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GENERALIZED ANALYTIC FOURIER-FEYNMAN
TRANSFORMS AND CONVOLUTIONS
ON A FRESNEL TYPE CLASS

SEUNG JUN CHANG AND IL YONG LEE

ABSTRACT. In this paper, we define an L, analytic generalized Fourier-
Feynman transform and a convolution product of functionals in a Ba-
nach algebra F(C, [0,7T]) which is called the Fresnel type class, and
in more general class Fa,, , of functionals defined on general function
space Cy [0, T] rather than on classical Wiener space. Also we obtain
some relationships between the Lj, analytic generalized Fourier-Feynman
transform and convolution product for functionals in F(C, 5[0,7T]) and
in Fa, A,

1. Introduction

Let Cy[0,T] denote one-parameter Wiener space; that is the space of R-
valued continuous functions z(¢) on [0,7] with x(0) = 0. The concept of an
L; analytic Fourier-Feynman transform (FFT) for functionals on Wiener space
was introduced by Brue in [2]. Further work involving the Lo—Lo theory and
the L,—L, theory, 1/p+1/p’ =1, includes [3, 16]. In [13], Huffman, Park and
Skoug defined a convolution product (CP) for functionals on Wiener space, and
they obtained various results for the FFT and CP [13, 14, 15]. On the other
hand, in [1], Ahn investigated the L; FFT theory on the Fresnel class F(B) of
an abstract Wiener space, and in [11] Chang, Song and Yoo studied the FFT
and the first variation on an abstract Wiener space and corresponding Fresnel
class F(B). There has been a tremendous amount of papers in the literature on
the FFT and CP theory on classical and abstract Wiener spaces. Furthermore,
n [18], Kallianpur and Bromley introduced a larger class Fa, 4, than the
Fresnel class F(B) for a successful treatment of certain physical problems by
means of a Feynman integral.

In recent paper [8], Chang and Skoug established various results involving
generalized analytic Feynman integrals and generalized analytic FFTs(GFFT)
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for functionals defined on a very general function space C, [0, T] rather than
on the Wiener space Cy [0, T]. The function space C, 5[0, T] was introduced by
Chang and Chung in [6]. In [4], Chang and Choi studied a multiple L,, analytic
GFFT on the Banach algebra S(L; 210, 7)) which was introduced in [8 ] On the
other hand, in [9, 10], Chang and Lee defined a Fresnel type class F(C, 5[0, T])
of functionals defined on C, ;[0, T] and studied GFFT, conditional GFFT, and
multiple L, analytic GFFT on the Fresnel type class F(C, [0, T7).

In this paper, we define an L, analytic GFF'T and a CP of functionals defined
on a product function space C [0, T] = Cyp[0,T] x Cup[0,T] and establish
various relationships between the GFFT and CP of functionals in F4, 4, which
is a class of functionals defined on the function space C2 [0, 7). The Wiener
process used in [3, 13-18, 1, 4, and 5] is stationary in time and is free of drift,
while the stochastic process used in [6-11], and in this paper, is nonstationary
in time and is subject to the drift a(t). Of course, if a(t) = 0 and b(t) = ¢ on
[0,T], the C, [0, T] reduces to Wiener space Cy[0,T.

2. Definitions and preliminaries

Let D = [0,7] and let (2,8, P) be a probability measure space. A real-
valued stochastic process Y on (Q, B, P) and D is called a generalized Brownian
motion process if Y (0,w)=0 almost everywhere and for 0 = tp < t; < -+ <
t, < T, the n-dimensional random vector (Y (t1,w),...,Y (t,,w)) is normally
distributed with the density function

Jj=1
=y L~ (= a(ty) = (-1 = alt;—1)))?
- -1 —a(tj—1
ceXpq —3 )
P I e
where 7= (n1,...,7n), 70 = 0, = (t1,...,tn), a(t) is an absolutely continuous

real-valued function on [0,7] with a(0) = 0, a’(t) € L?[0,7], and b(t) is a
strictly increasing, continuously differentiable real-valued function with b(0) =
0 and b'(¢) > 0 for each t € [0, T7].

As explained in [21, pp. 18-20], Y induces a probability measure p on the
measurable space (RP, BP) where RP is the space of all real-valued functions
z(t), t € D, and BP is the smallest o-algebra of subsets of R” with respect to
which all the coordinate evaluation maps e;(z) = z(t) defined on R are mea-
surable. The triple (R”, B, 1) is a probability measure space. This measure
space is called the function space induced by the generalized Brownian motion
process Y determined by a(-) and b(-).

We note that the generalized Brownian motion process Y determined by a(-)
and b(+) is a Gaussian process with mean function a(t) and covariance function
r(s,t) = min{b(s), b(t)}. By Theorem 14.2 [21, p. 187], the probability measure
p induced by Y, taking a separable version, is supported by Cj [0, T] (which is
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equivalent to the Banach space of continuous functions z on [0, 7] with z(0) = 0
under the sup norm). Hence (C, [0, T, B(Cy[0,T]), 1) is the function space
induced by Y where B(C, 4[0,T]) is the Borel o-algebra of C, [0, T7.

Given two C-valued measurable functions F' and G on C, [0, 7], F is said
to be equal to G scale almost everywhere(s-a.e.) if for each p > 0, pu({z €
Copl0,T] : F(pz) # G(pz)}) =0 [12, 17]. We write that F ~ G if F=G s-a.e..

Let L7 [0, T] be the set of functions on [0, 7] which are Lebesgue measurable
and square integrable with respect to the Lebesgue-Stieltjes measures on [0, T
induced by a(-) and b(-); i.e.,

(22) L2,[0,7] = {v : /OT v?(s)db(s) < oo and /OT v?(s)d|al(s) < oo},

where |a|(¢) denotes the total variation of the function a(-) on the interval [0, ¢].
For u,v € Lib[o, T}, let

(2.3) (U, 0)gp = /o u(®)v(t)d[b(t) + |a|(t)].

Then (-, )45 is an inner product on Li,b[(), T] and ||u|lap = v/ (4, %)q,p is @ norm
on L2 ,[0,T]. In particular, note that [|u[lq, = 0 if and only if u(t) = 0 a.e. on
[0, T]. Furthermore, (L7 ,[0,T],]| - |[a,5) is a separable Hilbert space.

Let {¢;}32; be a complete orthogonal set of real-valued functions of bounded
variation on [0, T] such that

0 L j#k

(65, Ok)ap = {1 ik

Then for each v € L2 ,[0,T], the Paley-Wiener-Zygmund (PWZ) stochastic
integral (v, z) is defined by the formula

(2.4) (v,z) = lim i > (v, 05)apd;(t)da(t)

j=1
for all z € C, [0, T for which the limit exists.
Remark 2.1. For each v € Li’b[O, T], the PWZ stochastic integral (v, x) exists

for pra.e. x € Cyp[0,T] and (v, z) is a Gaussian random variable on C, [0, 7]

with mean fOT v(s)da(s) and variance fOT v%(s)db(s). Note that for all u,v €
Li b[oa T]?

[ o)
(2.5) Cas[0.T]

_ /0 " uls)o(s)db(s) + /0 " (s)das) /0 " o()das).
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Hence we see that for all u,v € Li)b[O,T], fOT u(s)v(s)db(s) = 0 if and only if
(u,z) and (v, z) are independent random variables.

Now, we state the definition of the generalized analytic Feynman integral.

Definition 2.2. Let C denote the complex numbers, let C; = {\ € C :
Re(\) >0} andlet Cy = {A € C: A # 0 and Re(\) > 0}. Let F': Cy3[0,T] —
C be a measurable functional such that for each A > 0, the function space
integral
J\) = / FOY22)dp(x)
Cq [0,T]

exists. If there exists a function J*(\) analytic in Cy such that J*(\) = J(\)
for all A > 0, then J*(\) is defined to be the analytic function space integral
of F over C, [0, T] with parameter A, and for A € C; we write

(2.6) B [F] = B [F(z)] = J* (V).

Let g # 0 be a real number and let F' be a functional such that E*™>[F] exists
for all A € C,.. If the following limit exists, we call it the generalized analytic
Feynman integral of F' with parameter ¢ and we write

(2.7) Ealap] = B2l [F(g)] = lim B [F],

A——ig
where A — —ig through values in C.
Next, see [8, 9], we state the definition of the GFFT.
Definition 2.3. Let ¢ € R — {0}. For A € C; and y € C,[0,T], let
(2.8) Ta(F)(y) = EZ" [F(y + 2)].

For p € (1,2], we define the L, analytic GFFT, T\")(F) of F, by the formula
(AeCy)

(2.9) TP (F)(y) = Lim.y—igTA(F)(y)
if it exists; i.e., for each p > 0,
lim 1T\ (F)(py) — TP (F)(py)|” dpu(y) =0,

A==iq Jc, ,[0,T)

where 1/p+ 1/p’ = 1. We define the Ly analytic GFFT, Tq(l)(F) of F, by the
formula (A € Cy)

(2.10) TO(F)(y) = lim Ty(F)(y)

A——iq
if it exists.
We note that for 1 <p < 2, Tq(p)(F) is defined only s-a.e.. We also note that
if Tq(p)(F) exists and if F' ~ G, then Tq(p)(G) exists and Tq(p)(G) ~ Tq(p)(F).
Next we give the definition of the CP on C, ;[0, T
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Definition 2.4. Let F' and G be measurable functionals on C, ;[0,T]. For
A € C4, we define their CP (F % G), (if it exists) by

B [F(2)G(52)]. AeC,

* = V2 e
(211)  (F*G)Aly) {Eznf‘l[F(Z%)G(y\/})L A=—iq, ¢€R, q#0.

Remark 2.5. (i) When A = —ig, we denote (F' % G)y by (F * G),.

(ii) Our definition of the CP is different than the definition given by Yeh in
[20] and used by Yoo in [22]. In [20] and [22], Yeh and Yoo studied relationships
between their CP and Fourier-Wiener transform.

The following generalized analytic Feynman integral formula is used several
times in this paper.
y—1/2 ('U27b/) -y—1/2 /
(2.12) E,lexp{i\™"/*{v,z)}] = exp{ — o +iXT % (v,a")
for all A € C4 and v € L2 [0, T] where

T T
(2.13) (v,a’):/o v(s)a’(s)ds:/o v(s)da(s)

and
T T
(2.14) (W2, b)) = /0 V2(s)b(5)ds = /O v?(s)db(s).

In this paper, for each A € @+, A~ or A% is chosen to have nonnegative real
part.

3. Transforms and convolutions of functionals in a Banach algebra

In this section we introduce a Banach algebra F(C, 5[0, 7]) and evaluate the
GFFT and CP of functionals belonging to the Banach algebra F(C, 4[0,T]).
We then obtain several relationships of the GFFT and CP. First, we give the
definition of a Banach algebra F(C, [0,T]) which is called the Fresnel type
class on C, [0, T7.

Let
(3.1)

t
000, T] = {w € Cap[0,T] : w(t) = / z(s)db(s) for some z € L7 ,[0,T]}.
0
For w € C} [0, T, with w(t) = fot z(s)db(s) for t € [0,T], let Dy : C [0, T] —
L2 ,]0,T] be defined by the formula

w'(t)
b(t)

(3.2) Dyw = z(t) =



228 SEUNG JUN CHANG AND IL YONG LEE

Then C7, , = C; [0, T] with inner product

’
a

T
(33) (’Ll)l,’u)g)c b = / thlthgdb(t)
’ 0

is a separable Hilbert space. Furthermore, (C;7b[O,T],Ca7b[0,T],u) is an ab-
stract Wiener space. For more details, see [19].
Note that for all w,wq, w2 € C}, ,[0,T7,

(3.4) (Dyw)?,b') = / (Dew)?db(t) = |2, .

T T
(3.5) (Dwﬂqzé mmmﬂ=A DywDsadb(t) = (w, a)c

’
a,b
and

T T
(36) <th1,w2> = / thldwg(t) = / thlthgdb(t) = (wl,’wg)c
0 0

’ .
a,b

Next, we define a class of functionals on C, [0, T] like a Fresnel class of an
abstract Wiener space. Note that the linear operator given by the equation
(3.2) is an isomorphism. In fact, the inverse operator D; ' : L2,00,T] —
C},,10, T is given by the formula

(3.7 D'z :/0 z(s)db(s)

and D; ' is a bounded operator since

qj:(ATX@%@)é

< (/O zQ(lf)d[b(t)ﬂLla(lf)]>é = [1llab-

Thus by the open mapping theorem, Dy is also bounded and there exist positive
real numbers o and 3 such that afjwlc; | < [[Diwllap < 5”“’”0{1,;7 for all
w € C},[0,T]. Hence we see that the Borel o-algebra on (Cy, ,[0, 7], || - ler,)
is given by

. Dl = | | Tz(s)db(s)

B(Cq [0, T)) = {D7 1(E) : E € B(L [0, T])}
and that for any complex Borel measure o on Li’ »[0,T], ooD, is a complex Borel
measure o on C} ,[0,7] and for any complex Borel measure f on C7, [0, 7],

foD; ! is a complex Borel measure o on Li’b[(), T].

Definition 3.1. Let M(C7, [0, 77) be the space of complex-valued, countably
additive (and hence finite) Boreal measures on Cj, [0, 7]. The Banach algebra
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F(Cqp[0,T]) consists of those functionals F on C, [0,7] expressible in the
form

(3.9) Pla) = /C el )

fors-a.e. © € Cy [0, T, where the associated measure f is an element M(C}, [0,
TY)). We call F(C, [0, T]) the Fresnel type class of the function space C, 5[0, T.

Remark 3.2. (i) M(Cy,,[0,T]) is a Banach algebra under the total variation
norm where convolution is taken as the multiplication.

(ii) One can show that the correspondence f +— F' is injective, carries convo-
lution into pointwise multiplication and that F(C, [0, T]) is a Banach algebra
with norm

1l =0rl= [l
C, ,10,1]

From now on, we will use the notation (w, )™ replaced by (D;w,z). Then
we have the following assertions.

(1) For each w € Cj, ;[0,T7], the random variable x +— (w,z)~ is Gaussian
with mean (w,a)ct/l’b and variance ||w\|2q :

(2) (w,ax)™ = alw,x)™ for any real number o, w € Copl0,T] and z €
Cop[0,T].

(3) If {w1,wa, ..., wy,} is an orthonormal set in C, [0, 77, then the random
variables (w;,z)™’s are independent.

We will explain the existence of generalized Feynman integrals of functionals
in F(C,[0,T]). Let F be an element of F(C, [0, T']) whose associated measure
f satisfies the condition

(3.10) / exp {200~ H[wllcr  laller , Hdf (w)] < +o0
C, ,[0,7] ' '

for some gy € R — {0}. Using the equation (3.9), Definition 2.2, the Fubini
theorem and the equation (2.12), we see that for all real ¢ with |g| > |qo]|, the
generalized analytic Feynman integral E*"«[F] of F exists and is given by the
formula

Eafa [ :/ ex {—i w||% +i(i>2w,a / }d w).
) C[0,T] Y 2‘1” HC“”’ q (w.a)ey,, pdf ()

For more detail studies of existence of generalized Feynman integrals, see [7-11].
Throughout this section, for each f € M(C}, ,[0,T]), we will use the notation

(3.11) aggtw) e {i( L) " w Ba)ey, bar(u).

oq
The following theorems are due to Chang and Lee [10, 11].
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Theorem 3.3. Let qy be a nonzero real number and let F be an element of
F(Capl0,T]) whose associated measure f satisfies the condition (3.10) above.

Then for all p € [1,2] and real g with |q| > |qo|, the L, analytic GFFT, Tq(p) (F)
of F, exists and is given by the formula

12 PO - [ ew i - L, b

C.,p[0.T]

for s-a.e. y € Cy[0,T]. Furthermore, Tq(p)(F) is an element of F(Cqp[0,T])
with associated measure ¢ defined by

(313) o8) = [ en{ = Ly, barg
for B € B(Cy,,[0,T]).

Remark 3.4. In Theorem 3.3 above, for all real ¢ with |g| > |g| and y €
Ca,b[O7T]7

anf,

Gy TPE@= [ Fy+odi), 1<p<2
Cq,u[0,T]

In particular,
anf,

(3.15) TOE0) = [ Fadie), 1<p<z
Caﬁb[O,T]

Theorem 3.5. Let o and F' be as in Theorem 3.3. Then for all p € [1,2] and
all real q with |q| > |qol,
() (7 (p) _ (0. 1)~ :
@) = [ ewfitwn + I, brw
o c’,0,T] Vl0a/2| o

(3.16)
:/ exp{i(w, y)™ }df], /o) (w)
c’ 10,7

for s-a.e. y € Cop[0,T]. Furthermore, TE’;) (Tq(p)(F)) € F(Capl0,T]) and
(3.17) |78 (T#(F))|| = ||

In Theorem 3.5 above, let a(t) = 0. Then Tqu) (Tq(p)(F)) = F for s-a.e.

y € Cup[0,T], that is, TEI;) is the inverse transform of Tq(p). For more details

for the case a(t) =0, see [3, 13, 14, 16].
In our next theorem we obtain the CP of functionals in F(C, [0, T]). The
proof is given by a similar method of the proof of Theorem 3.2 in [4].

Theorem 3.6. Let gy be a nonzero real number and let ' and G be elements
of F(Cqap[0,T)) whose associated measures f and g satisfy the condition

GO e ol ol ey} (470 + )] < oo

a,bl™
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Then their CP (F x G), exists for all real ¢ with |q| > |qo| and is given by the
formula

(F' % G)q(y)

i
- expy —=(w1 + wa,y)"~
(3.19) c;, ,[0,T) /C;,b[07T] {\/ﬁ( )

Z. a —a
~ g wally b (oo o
for s-a.e. y € Cy[0,T). Furthermore, (F % G)q is an element of F(Cq [0,T7).

In Theorem 3.6 above, (F % G), is expressible in the form

(3.20) (F'+ G)qly) = / exp{i(r,y)~}d(h o ™")(r)

cr 0,7

for s-a.e. y € Cyp[0,T] where ¢ : Cp [0, T] x C}, 1[0, T] — Cy, [0, T] is given by

and h is a complex Borel measure on B(CY, 1[0, 7] x C;, ,[0,77]) defined by

{ —a
32 )= [ en] - Lo vl st nd )
for each B € B(C,,,[0,T] x C} ,[0,T]).
In our next theorem, we obtain the transform of the convolution product.

Theorem 3.7. Let gy be a nonzero real number and let F' and G be elements
of F(Cqap[0,T)) whose associated measures f and g satisfy the condition

(3.23) /C oy P (2wl lallr 1)+ dgwl] < +oc.
a,blYs

Then for all p € [1,2] and all real g with |q] > |qol,
(3.24)

TP (F » @),)(y) = TS (10 (F)) (%)TQ‘;’) (TG ))(=) (%)

for s-a.e. y € Cqp[0,T). Also, both of the expressions in (3.24) are given by
the expression
(3.25)

7

7 2a
exp { L (wy +ws, ) = (JunlZ, -+ a2, }df (w1)dg(ws).
/g,b[o,Tl /C;,b[o,Tl {\/5 2q< o ) p i

Proof. By using (2.8), (2.11), the Fubini theorem and (2.12), we have for all
A >0,

320 T((F * O ) = Tor (Tr(F) (25 ) Tor (Tan (G- () ( 25 )
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for s-a.e. y € Cy [0, T]. But both of the expressions on the right-hand side of
equation (3.26) are analytic functions of A throughout C, and are continuous
functions of A\ on C for all y € Cy4[0,T]. Furthermore, it is bounded on the
region I' = {\ € C; : [Im(A~/2)| < 2|4go| ="/} under the condition (3.23).
By using (3.23), Tq(p)((F * (7),) exists for all real ¢ with |g| > |go| and is given
by (3.24) for all desired values of p and gq. O

Theorem 3.8. Let gy be a nonzero real number and let F' and G be elements
of F(Cap[0,T)) whose associated measures f and g satisfy the condition

(3.27) / exp {3l4a0l ~*[[wllcy, lallcy, , } [Jdf (w)] + dg(w)[] < +oo.
! ,[0,T] : :
Then for all p € [1,2] and all real g with |q| > |qol,

anffq
/ T ((F % G),) () du(y)
Ca,b[ovT]

2 = [ ap ) (L) 1) @) (2 )auw

Cq,5[0,T]
anf,
a (») ((p) Y (p) ((p) Y
/Ca,b[()?T] 2q( 2q ( ))<ﬂ> 2q( 2q ( ))< ﬁ) w(y)

Also, both of the expressions in (3.28) are given by the expression
(3.29)

/ / exp{ ‘ |l —w ||2
— —|lwy — w25
L. e o) 4q Cor

a,b

3
+i(3) (= unaey, Jagi s, (us).
Proof. Fix p and ¢q. Then for A > 0, using (3.24) and (3.12), we have
(3.30)

TP ((F = G)q) (y/VN)du(y)
Ca,[0,T]

1 7
= expq — —||w; +w2||2, + —(wy + wa,a)c
/ 1[0 / L[0T { 4 Cor " VX “

1 1

3
o (ol + sl ) + 20 ) sy, o),

But the last expression of (3.30) is analytic through C4 and is continuous on
C,. Furthermore, it is bounded on the region I' = {\ € C, : [Im(A\~'/?)| <
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3|4go|~'/?} under condition (3.27). So letting A = —i(—q) = iq, we have
(3.31)

anf,
/ ((F * G)y) (w)dpy)

Cab

1

i 9 1 \?
expy — —||lw1 —wel||le + 21() w1, a)cr
/C /C ; {= L=l +2i(5 ) wnae,

’ Z(;‘JZ) E(wl +wz,a)c;, }df(wl)dg(wg)

i
_ / / exp{—4w1—w2||%/b
¢l ,0,11JC! | 0,T] q o

1
1 2 a a
#i(3) (= unaey, Jagi g, (us)

for s-a.e. y € Cy[0,T7.
On the other hand, using (3.12) and the Fubini theorem we have

14, (2 ) ()

(3.32) ) V2
. = /(’Lb[O’T] exp{\;é(why)N-i-i(;i)Q(wh )er }dfzq(wl)
and
®) () _Y
o 1=, (Tzq (@) ( \@)

1

) i\?2
- xp _wv?JN‘f‘i() wa, @) }dga w
/C:;,,b[OvT] { \/5( 2 ) 2q ( 2 )Ca,b 2q( 2)

for s-a.e. y € Cy[0,T]. By using (3.32) and (3.33), we have for X > 0,
(3.34)

/ab . ) (1 (F)) (m>T(@q(T(”)(G)) (_\/zj)du(y)

exp w w , + w wa,a)c
0, . 4\ 1 2 Cu,b o\ 1 2 Ca’b
1

—1

1
N ? . Z. 2 a a
+(2q) (wl,a>c;,b+z(2q) (v 0)cy, b 1) ().

But the last expression above is an analytic function of A throughout C,; and
is continuous throughout on C;. Also, it is bounded on the region I' = {\ €
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C, : [Im(A~1/2)] < 3]4qo|~'/?}. Letting A = —iq we have
(3.35)

/Cn:[OT] T, (T3 (F)) ( \%) 7%, (T(G)) <_\%> ()

Lo ew{ = -l
= — —|lw1 —wall¢r
¢ 0.1 el l0.1) 4q ab

" Z<;;> (wr = ws, a)cé,b }dffg(wl)dgi‘gq(wg).

Now (3.31) and (3.35) together yield (3.28) . O

4. Transforms and convolutions of functionals in F4, 4,

Let A be a nonnegative self-adjoint operator on C; ,[0,7] and f any finite
complex measure. Then the functional

F(z) = / exp{i(A%w,x)N}df(w)
Ci 10,71
belongs to F(C, [0, T]) because it can be rewritten as
/ expq{i(w,z)™ }dy(w)
cr,00.7)

for v = f o (AY?)~1. Let A be self-adjoint but not nonnegative. Then A has
the form

(4.1) A=At — A"

and both AT and A~ are bounded nonnegative self-adjoint operators.

In this section we will get expressions of the generalized Feynman integral,
the GFFT and the CP when A is no longer required to be nonnegative or even
self-adjoint. In order to widen the scope of the analytic continuation technique
to treat such cases, we will present definitions here in a slightly modified form.

Given two C-valued measurable functions F' and G on 037,)[0, T), F is said to
be equal to G scale almost everywhere(s-a.e.) if for each p1,p2 > 0, p({(z1,x2)
€ C2,[0,T] : F(p1y, pawa) # G(p11, p2, v2)}) = 0. We write that F = G if
F=@G s-a.e..

Definition 4.1. Let C3 = {X = (M, A2) € C? : Re();) > Oforj = 1,2}
and let C2 = {X= (A, ) € C2: Aj # 0 and Re(\;) > 0 for j = 1,2}. Let
F : C?,[0,T] — C be a measurable functional such that for each A1, s > 0,
the function space integral

T, A) = / FOTY 200,052 00)du(ey, 02)
C2,[0,T]
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exists. If there exists a function J*(A1, A2) analytic in (Ci such that J*(A1, A2)
= J(A1, A2) for all Ay, Ao > 0, then J*(A1, A2) is defined to be the analytic

function space integral of F over C’ib[O,T] with parameter X = (A, A2), and

for X € (Ci we write
(4.2)
aI’lX

E*([F) = E;ni [F(z1,22)] = / F(zy,22)d(p X p)(x1,20) = J*(X)

cz,lo,1]

Let ¢; and g2 be nonzero real numbers. Let F' be a functional such that E**s[F]
exists for all A € C3. If the following limit exists, we call it the generalized
analytic Feynman integral of F' with parameter ¢ = (¢1,¢2) and we write

Eanfi[F] = Ea“ff[F(xl, 7))

z

(43) anty .
= / F(xy,z2)d(p x p)(x1,22) = lim E*X[F],
cz,[0.1] X——ig

where X — —iq = (—iq1, —iqz) through values in C%.

Definition 4.2. Let ¢; and ¢» be nonzero real numbers. For )= (M, A\2) € (C?s-
and (y1,y2) € ngb[O,T], let

(4.4) T5(F)(yr.y2) = Bz [F(ys + 21,40 + 22))-

For p € (1,2], we define the L, analytic GFFT, T;p)(F) of F, by the formula
(AeC?)

(4.5) TP (F)(y1,y2) = Limes T5(F)(y1,52)

if it exists; i.e., for each p1, p2 > 0,

lim |T5(F)(pry1, p2y2) — TqEP)(F)(myl, p2y2)|” d(px p)(y1,y2) = 0,
A——iq ngb[o,T]
where 1/p+ 1/p’ = 1. We define the L; analytic GFFT, Tqﬁl)(F) of F', by the
formula (X € Cc2)
(4.6) T3 (F)one) = lim Tx(F)(y1,2)

——1iq

if it exists.

We note that for 1 < p < 2, Tqu)(F) is defined only s-a.e.. We also note that
if Tqﬁp)(F) exists and if F' ~ G, then T")(G) exists and Tq&p)(G) ~ Tqﬁp)(F).

q

Next we give the definition of the CP on C7 ,[0,T].
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Definition 4.3. Let F' and G be measurable functionals on C? ,[0,T]. For
Xe C2, we define their CP (F x G)5 (if it exists) by

(F*G)X(ylayQ)

(47) ;nf;[F(yl\J/rgl’yz\J/r2;702)G(y1\;§117y2\;§2)] ; XEC+
— Ea‘c‘ q[F(y1\j§9131,yQ\J/rgz)G(yl\;;l’yz\;gz)] ,

X = —iq = (—iqi, —ig2), q1,92 € R — {0}.
Definition 4.4. Let A; and As be bounded, nonnegative self-adjoint operators
on C;,[0,T]. The Banach algebra JFy, 4, consists of those functionals F' on

C2,]0,T] expressible in the form

1 1
(4.8) F(x1,m0) = / exp {i(Afw,z1)~ + i(AZw,z2)™ }df (w)
Cqb0.T]

for s-a.e. (x1,22) € Cg)b[O,T], where the associated measure f is an element

M(C; [0, T]).

Remark 4.5. In Definition 4.4 above, let A; be the identity operator on Cy, [0, T’
and Ay = 0. Then Fa, 4, is essentially the Fresnel type class F(Cy[0,T])
which was defined in Section 3, and for real ¢;, j = 1,2,

anfq,

B Py = [ Falwdu(e)
Cmb[O,T]

if it exists, where Fy(z1) = F(x1,x2) for all (z1, ;) € C2,[0,T] and

anfq1
/ Foa)du(e1)

Cq 110,77
means the generalized analytic Feynman integral on Cj, [0, 7] which was de-
fined in Section 2 above.

Let A; : €7 ,[0,T] — C;,[0,T], j = 1,2 be nonnegative self-adjoint oper-
ators. Throughout this section, for each f € M(C} ,[0,T]), we will use the
notation

dfféﬂa(w) = exp {z(alql> 2 (Aléw, Ba)cr, —i—z’(a;) 2 (Aéw,ﬁa)c;,b}df(w).

In our next theorem, we obtain the L, analytic GFFT Tqﬁp ) (F) of a functional
Fin -7:A1 VAo

Theorem 4.6. Let qy be a nonzero real number and let F' be an element of
Fa,,A, whose associated measure f satisfies the condition

1 1 1
a9 [ exo{awl (1fwley, +Iaulle,lalle, () < o0
LT | | |
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Then for all p € [1,2] and all real q; with |q;| > |qo|, j = 1,2, the L, analytic
GFFT, Tqﬁp)(F) of F exists and is given by the formula

T(F) o) = |

;10,7
w2, — A2 Aa
ol Afwl, = sl AdwlE , pdft )

for s-a.e. (y1,y2) € C2,[0,T]. Furthermore, TP (F) is an element of Fa, A,

q
with associated measure ¢ defined by
) 1 ) 1 i
4.11 B)= [ exp{ — —||AZw|% — —|AZw]|?, }d?’aw
ay o) = [ o] - oolatuldy, - o laful,, fafw

for B € B(Cy,,[0,T]).

exp {i(Afw, Y1)~ +i(AZw,y2)™
(4.10)

Proof. For A; >0, j = 1,2 and s-a.e. (y1,y2) € C’ib[O,T], using the equation
(4.4), the Fubini theorem and the equation (2.12), we have

T5(F)(y1,y2)
= Ez[F(y1 + A 221,92 + Ay 222)]

= / Ez[exp {i(Afw,y1)~ +iA; 2 (Afw,x1)™
C, ,10,7]
+i(AZw,y2)~ + i\, 2 (A3 w, :EQ)N)de(w)

= exp {i(A%w,yl)N —l—i(Aéw,yg)N
Cq (0.7
1 1
- olabull,, - sol4ful,,
+ L(Al%w7 a)er  + S
But the last expression above is analytic through (Cf_ and is continuous on @i
Also, it is bounded on the region I' = {X = (A, \;) € C2 . |Im()\;1/2)| <
12q0]7/2,j = 1,2}. Thus the equation (4.10) is established.
Let ¢ be a set function on B(C;, ,[0,77) defined by the equation (4.11). By
using the condition (4.9) we see that

foll= [, )

Ca.l0s

(4 w,a>c;,b}df<w>.

1 1
113 < / exp{ lAFwller llaller
( ) o, [0.7] |2q0| a,b a,b

1 1
4 ||A§w||c;.b|a||c;b}|df(w> < too.
12¢0] ’ ’
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Hence we have the desired result. O

Let A be self-adjoint but not nonnegative. Then A has the form (4.1). Let
F € Fa, a_. Suppose that the associated measure f of I satisfies condition
(4.9) with A; and A, replaced with A, and A_, respectively. Then for ¢ =
(¢, —q) with ¢ € R — {0} and [q] = [qol,
(4.14)

TP (F)(y1, v2)

1 1 ;
= [ ew{itatun s it - Clatulz, bt w)
C:Ib[O,T] q a,b

and
(4.15)
anfy e Ag,AL),
pir =100 = [ ew{ - Llatuly, b0 w),
. (0,7 q

Moreover, if a(t) = 0, then
T (F)(y1,12)

(4.16) L ~ a3 N 7 1 9
= expy i(Afw,y1)™ +i(AZw,y2)™ — o[ Azwllg, | rdf (w)
Cl, 10,7 q @

and

(4.17)  E™[F) = T (F)(0,0) = /
c

i1
exp{ = 5o l4bull,, barco).
. [0.T] q @
In our next theorem, we obtain the CP of functionals in Fa, a,.

Theorem 4.7. Let qy be a nonzero real number and let F' and G be elements
of Fa,, A, whose associated measures f and g satisfy the condition

_1 1
[ el (14} ule,,
ey, 0.7) :

+ 143 wlle,) ||a||c;_,b}[|df<w>| + ldg(w)]] < +oc.

Then their CP (F % G)g exists for all real q; with |g;] > |qol, j = 1,2 and is
given by the formula

(4.19)

(F'* G)g(y1, y2)

= / exp{
o, o1 ey o)

1 - i 1
+ 7= (A3 (w1 + w2),42)" — 4711”Alz (wy — w2)”20;,b

V2

(4.18)

(AZ (w1 +w2),y1)~

’
a,

~.
S
[\}



GENERALIZED ANALYTIC FEYNMAN INTEGRAL 239

i 3 Aa A—a
- e lad = iy, )y wo)
for s-a.e. (y1,y2) € CZ,[0,T). Furthermore, (F *G)q is an element of Fa, a,.
Proof. By using (4.7), the Fubini theorem and (2.12), we have for A; > 0,
i=12
(4. 20)
* G)3(y1,y2)

i 1
exp AZ (wy +ws),y1)”
/' OT/' ,10,7] {\/i(l(l 2): 1)

? 1 ~ 1 1
+ —= (A3 (w1 +w2),y2)~ — A7 (w1 — w2)||3
4)\1 a,b

V2

L 2 (LY
- oAb - el i 55 ) G - wnacy,
1\? .
+ Z<2A2> (A3 (w1 — w2)>a)c;,b}df(w1)d9(w2)
for s-a.e. (y1,92) € CZ,[0,T]. But the last expression above is analytic through-
out C.., is continuous on C., and is bounded on the region = {X (A, A2) €
C2 ¢ Im(); A7) < 4ol ~Y/2,j = 1,2}. Thus letting X = —i7 and using a sim-

ple calculatlon we have the equatlon (4.19) above.
Let a set function h : B(Cy, ,[0,T] x C; ,[0,T]) — C be defined by

Z 1
08) = [ e - Lilaf o - woly,
(4.21) B !

Y- Aa A—a
- e lad =l farwddy o)
for each B € B(C;, ,[0,T] x C} ,[0,T]). Then h is a complex Borel measure on
B(C, [0, T] x Cy, ,[0,T7]). Now we define a function 1 : C ,[0,T] x C7, 1[0, T] —
C’('l,b[O,T] by ¥(wy,ws) = (wy + wg)/\f Then v is continuous and so it is

Borel measurable. Let h = ho 1»~1. By the condition (4.18) above, we see that
for real g; with |g;| > |qol, 7 = 1,2,

(4.22)

L I )
a,s[0,T1 /O 4 [0,T]
/fl,b[OyT]/fl,b[OvT]

il SRR
_@HAQ(UJI_U&)HC{’IJ)_'—Z 20 (A

IN

7 1
exp{ = oAb )l

ol

(w1 —w2),a)cr,
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. 1
l 2
+1 A
(QQ2> (
/ { i (14bwiley, + 143 willey, Y laley, i)
< exp 7( {Willcr , + ||A5wil|cr )a c’ } w1
(’1,1)[07T] |4q0| a,b a,b a,b
1 1 1
: exp{%(ﬂf‘lfwzﬂc' + 145 wallcr, ) lalle; }|dg<w2>|
/(’lyb[O,T] |4q0| a,b a,b a,b

< 00.

N ol

(0 wa) ey, bl (wnldg(w)

Hence h = h o1~ belongs to M(C% ,[0,T]) and
(4.23)  (FxQ)g(y1,y2) = / exp {i(Afr, y1)~ +i(AZr, yg)N}dﬁ(r)
10,7

for s-a.e. (y1,y2) € C2,[0,T]. Hence (F * G)g exists and is given by (4.19) for
all real ¢; with |g;| > |q0| and it belongs to Fa, 4,. O

In next two theorems, we also give some relationships of the GFFT and the
CP of functionals in F4, 4, without proofs.

Theorem 4.8. Let qy be a nonzero real number and let F' and G be elements

of Fa,, A, whose associated measures f and g satisfy the condition
(4.24)

1
L e {otal (14t uley,
,[0:T]
1
+lauler, Ylally, bl )] + dgw)] < +oc.

Then for all p € [1,2] and all real g; with |q;] > |qol|, 7 = 1,2,
(4.25)

T ((F * G)q) (y1, o)
7 1 7 1
expq —(A? (w1 + wo), 4+ — (A2 (w +w ~
/ OT]/ o p{ﬂ< w4 um)n)™ + (4] w1+ wa), o)
7 1
- o [lafunley, + 14t wal,,
o

43wl + 143 wall, ] bl on)dgtun)

= T (1) () (yf yf) 7 (1 (6 =N -) (2. 2)

for s-a.e. (y1,y2) € CZ,[0,T].
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Theorem 4.9. Let gy be a nonzero real number and let F' and G be elements

of Fa,, A, whose associated measures f and g satisfy the condition
(4.26)

1 1
L e {sitnr (1abule,
,[0:T] ’
1
+lauler,Ylally, bl )] + dgw)] < +oc.

Then for all p € [1,2] and all real g; with |q;] > |qo|, 7 = 1,2,
(4.27)

anffé'
/ TP ((F * G)g) (y1, y2)d(i x 1) (y1, y2)
C2,10,7]

/CZJT] o) (G ”>
T2 (G == (L. 25 Va0
TO(TE(@)) <yl yQ)d(u < 1) (y1, y2)

V2 V2

for s-a.e. (y1,y2) € C2,[0,T]. Also, both of the expressions in (4.27) are given
by the expression
(4.28)

/ / exp{ A} - wly,
' 10,1 e, [0,T]

1
) 1 o —i\2%2 1
~ g |43 (w1 — w2)|%&,b + Z(2q1> (Af (w1 —w2),a)cr,

&\

E\S
SlE

+z‘(‘i> “(Af (wn - wa),a)o, }de 20 (0, dg ™ 22 ).

5. Example

In this section we apply the results obtained in Section 4 to a specific linear
operator A on C} [0, T].
Let S: Cy, ,[0,T] — Cy,,[0,T] be the linear operator defined by

Sw(t):/o w(s)db(s).
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Then, we see that the adjoint operator S* of S is given by
S*w(t) = w(T)b(t) — /Ot w(s)db(s) = /Ot[w(T) — w(s)]db(s),
and the linear operator B = S*S is given by
Bu(t) = /0 " min{b(s). b(t) o (s)db(s).

Furthermore, we see that B is a self-adjoint operator on Cj, ,[0,7] and that

T
(w1, Bwa)cr , = (Swi, Swa)cr | = / w1 (s)wa(s)db(s)
’ ’ 0

for all wy,ws € C’L’I,b[07T]. Hence B is a positive definite operator, that is,
(w, Bw)cr >0 for all w € C}, [0, T].
One can show that the orthonormal eigenfunctions {e,,} of B are given by

(5.1) em(t) = Qb(lT) sin <(m _ Q)Wb(t))

(m—3)m b(T)

with corresponding eigenvalues [3,, given by

m-3

Furthermore, it can be shown that {e,,} is a basis of C7 [0,7] and that B is
a trace class operator and so S is a Hilbert-Schmidt operator on Cj, [0, 77.
Define a self-adjoint operator on C} ,[0,T] by

(5.3) Aw = Z Y (W, em)cg’bem,
m=1

where

B, m : even
Ym =

—Bm, m: odd.
Then
Aw = Z(_l)mﬁm(w>em)0é‘bem>
m=1
1
(5.4) AZw = Z \/Bm(w,em)céybem,
and

(5.5) A%w: Z \/BZ(w,em)cgybem.

m:odd
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In this case, we see that A, is the positive part of A and A_ is the negative
1

1 1
part of A. One can show that A7 and A” are trace class operators with
362 (T)
=

TrA_%_ = b2(8T) and T?"A% =

Let '€ Fa,.a_. Then
F(z) :/ exp {i(A_%w,m) +4( Azw z)™ }Hdf (w
1, 10.T]

for s-a.e. (y1,y2) € C’ 5[0, T]. Suppose that the associated measure f of
F satisfies the condition (4.9) with A; and Aj replaced with Ay and A_,
respectively. Then for all § = (¢, —¢) with ¢ € R— {0} and |q| > |qo|, using the
equations (4.10) and (5.1)-(5.5), we have

1 1
Tq(‘p)(F)(ylva) = / €xp {i(Aiwayl)N +i(AZw, y2)~
L1071

-2 i(l)m(mb(_Ti)?T)Q(w,em)a,b
(;) ’ 2. b(_Ti)ﬂ(w»em)c;,b(ayem)q;’b
+<‘q) m%d(Tj(_Ti)Ww,em>c;,,,<a,em>c;,b}df<w>

for s-a.e. y € C2,[0,T).
Also, for all 7= (¢, —q) with ¢ € R — {0} and |g| > |qo|, using the equations

(4.19), (5.1)-(5.5), we have

(F *G)g(y1, y2)

// [OT]/ 0T { iQ(Ai(wlerz)’yl)N+£(A%(wl+w2)’yl)w
- mﬂ(l)“l(%)?(wl —wsen)ds,
+i(5) > s = e e, o ()

for s-a.e. y € C’gwb[O,T
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