• Title/Summary/Keyword: Alexander polynomials

Search Result 10, Processing Time 0.024 seconds

Alexander Polynomials of Knots Which Are Transformed into the Trefoil Knot by a Single Crossing Change

  • Nakanishi, Yasutaka
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.2
    • /
    • pp.201-208
    • /
    • 2012
  • By the works of Kondo and Sakai, it is known that Alexander polynomials of knots which are transformed into the trivial knot by a single crossing change are characterized. In this note, we will characterize Alexander polynomials of knots which are transformed into the trefoil knot (and into the figure-eight knot) by a single crossing change.

CLASSIFICATION OF A FAMILY OF RIBBON 2-KNOTS WITH TRIVIAL ALEXANDER POLYNOMIAL

  • Kanenobu, Taizo;Sumi, Toshio
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.591-604
    • /
    • 2018
  • We consider a family of ribbon 2-knots with trivial Alexander polynomial. We give nonabelian SL(2, C)-representations from the groups of these knots, and then calculate the twisted Alexander polynomials associated to these representations, which allows us to classify this family of knots.

ALEXANDER POLYNOMIAL FOR LINK CROSSINGS

  • Lee, Youn W.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.235-258
    • /
    • 1998
  • We define a crossing of a link without referring to a specific projection of the link and describe a construction of a non-normalized Alexander polynomial associated to collections of such crossings of oriented links under an equivalence relation, called homology relation. The polynomial is computed from a special Seifert surface of the link. We prove that the polynomial is well-defined for the homology equivalence classes, investigate its relationship with the combinatorially defined Alexander polynomials and study some of its properties.

  • PDF

Colourings and the Alexander Polynomial

  • Camacho, Luis;Dionisio, Francisco Miguel;Picken, Roger
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.1017-1045
    • /
    • 2016
  • Using a combination of calculational and theoretical approaches, we establish results that relate two knot invariants, the Alexander polynomial, and the number of quandle colourings using any finite linear Alexander quandle. Given such a quandle, specified by two coprime integers n and m, the number of colourings of a knot diagram is given by counting the solutions of a matrix equation of the form AX = 0 mod n, where A is the m-dependent colouring matrix. We devised an algorithm to reduce A to echelon form, and applied this to the colouring matrices for all prime knots with up to 10 crossings, finding just three distinct reduced types. For two of these types, both upper triangular, we found general formulae for the number of colourings. This enables us to prove that in some cases the number of such quandle colourings cannot distinguish knots with the same Alexander polynomial, whilst in other cases knots with the same Alexander polynomial can be distinguished by colourings with a specific quandle. When two knots have different Alexander polynomials, and their reduced colouring matrices are upper triangular, we find a specific quandle for which we prove that it distinguishes them by colourings.

TWO DIMENSIONAL ARRAYS FOR ALEXANDER POLYNOMIALS OF TORUS KNOTS

  • Song, Hyun-Jong
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.193-200
    • /
    • 2017
  • Given a pair p, q of relative prime positive integers, we have uniquely determined positive integers x, y, u and v such that vx-uy = 1, p = x + y and q = u + v. Using this property, we show that$${\sum\limits_{1{\leq}i{\leq}x,1{\leq}j{\leq}v}}\;{t^{(i-1)q+(j-1)p}\;-\;{\sum\limits_{1{\leq}k{\leq}y,1{\leq}l{\leq}u}}\;t^{1+(k-1)q+(l-1)p}$$ is the Alexander polynomial ${\Delta}_{p,q}(t)$ of a torus knot t(p, q). Hence the number $N_{p,q}$ of non-zero terms of ${\Delta}_{p,q}(t)$ is equal to vx + uy = 2vx - 1. Owing to well known results in knot Floer homology theory, our expanding formula of the Alexander polynomial of a torus knot provides a method of algorithmically determining the total rank of its knot Floer homology or equivalently the complexity of its (1,1)-diagram. In particular we prove (see Corollary 2.8); Let q be a positive integer> 1 and let k be a positive integer. Then we have $$\begin{array}{rccl}(1)&N_{kq}+1,q&=&2k(q-1)+1\\(2)&N_{kq}+q-1,q&=&2(k+1)(q-1)-1\\(3)&N_{kq}+2,q&=&{\frac{1}{2}}k(q^2-1)+q\\(4)&N_{kq}+q-2,q&=&{\frac{1}{2}}(k+1)(q^2-1)-q\end{array}$$ where we further assume q is odd in formula (3) and (4). Consequently we confirm that the complexities of (1,1)-diagrams of torus knots of type t(kq + 2, q) and t(kq + q - 2, q) in [5] agree with $N_{kq+2,q}$ and $N_{kq+q-2,q}$ respectively.

THE QUANTUM sl(n, ℂ) REPRESENTATION THEORY AND ITS APPLICATIONS

  • Jeong, Myeong-Ju;Kim, Dong-Seok
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.993-1015
    • /
    • 2012
  • In this paper, we study the quantum sl($n$) representation category using the web space. Specially, we extend sl($n$) web space for $n{\geq}4$ as generalized Temperley-Lieb algebras. As an application of our study, we find that the HOMFLY polynomial $P_n(q)$ specialized to a one variable polynomial can be computed by a linear expansion with respect to a presentation of the quantum representation category of sl($n$). Moreover, we correct the false conjecture [30] given by Chbili, which addresses the relation between some link polynomials of a periodic link and its factor link such as Alexander polynomial ($n=0$) and Jones polynomial ($n=2$) and prove the corrected conjecture not only for HOMFLY polynomial but also for the colored HOMFLY polynomial specialized to a one variable polynomial.

MODULAR MULTIPLICATIVE INVERSES OF FIBONACCI NUMBERS

  • Song, Hyun-Jong
    • East Asian mathematical journal
    • /
    • v.35 no.3
    • /
    • pp.285-288
    • /
    • 2019
  • Let $F_n$, $n{\in}{\mathbb{N}}$ be the n - th Fibonacci number, and let (p, q) be one of ordered pairs ($F_{n+2}$, $F_n$) or ($F_{n+1}$, $F_n$). Then we show that the multiplicative inverse of q mod p as well as that of p mod q are again Fibonacci numbers. For proof of our claim we make use of well-known Cassini, Catlan and dOcagne identities. As an application, we determine the number $N_{p,q}$ of nonzero term of a polynomial ${\Delta}_{p,q}(t)=\frac{(t^{pq}-1)(t-1)}{(t^p-1)(t^q-1)}$ through the Carlitz's formula.