluate the
GFFT and CP of functionals belonging to the Banach algebra F(Ca,b[0, T ]).
We then obtain several relationships of the GFFT and CP. First, we give the
definition of a Banach algebra F(Ca,b[0, T ]) which is called the Fresnel type
class on Ca,b[0, T ].

Let
(3.1)

C ′
a,b[0, T ] =

{
w ∈ Ca,b[0, T ] : w(t) =

∫ t

0

z(s)db(s) for some z ∈ L2
a,b[0, T ]

}
.

For w ∈ C ′
a,b[0, T ], with w(t) =

∫ t

0
z(s)db(s) for t ∈ [0, T ], let Dt : C

′
a,b[0, T ] →

L2
a,b[0, T ] be defined by the formula

(3.2) Dtw = z(t) =
w′(t)

b′(t)
.
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Then C ′
a,b ≡ C ′

a,b[0, T ] with inner product

(3.3) (w1, w2)C′
a,b

=

∫ T

0

Dtw1Dtw2db(t)

is a separable Hilbert space. Furthermore, (C ′
a,b[0, T ], Ca,b[0, T ], µ) is an ab-

stract Wiener space. For more details, see [19].
Note that for all w,w1, w2 ∈ C ′

a,b[0, T ],

(3.4) ((Dtw)
2, b′) =

∫ T

0

(Dtw)
2db(t) = ∥w∥2C′

a,b
,

(3.5) (Dtw, a
′) =

∫ T

0

Dtwda(t) =

∫ T

0

DtwDtadb(t) = (w, a)C′
a,b

and

(3.6) ⟨Dtw1, w2⟩ =
∫ T

0

Dtw1dw2(t) =

∫ T

0

Dtw1Dtw2db(t) = (w1, w2)C′
a,b
.

Next, we define a class of functionals on Ca,b[0, T ] like a Fresnel class of an
abstract Wiener space. Note that the linear operator given by the equation
(3.2) is an isomorphism. In fact, the inverse operator D−1

t : L2
a,b[0, T ] →

C ′
a,b[0, T ] is given by the formula

(3.7) D−1
t z =

∫ t

0

z(s)db(s)

and D−1
t is a bounded operator since

(3.8)

∥D−1
t z∥C′

a,b
=

∥∥∥∥ ∫ t

0

z(s)db(s)

∥∥∥∥
C′

a,b

=

(∫ T

0

z2(t)db(t)

) 1
2

≤
(∫ T

0

z2(t)d[b(t) + |a|(t)]
) 1

2

= ∥z∥a,b.

Thus by the open mapping theorem, Dt is also bounded and there exist positive
real numbers α and β such that α∥w∥C′

a,b
≤ ∥Dtw∥a,b ≤ β∥w∥C′

a,b
for all

w ∈ C ′
a,b[0, T ]. Hence we see that the Borel σ-algebra on (C ′

a,b[0, T ], ∥ · ∥C′
a,b

)

is given by

B(C ′
a,b[0, T ]) = {D−1

t (E) : E ∈ B(L2
a,b[0, T ])}

and that for any complex Borel measure σ on L2
a,b[0, T ], σ◦Dt is a complex Borel

measure σ on C ′
a,b[0, T ] and for any complex Borel measure f on C ′

a,b[0, T ],

f ◦D−1
t is a complex Borel measure σ on L2

a,b[0, T ].

Definition 3.1. Let M(C ′
a,b[0, T ]) be the space of complex-valued, countably

additive (and hence finite) Boreal measures on C ′
a,b[0, T ]. The Banach algebra
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F(Ca,b[0, T ]) consists of those functionals F on Ca,b[0, T ] expressible in the
form

(3.9) F (x) =

∫
C′

a,b[0,T ]

exp{i⟨Dtw, x⟩}df(w)

for s-a.e. x ∈ Ca,b[0, T ], where the associated measure f is an elementM(C ′
a,b[0,

T ]). We call F(Ca,b[0, T ]) the Fresnel type class of the function space Ca,b[0, T ].

Remark 3.2. (i) M(C ′
a,b[0, T ]) is a Banach algebra under the total variation

norm where convolution is taken as the multiplication.
(ii) One can show that the correspondence f 7→ F is injective, carries convo-

lution into pointwise multiplication and that F(Ca,b[0, T ]) is a Banach algebra
with norm

∥F∥ = ∥f∥ =

∫
C′

a,b[0,T ]

|df(w)|.

From now on, we will use the notation (w, x)∼ replaced by ⟨Dtw, x⟩. Then
we have the following assertions.

(1) For each w ∈ C ′
a,b[0, T ], the random variable x 7→ (w, x)∼ is Gaussian

with mean (w, a)C′
a,b

and variance ∥w∥2C′
a,b

.

(2) (w,αx)∼ = α(w, x)∼ for any real number α, w ∈ C ′
a,b[0, T ] and x ∈

Ca,b[0, T ].
(3) If {w1, w2, . . . , wn} is an orthonormal set in C ′

a,b[0, T ], then the random

variables (wj , x)
∼’s are independent.

We will explain the existence of generalized Feynman integrals of functionals
in F(Ca,b[0, T ]). Let F be an element of F(Ca,b[0, T ]) whose associated measure
f satisfies the condition

(3.10)

∫
C′

a,b[0,T ]

exp
{
|2q0|−

1
2 ∥w∥C′

a,b
∥a∥C′

a,b

}
|df(w)| < +∞

for some q0 ∈ R − {0}. Using the equation (3.9), Definition 2.2, the Fubini
theorem and the equation (2.12), we see that for all real q with |q| ≥ |q0|, the
generalized analytic Feynman integral Eanfq [F ] of F exists and is given by the
formula

Eanfq [F ] =

∫
C′

a,b[0,T ]

exp

{
− i

2q
∥w∥2C′

a,b
+ i

(
i

q

) 1
2

(w, a)C′
a,b

}
df(w).

For more detail studies of existence of generalized Feynman integrals, see [7–11].
Throughout this section, for each f ∈ M(C ′

a,b[0, T ]), we will use the notation

(3.11) dfβaαq (w) = exp

{
i

(
i

αq

) 1
2

(w, βa)C′
a,b

}
df(w).

The following theorems are due to Chang and Lee [10, 11].
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Theorem 3.3. Let q0 be a nonzero real number and let F be an element of
F(Ca,b[0, T ]) whose associated measure f satisfies the condition (3.10) above.

Then for all p ∈ [1, 2] and real q with |q| ≥ |q0|, the Lp analytic GFFT, T
(p)
q (F )

of F , exists and is given by the formula

(3.12) T (p)
q (F )(y) =

∫
C′

a,b[0,T ]

exp

{
i(w, y)∼ − i

2q
∥w∥2C′

a,b

}
dfaq (w)

for s-a.e. y ∈ Ca,b[0, T ]. Furthermore, T
(p)
q (F ) is an element of F(Ca,b[0, T ])

with associated measure ϕ defined by

(3.13) ϕ(B) =

∫
B

exp

{
− i

2q
∥w∥2C′

a,b

}
dfaq (w)

for B ∈ B(C ′
a,b[0, T ]).

Remark 3.4. In Theorem 3.3 above, for all real q with |q| ≥ |q0| and y ∈
Ca,b[0, T ],

(3.14) T (p)
q (F )(y) =

∫ anfq

Ca,b[0,T ]

F (y + x)dµ(x), 1 ≤ p ≤ 2.

In particular,

(3.15) T (p)
q (F )(0) =

∫ anfq

Ca,b[0,T ]

F (x)dµ(x), 1 ≤ p ≤ 2.

Theorem 3.5. Let q0 and F be as in Theorem 3.3. Then for all p ∈ [1, 2] and
all real q with |q| ≥ |q0|,

(3.16)

T
(p)
−q

(
T (p)
q (F )

)
(y) =

∫
C′

a,b[0,T ]

exp

{
i(w, y)∼ +

i√
|q/2|

(w, a)C′
a,b

}
df(w)

=

∫
C′

a,b[0,T ]

exp{i(w, y)∼}dfai|q/2|(w)

for s-a.e. y ∈ Ca,b[0, T ]. Furthermore, T
(p)
−q

(
T

(p)
q (F )

)
∈ F(Ca,b[0, T ]) and

(3.17)
∥∥T (p)

−q

(
T (p)
q (F )

)∥∥ = ∥F∥.

In Theorem 3.5 above, let a(t) ≡ 0. Then T
(p)
−q

(
T

(p)
q (F )

)
= F for s-a.e.

y ∈ Ca,b[0, T ], that is, T
(p)
−q is the inverse transform of T

(p)
q . For more details

for the case a(t) ≡ 0, see [3, 13, 14, 16].
In our next theorem we obtain the CP of functionals in F(Ca,b[0, T ]). The

proof is given by a similar method of the proof of Theorem 3.2 in [4].

Theorem 3.6. Let q0 be a nonzero real number and let F and G be elements
of F(Ca,b[0, T ]) whose associated measures f and g satisfy the condition

(3.18)

∫
C′

a,b[0,T ]

exp
{
|4q0|−

1
2 ∥w∥C′

a,b
∥a∥C′

a,b

}[
|df(w)|+ |dg(w)|

]
< +∞.
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Then their CP (F ∗G)q exists for all real q with |q| ≥ |q0| and is given by the
formula

(3.19)

(F ∗G)q(y)

=

∫
C′

a,b[0,T ]

∫
C′

a,b[0,T ]

exp

{
i√
2
(w1 + w2, y)

∼

− i

4q
∥w1 − w2∥2C′

a,b

}
dfa2q(w1)dg

−a
2q (w2)

for s-a.e. y ∈ Ca,b[0, T ]. Furthermore, (F ∗G)q is an element of F(Ca,b[0, T ]).

In Theorem 3.6 above, (F ∗G)q is expressible in the form

(3.20) (F ∗G)q(y) =
∫
C′

a,b[0,T ]

exp{i(r, y)∼}d(h ◦ ψ−1)(r)

for s-a.e. y ∈ Ca,b[0, T ] where ψ : C ′
a,b[0, T ]×C ′

a,b[0, T ] → C ′
a,b[0, T ] is given by

(3.21) ψ(w1 + w2) =
1√
2
(w1 + w2)

and h is a complex Borel measure on B(C ′
a,b[0, T ]× C ′

a,b[0, T ]) defined by

(3.22) h(B) =

∫
B

exp

{
− i

4q
∥w1 − w2∥2C′

a,b

}
dfa2q(w1)dg

−a
2q (w2)

for each B ∈ B(C ′
a,b[0, T ]× C ′

a,b[0, T ]).
In our next theorem, we obtain the transform of the convolution product.

Theorem 3.7. Let q0 be a nonzero real number and let F and G be elements
of F(Ca,b[0, T ]) whose associated measures f and g satisfy the condition

(3.23)

∫
C′

a,b[0,T ]

exp
{
2|4q0|−

1
2 ∥w∥C′

a,b
∥a∥C′

a,b

}[
|df(w)|+ |dg(w)|

]
< +∞.

Then for all p ∈ [1, 2] and all real q with |q| ≥ |q0|,
(3.24)

T (p)
q

(
(F ∗G)q

)
(y) = T

(p)
2q

(
T

(p)
2q (F )

)( y√
2

)
T

(p)
2q

(
T

(p)
2q (G(−·))(−·)

)( y√
2

)
for s-a.e. y ∈ Ca,b[0, T ]. Also, both of the expressions in (3.24) are given by
the expression
(3.25)∫
C′

a,b[0,T ]

∫
C′

a,b[0,T ]

exp

{
i√
2
(w1 + w2, y)

∼ − i

2q

(
∥w1∥2C′

a,b
+ ∥w2∥2C′

a,b

)}
df2a2q (w1)dg(w2).

Proof. By using (2.8), (2.11), the Fubini theorem and (2.12), we have for all
λ > 0,

(3.26) Tλ
(
(F ∗G)λ

)
(y) = T2λ

(
T2λ(F )

)( y√
2

)
T2λ

(
T2λ(G(−·))(−·)

)( y√
2

)
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for s-a.e. y ∈ Ca,b[0, T ]. But both of the expressions on the right-hand side of
equation (3.26) are analytic functions of λ throughout C+, and are continuous

functions of λ on C̃+ for all y ∈ Ca,b[0, T ]. Furthermore, it is bounded on the

region Γ = {λ ∈ C̃+ : |Im(λ−1/2)| ≤ 2|4q0|−1/2} under the condition (3.23).

By using (3.23), T
(p)
q ((F ∗G)q) exists for all real q with |q| ≥ |q0| and is given

by (3.24) for all desired values of p and q. □

Theorem 3.8. Let q0 be a nonzero real number and let F and G be elements
of F(Ca,b[0, T ]) whose associated measures f and g satisfy the condition

(3.27)

∫
C′

a,b[0,T ]

exp
{
3|4q0|−

1
2 ∥w∥C′

a,b
∥a∥C′

a,b

}[
|df(w)|+ |dg(w)|

]
< +∞.

Then for all p ∈ [1, 2] and all real q with |q| ≥ |q0|,

(3.28)

∫ anf−q

Ca,b[0,T ]

T (p)
q

(
(F ∗G)q

)
(y)dµ(y)

≡
∫ anf−q

Ca,b[0,T ]

T
(p)
2q

(
T

(p)
2q (F )

)( y√
2

)
T

(p)
2q

(
T

(p)
2q (G(−·))(−·)

)( y√
2

)
dµ(y)

=

∫ anfq

Ca,b[0,T ]

T
(p)
−2q

(
T

(p)
2q (F )

)( y√
2

)
T

(p)
−2q

(
T

(p)
2q (G)

)(
− y√

2

)
dµ(y).

Also, both of the expressions in (3.28) are given by the expression
(3.29)∫

C′
a,b[0,T ]

∫
C′

a,b[0,T ]

exp

{
− i

4q
∥w1 − w2∥2C′

a,b

+ i

(
−i
2q

) 1
2

(w1 − w2, a)C′
a,b

}
df2a2q (w1)dg

2a
−2q(w2).

Proof. Fix p and q. Then for λ > 0, using (3.24) and (3.12), we have
(3.30) ∫

Ca,b[0,T ]

T (p)
q

(
(F ∗G)q

)
(y/

√
λ)dµ(y)

=

∫
C′

a,b[0,T ]

∫
C′

a,b[0,T ]

exp

{
− 1

4λ
∥w1 + w2∥2C′

a,b
+

i√
2λ

(w1 + w2, a)C′
a,b

− i

2q

(
∥w1∥2C′

a,b
+ ∥w2∥2C′

a,b

)
+ 2i

(
i

2q

) 1
2

(w1, a)C′
a,b

}
df(w1)dg(w2).

But the last expression of (3.30) is analytic through C+ and is continuous on

C̃+. Furthermore, it is bounded on the region Γ = {λ ∈ C̃+ : |Im(λ−1/2)| ≤
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3|4q0|−1/2} under condition (3.27). So letting λ = −i(−q) = iq, we have
(3.31)∫ anf−q

Ca,b[0,T ]

T (p)
q

(
(F ∗G)q

)
(y)dµ(y)

=

∫
C′

a,b[0,T ]

∫
C′

a,b[0,T ]

exp

{
− i

4q
∥w1 − w2∥2C′

a,b
+ 2i

(
i

2q

) 1
2

(w1, a)C′
a,b

+ i

(
−i
2q

) 1
2

(w1 + w2, a)C′
a,b

}
df(w1)dg(w2)

=

∫
C′

a,b[0,T ]

∫
C′

a,b[0,T ]

exp

{
− i

4q
∥w1 − w2∥2C′

a,b

+ i

(
−i
2q

) 1
2

(w1 − w2, a)C′
a,b

}
df2a2q (w1)dg

2a
−2q(w2)

for s-a.e. y ∈ Ca,b[0, T ].
On the other hand, using (3.12) and the Fubini theorem we have

(3.32)

T
(p)
−2q

(
T

(p)
2q (F )

)( y√
2

)
=

∫
C′

a,b[0,T ]

exp

{
i√
2
(w1, y)

∼ + i

(
−i
2q

) 1
2

(w1, a)C′
a,b

}
dfa2q(w1)

and

(3.33)

T
(p)
−2q

(
T

(p)
2q (G)

)(
− y√

2

)
=

∫
C′

a,b[0,T ]

exp

{
− i√

2
(w2, y)

∼ + i

(
i

2q

) 1
2

(w2, a)C′
a,b

}
dga−2q(w2)

for s-a.e. y ∈ Ca,b[0, T ]. By using (3.32) and (3.33), we have for λ > 0,
(3.34)∫

Ca,b[0,T ]

T
(p)
−2q

(
T

(p)
2q (F )

)( y√
2λ

)
T

(p)
−2q

(
T

(p)
2q (G)

)(
− y√

2λ

)
dµ(y)

=

∫
C′

a,b[0,T ]

∫
C′

a,b[0,T ]

exp

{
− 1

4λ
∥w1 − w2∥2C′

a,b
+

i√
2λ

(w1 − w2, a)C′
a,b

+ i

(
−i
2q

) 1
2

(w1, a)C′
a,b

+ i

(
i

2q

) 1
2

(w2, a)C′
a,b

}
dfa2q(w1)dg

a
−2q(w2).

But the last expression above is an analytic function of λ throughout C+ and

is continuous throughout on C̃+. Also, it is bounded on the region Γ = {λ ∈
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C̃+ : |Im(λ−1/2)| ≤ 3|4q0|−1/2}. Letting λ = −iq we have
(3.35)∫ anfq

Ca,b[0,T ]

T
(p)
−2q(T

(p)
2q (F ))

(
y√
2

)
T

(p)
−2q(T

(p)
2q (G))

(
− y√

2

)
dµ(y)

=

∫
C′

a,b[0,T ]

∫
C′

a,b[0,T ]

exp

{
− i

4q
∥w1 − w2∥2C′

a,b

+ i

(
−i
2q

) 1
2

(w1 − w2, a)C′
a,b

}
df2a2q (w1)dg

2a
−2q(w2).

Now (3.31) and (3.35) together yield (3.28) . □

4. Transforms and convolutions of functionals in FA1,A2

Let A be a nonnegative self-adjoint operator on C ′
a,b[0, T ] and f any finite

complex measure. Then the functional

F (x) =

∫
C′

a,b[0,T ]

exp{i(A 1
2w, x)∼}df(w)

belongs to F(Ca,b[0, T ]) because it can be rewritten as∫
C′

a,b[0,T ]

exp{i(w, x)∼}dν(w)

for ν = f ◦ (A1/2)−1. Let A be self-adjoint but not nonnegative. Then A has
the form

(4.1) A = A+ −A−

and both A+ and A− are bounded nonnegative self-adjoint operators.
In this section we will get expressions of the generalized Feynman integral,

the GFFT and the CP when A is no longer required to be nonnegative or even
self-adjoint. In order to widen the scope of the analytic continuation technique
to treat such cases, we will present definitions here in a slightly modified form.

Given two C-valued measurable functions F and G on C2
a,b[0, T ], F is said to

be equal to G scale almost everywhere(s-a.e.) if for each ρ1, ρ2 > 0, µ({(x1, x2)
∈ C2

a,b[0, T ] : F (ρ1x1, ρ2x2) ̸= G(ρ1x1, ρ2, x2)}) = 0. We write that F ≈ G if
F=G s-a.e..

Definition 4.1. Let C2
+ = {λ⃗ = (λ1, λ2) ∈ C2 : Re(λj) > 0 for j = 1, 2}

and let C̃2
+ = {λ⃗ = (λ1, λ2) ∈ C2 : λj ̸= 0 and Re(λj) ≥ 0 for j = 1, 2}. Let

F : C2
a,b[0, T ] → C be a measurable functional such that for each λ1, λ2 > 0,

the function space integral

J(λ1, λ2) =

∫
C2

a,b[0,T ]

F (λ
−1/2
1 x1, λ

−1/2
2 x2)dµ(x1, x2)
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exists. If there exists a function J∗(λ1, λ2) analytic in C2
+ such that J∗(λ1, λ2)

= J(λ1, λ2) for all λ1, λ2 > 0, then J∗(λ1, λ2) is defined to be the analytic

function space integral of F over C2
a,b[0, T ] with parameter λ⃗ = (λ1, λ2), and

for λ⃗ ∈ C2
+ we write

(4.2)

Ean
λ⃗ [F ] ≡ E

an
λ⃗

x⃗ [F (x1, x2)] ≡
∫ an

λ⃗

C2
a,b[0,T ]

F (x1, x2)d(µ× µ)(x1, x2) = J∗(λ⃗).

Let q1 and q2 be nonzero real numbers. Let F be a functional such that Ean
λ⃗ [F ]

exists for all λ⃗ ∈ C2
+. If the following limit exists, we call it the generalized

analytic Feynman integral of F with parameter q⃗ = (q1, q2) and we write

(4.3)

Eanfq⃗ [F ] ≡ E
anfq⃗
x⃗ [F (x1, x2)]

≡
∫ anfq⃗

C2
a,b[0,T ]

F (x1, x2)d(µ× µ)(x1, x2) = lim
λ⃗→−iq⃗

Ean
λ⃗ [F ],

where λ⃗→ −iq⃗ = (−iq1,−iq2) through values in C2
+.

Definition 4.2. Let q1 and q2 be nonzero real numbers. For λ⃗ = (λ1, λ2) ∈ C2
+

and (y1, y2) ∈ C2
a,b[0, T ], let

(4.4) Tλ⃗(F )(y1, y2) = E
an

λ⃗

x⃗ [F (y1 + x1, y2 + x2)].

For p ∈ (1, 2], we define the Lp analytic GFFT, T
(p)
q⃗ (F ) of F , by the formula

(λ⃗ ∈ C2
+)

(4.5) T
(p)
q⃗ (F )(y1, y2) = l.i.m.λ⃗→−iq⃗Tλ⃗(F )(y1, y2)

if it exists; i.e., for each ρ1, ρ2 > 0,

lim
λ⃗→−iq⃗

∫
C2

a,b[0,T ]

∣∣Tλ⃗(F )(ρ1y1, ρ2y2)−T (p)
q⃗ (F )(ρ1y1, ρ2y2)

∣∣p′

d(µ×µ)(y1, y2) = 0,

where 1/p+ 1/p′ = 1. We define the L1 analytic GFFT, T
(1)
q⃗ (F ) of F , by the

formula (λ⃗ ∈ C2
+)

(4.6) T
(1)
q⃗ (F )(y1, y2) = lim

λ⃗→−iq⃗
Tλ⃗(F )(y1, y2)

if it exists.

We note that for 1 ≤ p ≤ 2, T
(p)
q⃗ (F ) is defined only s-a.e.. We also note that

if T
(p)
q⃗ (F ) exists and if F ≈ G, then T

(p)
q⃗ (G) exists and T

(p)
q⃗ (G) ≈ T

(p)
q⃗ (F ).

Next we give the definition of the CP on C2
a,b[0, T ].
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Definition 4.3. Let F and G be measurable functionals on C2
a,b[0, T ]. For

λ⃗ ∈ C̃2
+, we define their CP (F ∗G)λ⃗ (if it exists) by

(4.7)

(F ∗G)λ⃗(y1, y2)

=


E

an
λ⃗

x⃗

[
F
(
y1+x1√

2
, y2+x2√

2

)
G
(
y1−x1√

2
, y2−x2√

2

)]
, λ⃗ ∈ C+

E
anfq⃗
x⃗

[
F
(
y1+x1√

2
, y2+x2√

2

)
G
(
y1−x1√

2
, y2−x2√

2

)]
,

λ⃗ = −iq⃗ = (−iq1,−iq2), q1, q2 ∈ R− {0}.

Definition 4.4. Let A1 and A2 be bounded, nonnegative self-adjoint operators
on C ′

a,b[0, T ]. The Banach algebra FA1,A2
consists of those functionals F on

C2
a,b[0, T ] expressible in the form

(4.8) F (x1, x2) =

∫
C′

a,b[0,T ]

exp
{
i(A

1
2
1 w, x1)

∼ + i(A
1
2
2 w, x2)

∼}df(w)
for s-a.e. (x1, x2) ∈ C2

a,b[0, T ], where the associated measure f is an element

M(C ′
a,b[0, T ]).

Remark 4.5. In Definition 4.4 above, letA1 be the identity operator on C
′
a,b[0, T ]

and A2 ≡ 0. Then FA1,A2 is essentially the Fresnel type class F(Ca,b[0, T ])
which was defined in Section 3, and for real qj , j = 1, 2,

E
anfq⃗
x⃗ [F (x1, x2)] =

∫ anfq1

Ca,b[0,T ]

F0(x1)dµ(x1)

if it exists, where F0(x1) = F (x1, x2) for all (x1, x2) ∈ C2
a,b[0, T ] and∫ anfq1

Ca,b[0,T ]

F0(x1)dµ(x1)

means the generalized analytic Feynman integral on Ca,b[0, T ] which was de-
fined in Section 2 above.

Let Aj : C ′
a,b[0, T ] → C ′

a,b[0, T ], j = 1, 2 be nonnegative self-adjoint oper-

ators. Throughout this section, for each f ∈ M(C ′
a,b[0, T ]), we will use the

notation

df A⃗,βa
αq⃗ (w) = exp

{
i

(
i

αq1

) 1
2

(A
1
2
1 w, βa)C′

a,b
+ i

(
i

αq2

) 1
2

(A
1
2
2 w, βa)C′

a,b

}
df(w).

In our next theorem, we obtain the Lp analytic GFFT T
(p)
q⃗ (F ) of a functional

F in FA1,A2 .

Theorem 4.6. Let q0 be a nonzero real number and let F be an element of
FA1,A2 whose associated measure f satisfies the condition

(4.9)

∫
C′

a,b[0,T ]

exp

{
|2q0|−

1
2

(
∥A

1
2
1 w∥C′

a,b
+∥A

1
2
2 w∥C′

a,b

)
∥a∥C′

a,b

}
df(w) < +∞.
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Then for all p ∈ [1, 2] and all real qj with |qj | ≥ |q0|, j = 1, 2, the Lp analytic

GFFT, T
(p)
q⃗ (F ) of F exists and is given by the formula

(4.10)

T
(p)
q⃗ (F )(y1, y2) =

∫
C′

a,b[0,T ]

exp

{
i(A

1
2
1 w, y1)

∼ + i(A
1
2
2 w, y2)

∼

− i

2q1
∥A

1
2
1 w∥2C′

a,b
− i

2q2
∥A

1
2
2 w∥2C′

a,b

}
df A⃗,a

q⃗ (w)

for s-a.e. (y1, y2) ∈ C2
a,b[0, T ]. Furthermore, T

(p)
q⃗ (F ) is an element of FA1,A2

with associated measure ϕ defined by

(4.11) ϕ(B) =

∫
B

exp

{
− i

2q1
∥A

1
2
1 w∥2C′

a,b
− i

2q2
∥A

1
2
2 w∥2C′

a,b

}
df A⃗,a

q⃗ (w)

for B ∈ B(C ′
a,b[0, T ]).

Proof. For λj > 0, j = 1, 2 and s-a.e. (y1, y2) ∈ C2
a,b[0, T ], using the equation

(4.4), the Fubini theorem and the equation (2.12), we have

(4.12)

Tλ⃗(F )(y1, y2)

= Ex⃗

[
F (y1 + λ

− 1
2

1 x1, y2 + λ
− 1

2
2 x2)

]
=

∫
C′

a,b[0,T ]

Ex⃗

[
exp

{
i(A

1
2
1 w, y1)

∼ + iλ
− 1

2
1 (A

1
2
1 w, x1)

∼

+ i(A
1
2
2 w, y2)

∼ + iλ
− 1

2
2 (A

1
2
2 w, x2)

∼)
}]
df(w)

=

∫
C′

a,b[0,T ]

exp

{
i(A

1
2
1 w, y1)

∼ + i(A
1
2
2 w, y2)

∼

− 1

2λ1
∥A

1
2
1 w∥2C′

a,b
− 1

2λ2
∥A

1
2
2 w∥2C′

a,b

+
i√
λ1

(A
1
2
1 w, a)C′

a,b
+

i√
λ2

(A
1
2
2 w, a)C′

a,b

}
df(w).

But the last expression above is analytic through C2
+ and is continuous on C̃2

+.

Also, it is bounded on the region Γ = {λ⃗ = (λ1, λ2) ∈ C̃2
+ : |Im(λ

−1/2
j )| ≤

|2q0|−1/2, j = 1, 2}. Thus the equation (4.10) is established.
Let ϕ be a set function on B(C ′

a,b[0, T ]) defined by the equation (4.11). By

using the condition (4.9) we see that

(4.13)

∥ϕ∥ =

∫
C′

a,b[0,T ]

|df A⃗,a
q⃗ (w)|

≤
∫
C′

a,b[0,T ]

exp

{
1√
|2q0|

∥A
1
2
1 w∥C′

a,b
∥a∥C′

a,b

+
1√
|2q0|

∥A
1
2
2 w∥C′

a,b
∥a∥C′

a,b

}
|df(w)| < +∞.
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Hence we have the desired result. □

Let A be self-adjoint but not nonnegative. Then A has the form (4.1). Let
F ∈ FA+,A− . Suppose that the associated measure f of F satisfies condition
(4.9) with A1 and A2 replaced with A+ and A−, respectively. Then for q⃗ =
(q,−q) with q ∈ R− {0} and |q| ≥ |q0|,
(4.14)

T
(p)
q⃗ (F )(y1, y2)

=

∫
C′

a,b[0,T ]

exp

{
i(A

1
2
+w, y1)

∼ + i(A
1
2
−w, y2)

∼ − i

2q
∥A 1

2w∥2C′
a,b

}
df

(A+,A−),a
q⃗ (w)

and
(4.15)

Eanfq⃗ [F ] = T
(p)
q⃗ (F )(0, 0) =

∫
C′

a,b[0,T ]

exp

{
− i

2q
∥A 1

2w∥2C′
a,b

}
df

(A+,A−),a
q⃗ (w).

Moreover, if a(t) ≡ 0, then

(4.16)

T
(p)
q⃗ (F )(y1, y2)

=

∫
C′

a,b[0,T ]

exp

{
i(A

1
2
+w, y1)

∼ + i(A
1
2
−w, y2)

∼ − i

2q
∥A 1

2w∥2C′
a,b

}
df(w)

and

(4.17) Eanfq⃗ [F ] = T
(p)
q⃗ (F )(0, 0) =

∫
C′

a,b[0,T ]

exp

{
− i

2q
∥A 1

2w∥2C′
a,b

}
df(w).

In our next theorem, we obtain the CP of functionals in FA1,A2
.

Theorem 4.7. Let q0 be a nonzero real number and let F and G be elements
of FA1,A2

whose associated measures f and g satisfy the condition

(4.18)

∫
C′

a,b[0,T ]

exp

{
|4q0|−

1
2

(
∥A

1
2
1 w∥C′

a,b

+ ∥A
1
2
2 w∥C′

a,b

)
∥a∥C′

a,b

}[
|df(w)|+ |dg(w)|

]
< +∞.

Then their CP (F ∗ G)q⃗ exists for all real qj with |qj | ≥ |q0|, j = 1, 2 and is
given by the formula

(F ∗G)q⃗(y1, y2)

(4.19)

=

∫
C′

a,b[0,T ]

∫
C′

a,b[0,T ]

exp

{
i√
2
(A

1
2
1 (w1 + w2), y1)

∼

+
i√
2
(A

1
2
2 (w1 + w2), y2)

∼ − i

4q1
∥A

1
2
1 (w1 − w2)∥2C′

a,b
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− i

4q2
∥A

1
2
2 (w1 − w2)∥2C′

a,b

}
df A⃗,a

2q⃗ (w1)dg
A⃗,−a
2q⃗ (w2)

for s-a.e. (y1, y2) ∈ C2
a,b[0, T ]. Furthermore, (F ∗G)q⃗ is an element of FA1,A2 .

Proof. By using (4.7), the Fubini theorem and (2.12), we have for λj > 0,
j = 1, 2
(4.20)

(F ∗G)λ⃗(y1, y2)

=

∫
C′

a,b[0,T ]

∫
C′

a,b[0,T ]

exp

{
i√
2
(A

1
2
1 (w1 + w2), y1)

∼

+
i√
2
(A

1
2
2 (w1 + w2), y2)

∼ − 1

4λ1
∥A

1
2
1 (w1 − w2)∥2C′

a,b

− 1

4λ2
∥A

1
2
2 (w1 − w2)∥2C′

a,b
+ i

(
1

2λ1

) 1
2

(A
1
2
1 (w1 − w2), a)C′

a,b

+ i

(
1

2λ2

) 1
2

(A
1
2
2 (w1 − w2), a)C′

a,b

}
df(w1)dg(w2)

for s-a.e. (y1, y2) ∈ C2
a,b[0, T ]. But the last expression above is analytic through-

out C+, is continuous on C̃+, and is bounded on the region Γ = {λ⃗ = (λ1, λ2) ∈
C̃2

+ : |Im(λ
−1/2
j )| ≤ |4q0|−1/2, j = 1, 2}. Thus letting λ⃗ = −iq⃗ and using a sim-

ple calculation, we have the equation (4.19) above.
Let a set function h : B(C ′

a,b[0, T ]× C ′
a,b[0, T ]) → C be defined by

(4.21)

h(B) =

∫
B

exp

{
− i

4q1
∥A

1
2
1 (w1 − w2)∥2C′

a,b

− i

4q2
∥A

1
2
2 (w1 − w2)∥2C′

a,b

}
df A⃗,a

2q⃗ (w1)dg
A⃗,−a
2q⃗ (w2)

for each B ∈ B(C ′
a,b[0, T ]× C ′

a,b[0, T ]). Then h is a complex Borel measure on

B(C ′
a,b[0, T ]×C ′

a,b[0, T ]). Now we define a function ψ : C ′
a,b[0, T ]×C ′

a,b[0, T ] →
C ′

a,b[0, T ] by ψ(w1, w2) = (w1 + w2)/
√
2. Then ψ is continuous and so it is

Borel measurable. Let h̃ = h ◦ψ−1. By the condition (4.18) above, we see that
for real qj with |qj | ≥ |q0|, j = 1, 2,

∥h̃∥ =

∫
C′

a,b[0,T ]

∫
C′

a,b[0,T ]

|dh(w1, w2)|

(4.22)

≤
∫
C′

a,b[0,T ]

∫
C′

a,b[0,T ]

∣∣∣∣ exp{− i

4q1
∥A

1
2
1 (w1 − w2)∥2C′

a,b

− i

4q2
∥A

1
2
2 (w1 − w2)∥2C′

a,b
+ i

(
i

2q1

) 1
2

(A
1
2
1 (w1 − w2), a)C′

a,b
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+ i

(
i

2q2

) 1
2

(A
1
2
2 (w1 − w2), a)C′

a,b

}∣∣∣∣|df(w1)||dg(w2)|

≤
∫
C′

a,b[0,T ]

exp

{
1√
|4q0|

(
∥A

1
2
1 w1∥C′

a,b
+ ∥A

1
2
2 w1∥C′

a,b

)
∥a∥C′

a,b

}
|df(w1)|

·
∫
C′

a,b[0,T ]

exp

{
1√
|4q0|

(
∥A

1
2
1 w2∥C′

a,b
+ ∥A

1
2
2 w2∥C′

a,b

)
∥a∥C′

a,b

}
|dg(w2)|

< ∞.

Hence h̃ = h ◦ ψ−1 belongs to M(C ′
a,b[0, T ]) and

(4.23) (F ∗G)q⃗(y1, y2) =
∫
C′

a,b[0,T ]

exp
{
i(A

1
2
1 r, y1)

∼ + i(A
1
2
2 r, y2)

∼}dh̃(r)
for s-a.e. (y1, y2) ∈ C2

a,b[0, T ]. Hence (F ∗G)q⃗ exists and is given by (4.19) for

all real qj with |qj | ≥ |q0| and it belongs to FA1,A2 . □

In next two theorems, we also give some relationships of the GFFT and the
CP of functionals in FA1,A2 without proofs.

Theorem 4.8. Let q0 be a nonzero real number and let F and G be elements
of FA1,A2 whose associated measures f and g satisfy the condition
(4.24)∫

C′
a,b[0,T ]

exp

{
2|4q0|−

1
2

(
∥A

1
2
1 w∥C′

a,b

+ ∥A
1
2
2 w∥C′

a,b

)
∥a∥C′

a,b

}[
|df(w)|+ |dg(w)|

]
< +∞.

Then for all p ∈ [1, 2] and all real qj with |qj | ≥ |q0|, j = 1, 2,
(4.25)

T
(p)
q⃗

(
(F ∗G)q⃗

)
(y1, y2)

=

∫
C′

a,b[0,T ]

∫
C′

a,b[0,T ]

exp

{
i√
2
(A

1
2
1 (w1 + w2), y1)

∼ +
i√
2
(A

1
2
2 (w1 + w2), y2)

∼

− i

2q1

[
∥A

1
2
1 w1∥2C′

a,b
+ ∥A

1
2
1 w2∥2C′

a,b

]
− i

2q2

[
∥A

1
2
2 w1∥2C′

a,b
+ ∥A

1
2
2 w2∥2C′

a,b

]}
df A⃗,2a

2q⃗ (w1)dg(w2)

= T
(p)
2q⃗

(
T

(p)
2q⃗ (F )

)( y1√
2
,
y2√
2

)
·T (p)

2q⃗

(
T

(p)
2q⃗ (G(−·,−·))(−·,−·)

)( y1√
2
,
y2√
2

)
for s-a.e. (y1, y2) ∈ C2

a,b[0, T ].
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Theorem 4.9. Let q0 be a nonzero real number and let F and G be elements
of FA1,A2 whose associated measures f and g satisfy the condition
(4.26)∫

C′
a,b[0,T ]

exp

{
3|4q0|−

1
2

(
∥A

1
2
1 w∥C′

a,b

+ ∥A
1
2
2 w∥C′

a,b

)
∥a∥C′

a,b

}[
|df(w)|+ |dg(w)|

]
< +∞.

Then for all p ∈ [1, 2] and all real qj with |qj | ≥ |q0|, j = 1, 2,
(4.27)∫ anf−q⃗

C2
a,b[0,T ]

T
(p)
q⃗

(
(F ∗G)q⃗

)
(y1, y2)d(µ× µ)(y1, y2)

≡
∫ anf−q⃗

C2
a,b[0,T ]

T
(p)
2q⃗

(
T

(p)
2q⃗ (F )

)( y1√
2
,
y2√
2

)
· T (p)

2q⃗

(
T

(p)
2q⃗

(
G(−·,−·))(−·,−·)

)( y1√
2
,
y2√
2

)
d(µ× µ)(y1, y2)

=

∫ anfq⃗

C2
a,b[0,T ]

T
(p)
−2q⃗

(
T

(p)
2q⃗ (F )

)( y1√
2
,
y2√
2

)
· T (p)

−2q⃗

(
T

(p)
2q⃗ (G)

)(
− y1√

2
,− y2√

2

)
d(µ× µ)(y1, y2)

for s-a.e. (y1, y2) ∈ C2
a,b[0, T ]. Also, both of the expressions in (4.27) are given

by the expression
(4.28)∫

C′
a,b[0,T ]

∫
C′

a,b[0,T ]

exp

{
− i

4q1
∥A

1
2
1 (w1 − w2)∥2C′

a,b

− i

4q2
∥A

1
2
2 (w1 − w2)∥2C′

a,b
+ i

(
−i
2q1

) 1
2

(A
1
2
1 (w1 − w2), a)C′

a,b

+ i

(
−i
2q2

) 1
2

(A
1
2
2 (w1 − w2), a)C′

a,b

}
df A⃗,2a

2q⃗ (w1)dg
A⃗,2a
−2q⃗ (w2).

5. Example

In this section we apply the results obtained in Section 4 to a specific linear
operator A on C ′

a,b[0, T ].

Let S : C ′
a,b[0, T ] −→ C ′

a,b[0, T ] be the linear operator defined by

Sw(t) =

∫ t

0

w(s)db(s).
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Then, we see that the adjoint operator S∗ of S is given by

S∗w(t) = w(T )b(t)−
∫ t

0

w(s)db(s) =

∫ t

0

[w(T )− w(s)]db(s),

and the linear operator B = S∗S is given by

Bw(t) =

∫ T

0

min{b(s), b(t)}w(s)db(s).

Furthermore, we see that B is a self-adjoint operator on C ′
a,b[0, T ] and that

(w1, Bw2)C′
a,b

= (Sw1, Sw2)C′
a,b

=

∫ T

0

w1(s)w2(s)db(s)

for all w1, w2 ∈ C ′
a,b[0, T ]. Hence B is a positive definite operator, that is,

(w,Bw)C′
a,b

≥ 0 for all w ∈ C ′
a,b[0, T ].

One can show that the orthonormal eigenfunctions {em} of B are given by

(5.1) em(t) =

√
2b(T )

(m− 1
2 )π

sin

(
(m− 1

2 )π

b(T )
b(t)

)
with corresponding eigenvalues βm given by

(5.2) βm =

(
b(T )

(m− 1
2 )π

)2

.

Furthermore, it can be shown that {em} is a basis of C ′
a,b[0, T ] and that B is

a trace class operator and so S is a Hilbert-Schmidt operator on C ′
a,b[0, T ].

Define a self-adjoint operator on C ′
a,b[0, T ] by

(5.3) Aw =
∞∑

m=1

γm(w, em)C′
a,b
em,

where

γm =

{
βm, m : even

−βm, m : odd.

Then

Aw =
∞∑

m=1

(−1)mβm(w, em)C′
a,b
em,

(5.4) A
1
2
+w =

∑
m:even

√
βm(w, em)C′

a,b
em,

and

(5.5) A
1
2
−w =

∑
m:odd

√
βm(w, em)C′

a,b
em.
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In this case, we see that A+ is the positive part of A and A− is the negative

part of A. One can show that A
1
2
+ and A

1
2
− are trace class operators with

TrA
1
2
+ = b2(T )

8 and TrA
1
2
− = 3b2(T )

8 .
Let F ∈ FA+,A− . Then

F (x) =

∫
C′

a,b[0,T ]

exp
{
i(A

1
2
+w, x)

∼ + i(A
1
2
−w, x)

∼}df(w)
for s-a.e. (y1, y2) ∈ C2

a,b[0, T ]. Suppose that the associated measure f of

F satisfies the condition (4.9) with A1 and A2 replaced with A+ and A−,
respectively. Then for all q⃗ = (q,−q) with q ∈ R−{0} and |q| ≥ |q0|, using the
equations (4.10) and (5.1)-(5.5), we have

T
(p)
q⃗ (F )(y1, y2) =

∫
C′

a,b[0,T ]

exp

{
i(A

1
2
+w, y1)

∼ + i(A
1
2
−w, y2)

∼

− i

2q

∞∑
m=1

(−1)m
(

b(T )

(m− 1
2 )π

)2

(w, em)2C′
a,b

+ i

(
i

q

) 1
2 ∑
m: even

b(T )

(m− 1
2 )π

(w, em)C′
a,b

(a, em)C′
a,b

+ i

(
−i
q

) 1
2 ∑
m: odd

b(T )

(m− 1
2 )π

(w, em)C′
a,b

(a, em)C′
a,b

}
df(w)

for s-a.e. y ∈ C2
a,b[0, T ].

Also, for all q⃗ = (q,−q) with q ∈ R−{0} and |q| ≥ |q0|, using the equations
(4.19), (5.1)-(5.5), we have

(F ∗G)q⃗(y1, y2)

=

∫
C′

a,b[0,T ]

∫
C′

a,b[0,T ]

exp

{
i√
2
(A

1
2
+(w1 + w2), y1)

∼ +
i√
2
(A

1
2
−(w1 + w2), y1)

∼

− i

4q

∞∑
m=1

(−1)m
(

b(t)

(m− 1
2 )

)2

(w1 − w2, em)2C′
a,b

+ i

(
i

2q

) 1
2 ∑
m: even

b(T )

(m− 1
2 )π

(w1 − w2, em)C′
a,b

(a, em)C′
a,b

+ i

(
−i
2q

) 1
2 ∑
m:odd

b(T )

(m− 1
2 )π

(w1 − w2, em)C′
a,b

(a, em)C′
a,b

}
df(w1)dg(w2)

for s-a.e. y ∈ C2
a,b[0, T ].
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