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THE QUANTUM sl(n,C) REPRESENTATION THEORY AND

ITS APPLICATIONS

Myeong-Ju Jeong and Dongseok Kim

Abstract. In this paper, we study the quantum sl(n) representation
category using the web space. Specially, we extend sl(n) web space for n ≥

4 as generalized Temperley-Lieb algebras. As an application of our study,
we find that the HOMFLY polynomial Pn(q) specialized to a one variable
polynomial can be computed by a linear expansion with respect to a
presentation of the quantum representation category of sl(n). Moreover,
we correct the false conjecture [30] given by Chbili, which addresses the
relation between some link polynomials of a periodic link and its factor
link such as Alexander polynomial (n = 0) and Jones polynomial (n = 2)
and prove the corrected conjecture not only for HOMFLY polynomial but
also for the colored HOMFLY polynomial specialized to a one variable
polynomial.

1. Introduction

The discovery of the Jones polynomial [9, 10] brought a Renaissance of
knot theory and its generalizations have been studied in many different ways
[3, 7, 14, 20, 19, 26, 38, 41]. Using the representation theory of complex simple
Lie algebras, Reshetikhin and Turaev found quantized simple Lie algebras in-
variants of links and 3-manifolds [32, 33] and these invariants have been studied
extensively [4, 5, 13, 28, 16, 27, 45].

In the present paper, we study the quantum sl(n) representation theory
related to the HOMFLY polynomials of periodic links. Murasugi found a strong
relation between the Alexander polynomials of a periodic link L and its factor
link L [24] and a similar relation for the Jones polynomials [25]. There are
various results to decide the periodicity of links [29, 35, 11, 42, 43, 44]. A
conjecture for the relation between HOMFLY polynomials Pn(q) specialized to
a one variable polynomial of a periodic link L and its factor link L was found
as follows [4].
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Conjecture 1.1 ([4]). Let p be a positive integer and L be a p-periodic link
in S3 with its factor link L. Then,

Pn(L) ≡ Pn(L)
p modulo An,

where An is the ideal of Z[q±
1
2 ] generated by p and [n]p − [n].

The quantum integers are defined as

[n] =
q

n
2 − q−

n
2

q
1
2 − q−

1
2

, [n]! = [n][n− 1] · · · [2][1],

[

n
k

]

=
[n]!

[n− k]![k]!
.

For Conjecture 1.1, Chbili provided a proof for n = 3 using the represen-
tation theory of the quantum sl(3) [4]. There were subsequent studies on the
conjecture [6]. But, it was shown that Conjecture 1.1 is false for n ≥ 4 [30].
The counterexamples show that even if the link is colored by the vector rep-
resentation, the congruence can be involved with other fundamental represen-
tations. Focused on the quantum representation category of sl(n,C), we may
modify the original conjecture as follows.

Conjecture 1.2. Let p be a positive integer and L be a p-periodic link in S
3

with its factor link L. Then,

Pn(L) ≡ Pn(L)
p modulo In,

where In is the ideal of Z[q±
1
2 ] generated by p and [ ni ]

p−[ ni ] for i=1, 2, . . . , ⌊n
2 ⌋.

The study of a presentation of the quantum representation category of sl(n)
leads us to a powerful computation method of the HOMFLY polynomial Pn(q)
specialized to a one variable polynomial, a linear expansion of webs, and its
generalization to the colored sl(n) HOMFLY polynomial Gn(L, µ) specialized
to a one variable polynomial. Then we not only prove Conjecture 1.2 in The-
orem 4.1 but also we show the following theorem that Conjecture 1.2 remains
true for Gn(L, µ).

Theorem 1.3. Let p be a positive integer and L be a p-periodic link in S3

with its factor link L. Let µ be a p-periodic coloring of L and µ be the induced

coloring of L. Then for n ≥ 0,

Gn(L, µ) ≡ Gn(L, µ)
p modulo In,

where In is the ideal of Z[q±
1
2 ] generated by p and [ ni ]

p−[ ni ] for i=1, 2, . . . , ⌊n
2 ⌋.

Recently, there are significant progresses on the representation theory of
the quantum sl(n) [23, 34, 40]. In particular, a complete set of relations for
the representation theory of the quantum sl(n) which contain our relations in
Figure 4, Lemma 3.2 and new relation called ‘Kekulé relation’, which was first
found by the second author for sl(4) [17], is conjectured in [23]. Furthermore,
it was also proven that Remark 3.3 is false [23].
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The outline of this paper is as follows. In Section 2, we review the HOMFLY
polynomials and the colored HOMFLY polynomials specialized to a one variable
polynomial. In Section 3, we develop the representation theory of the quantum
sl(n). We show that the quantum sl(n) skein module of the plane or sphere
has dimension 1 using the relations we have found. In Section 4 we prove
Conjecture 1.2 and show the conjecture holds for the colored sl(n) HOMFLY
polynomial specialized to a one variable polynomial. In Section 5, we compare
our result with previous works.

2. The HOMFLY polynomials and the colored HOMFLY
polynomials specialized to a one variable polynomial

A link L is a disjoint union of circles embedded in three dimensional sphere
S3, and a knot K is a link with only one component. Here, we assume all links
are PL. A link L in S

3 is p-periodic if there exists a periodic homeomorphism
h of order p such that fix(h) ∼= S1, h(L) = L and fix(h) ∩ L = ∅ where
fix(h) is the set of fixed points of h. It is well known that if we consider S3

as R3 ∪ {∞}, we can assume that h is a rotation by 2π/p angle around the
z-axis. Let G = Z/pZ denote the group of homeomorphisms of S3 generated
by h, and let π denote the covering map S3 → S3/G, branched along z-axis.
We call L = π(L) the factor link of L. For other terms and definitions of knot
theory, we refer to [1].

Now we define the HOMFLY polynomial specialized to a one variable poly-
nomial. For the rest of paper, all HOMFLY polynomial and colored HOMFLY
polynomial are specialized to a one variable polynomial unless we state differ-
ently. For a nonnegative integer n, the HOMFLY polynomial Pn(q) specialized
to a one variable polynomial can be calculated uniquely by the following skein
relations:

Pn(∅) = 1,

Pn( ∪D) = (
q

n
2 − q−

n
2

q
1
2 − q−

1
2

)Pn(D),

q
n
2 Pn(L+)− q−

n
2 Pn(L−) = (q

1
2 − q−

1
2 )Pn(L0),

where ∅ is the empty diagram, is the trivial knot and L+, L− and L0 are
skein triple, three diagrams which are identical except at one crossing as in
Figure 1.

The HOMFLY polynomial of links can be recovered from the representation
theory of the quantum sl(n). For n = 0, we use the special linear Lie superalge-
bra gl(1|1) to find that P0(q) is the Alexander polynomial [15]. For n = 1 and
for any link, P1(q) = 1. For n = 2, P2(q) is the Jones polynomial [10, 32, 33, 41].
The polynomial Pn(q) can be computed by linearly expanding each crossing into
a sum of diagrams of planar trivalent graphs where the edges of these planar
graphs are oriented and colored by 1 or 2 as in Figure 2 [27].
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L+ L− L0

Figure 1. The skein triple L+, L− and L0.

11

= q
1
2

11

−

11

1 1

2

11

= q−
1
2

11

−

11

1 1

2

Figure 2. Expansions of crossings for Pn(L).

To define the colored HOMFLY polynomial, we review the quantum repre-
sentation category of sl(n,C) [20, 16]. The color 1 of an edge in the definition
of HOMFLY polynomial presents the vector representation V of the quantum
sl(n), and the color 2 for its exterior power ∧2V . The trivalent vertex is the
unique (up to scaling) intertwiner of V ⊗2 ⊗ ∧2V . This setup works for ar-
bitrary exterior powers of V [27]. Oriented edges of graphs in their calculus
carry colors from 1 to n−1 that denote the fundamental representations of the
quantum sl(n). Kuperberg generalized Temperley-Lieb algebras to sl(3) web
spaces [20]. In Section 3 we develop the quantum sl(n) representation theory
by extending the idea of webs in [27]. Recently, Westbury found a web space
for spin representations of so(7) [40]. A precise and algebraic overview of the
quantum sl(n) representation theory can be found in [23]. By expanding all
crossings as in Figure 17, Murakami, Ohtsuki and Yamada found a regular
isotopy invariant [D]n [27]. In Section 4, we modify writhes suitably to define
an isotopy invariant Kn(L, µ), the sl(n) HOMFLY polynomial, where µ is a
coloring of L by a fundamental representation of the quantum sl(n). Using the
quantum sl(n) representation theory, we show Kn(L, µ) can be computed by a
linear expansion with respect to the relations of web spaces in Theorem 3.4.

For n = 2, we can decorate L by any other irreducible representations Vn

using the highest-weight projection

fn : V ⊗n
1 → V ⊗n

1
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k
i j

k
i j

Figure 3. Generators of the quantum sl(n) web space.

whose image is Vn where V1 is the vector representation of sl(2). This projection
is called a Jones-Wenzl projector [39]. It does exist for n ≥ 3 and called a clasp

[20]. Using these clasps, Lickorish first found a quantum sl(2) invariants of
3-manifolds [22]. Ohtsuki and Yamada generalized it for the quantum sl(3)
[28] and Yokota did for the quantum sl(n) [45]. A benefit of using the quantum
sl(n) representation theory for link invariants is that some nontrivial facts from
the original work of [10, 32, 33] do follow easily such as the integrality [21].

By decorating each component by µ, we can define the colored sl(n) HOM-
FLY polynomial, denoted by Gn(L, µ) as follows. For a given colored link
L of l components say, L1, L2, . . . , Ll, where each component Li is colored
by an irreducible representation Va(i)1λ1+a(i)2λ2+···+a(i)n−1λn−1

of sl(n) and λ1,
λ2, . . ., λn−1 are the fundamental weights of sl(n). The coloring is denoted
by µ = (a(1)1λ1 + a(1)2λ2 + · · · + a(1)n−1λn−1, a(2)1λ1 + a(2)2λ2 + · · · +
a(2)n−1λn−1, . . . , a(l)1λ1 + a(l)2λ2 + · · ·+ a(l)n−1λn−1). First we replace each
component Li by a(i)1 + a(i)2 + · · · + a(i)n−1 copies of parallel lines and
each a(i)j line is colored by the weight λj . Then we put a clasp of weight
(a(i)1λ1 + a(i)2λ2 + · · ·+ a(i)n−1λn−1) for Li. If we assume the clasps are far
away from crossings, we expand each crossing as in Figure 17, then clasps [45].
The value we obtained after removing all faces by using the relations is the

colored sl(n) HOMFLY polynomial Gn(L, µ) of L.

3. The quantum sl(n) representation theory

We refer to [8, 20, 12, 16] for the general representation theory. The webs
are generated by the two types of shapes in Figure 3 where i + j + k = n. At
the second web in Figure 3, we can change the directions of the edges to inward
by using the duality, (Vλi

)∗ ∼= Vλn−i
, then the colors of the resulting edges are

n− i, n− j and n− k. Then we say a vertex has a sign type + if the sum of the
colors is n, − if the sum is 2n. The generators in Figure 3 have sign type +,−
from left. Naturally we can assign a sign type for each face. Using last two
relations in Figure 4, we only need to look at the face of a valid sign type in
which +,− are appearing alternatively. One can easily see that none of faces
with odd numbers of edges can have a valid sign type.

A few computations of tensor products of fundamental representations show
the relations in Figure 4 (up to scaling): the quantum dimension of the funda-
mental representation Vλi

is [ ni ], the dimension of the invariant space of Vλi
⊗
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i

=

[

n
i

]

i i

j

i− j

=

[

i
j

]

i

j k

i+ j + k

j + k =
i

j k

i+ j + k
i+ j

i

j k

i+ j + k

j + k =

i

j k

i+ j + k
i+ j

Figure 4. Relations obtained by the quantum dimension and scaling.

V ∗
λi

is 1 and the dimension of the invariant space of Vλi
⊗Vλj

⊗Vλk
⊗V ∗

λi+λj+λk

is 1.

3.1. Rectangular relations

To discuss rectangular relations, we first prove the following lemma.

Lemma 3.1. (1) If i ≤ j ≤ n− j − 1, then

dim(inv(Vλi
⊗ Vλj

⊗ V ∗
λi

⊗ V ∗
λj
)) = i+ 1.

(2) If j ≥ i ≥ k ≥ 1, n− j − 1 ≥ i and n− i − j − 1 ≥ l ≥ 1, then

dim(inv(Vλi
⊗ Vλj+l

⊗ V ∗
λi+l

⊗ V ∗
λj
)) = i+ 1.

Proof. If i ≤ j ≤ n − j − 1, we obtain the following isomorphism by the
Clebsch-Gordan formula.

Vλi
⊗ Vλj

∼= Vλj−i
⊕ Vλj−i+2 ⊕ · · · ⊕ Vλj+i

.

For irreducible representations V,W of a simple Lie algebra, by a simple
application of Schur’s lemma we find

dim(inv(V ⊗W ∗)) =

{

1 if V ∼= W,
0 if V 6∼= W.

These two facts imply that dim(inv(Vλi
⊗Vλj

⊗V ∗
λi
⊗V ∗

λj
)) = i+1. Similarly

one can prove the other. �

From Lemma 3.1, we know the number of basis webs that we need for each
expansion. For n− i − 1 ≥ j ≥ i ≥ 0, we can have two sets of basis webs and
each has the same sign type as in Figure 5. Throughout the section we will
use the basis in the left hand side of Figure 5. There are only two possible
types of rectangular relations as in Lemma 3.2, all other can be taken care of
by relations in Figure 4. The equation (1) in Lemma 3.2 was first appeared in
[27] without a proof.
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Figure 5. Two basis webs with the boundary Vλi
⊗ Vλj

⊗ V ∗
λi

⊗ V ∗
λj
.

Lemma 3.2. For n− i− 1 ≥ j ≥ i ≥ k ≥ 0 and n− i− j − 1 ≥ l ≥ 0, we find

j + li

j i+ l

j + k − i

j + k

k

i− k + l =

i
∑

m=0

[

l
k −m

]

j + li

j i+ l

m

i−m

j − i+m

j + l+m(1)

For n− j − 1 ≥ i ≥ j ≥ k ≥ 1 and n− i− j − 1 ≥ l ≥ 1, we have

j + li

j i+ l

k

i+ k

i− j + k

j − k + l =

j
∑

m=0

[

l
k −m

]

j + li

j i+ l

i− j +m

j −m

m

i+ l +m(2)

Just for these two equations, we use a different convention of quantum integers

that [ 00 ] = 1 but [ 0s ] = 0 if s 6= 0.

Proof. Let a(k,m), b(k,m) be the coefficients in the righthand side of the equa-
tions (1) and (2). We induct on (min{i, j}, k) in lexicographic order. The key
idea is to prove both equations simultaneously. If k = 0 and j ≥ i, we find
the equation in Figure 6. For the case k = 0 and i ≥ j, it is identical except
the weight on horizontal arrow is replaced by the weight i − j of the opposite
direction. For i = 0, we find the equations in Figure 7. One can do for the case
j = 0 similarly.

Now we are set to proceed to the induction step. Let us look at the first
case n − i − 1 ≥ j ≥ i ≥ k ≥ 0, n − i − j − 1 ≥ l ≥ 0. On the top of each
web in the equation (1), we can attach i different H ’s, given in Figure 8 where
i ≥ s ≥ 1. If s = i, we can easily get

[

j + k
i

] [

i+ l
k

]

=

i
∑

m=0

a(i,m)

[

j + l +m
m

] [

j
i−m

]

.

From the case s = 1, first we apply the bottom two relations in Figure 4
at the upper rectangle of the web in the left hand side of the first equality
in Figure 9 then the second relation in Figure 4 to obtain the first equality.
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j + l
j − i

Figure 6. Initial induction step k = 0 and j ≥ i.
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Figure 7. Initial induction step i = 0.

j + l + si− s
s

i j + l

Figure 8. H ’s attached on top of webs in Lemma 3.2.

The second equality in Figure 9 follows from the induction hypothesis of the
equation (1).

Next we look at each term in right hand side of the equation (1) as in the first
web on in Figure 10. Now we can use the equation (2) for the upper rectangle
of the first web because of the induction hypothesis, where the indices of the
boundary are i−1, i−m, (i−1)+(j+l+m−i+1) and (i−m)+(j+l−i+m+1)
from the northwest corner counter-clockwisely. Since k = 1 there are only two
nonzero terms as in the right hand side of the first equality in Figure 10 where
α = [−i + j + l + m + 1], β = 1. For the second web in the right hand side
of the first equality in Figure 10, one can see that a similar step of relations,
which was used in Figure 9 can be applied for the lower rectangle to get the
next equality.

At last, by comparing coefficients of each basis element, we get the following
i equations

[−i+ j + k + 1]

[

l + 1
k − t

]

= a(i, t)[−i+ j + t+ 1] + a(i, t+ 1)[−i+ j + l+ t+ 2],

where i−1 ≥ t ≥ 0. Since these i+1 equations are independent, we plug in the
answer to equations to check a(i,m) =

[

l
k−m

]

is correct. One can follow the
proof for the second case, n− j − 1 ≥ i ≥ j ≥ k ≥ 1, n− i− j − 1 ≥ l ≥ 1. �

3.2. The quantum sl(n) skein modules

Skein modules were introduced independently by V. Turaev [36] and J.
Przytycki [31] as a C[A±1]-module associated to a 3-manifold M generated
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j + k

i

i− k + l

j + l
1

k

i− 1 j + l + 1

j i+ l

=

[

j + k − i+ 1
1

]

i− 1 j + l + 1

j i+ l

j + k i − k + l

k

j + k − i+ 1

=

[

j + k − i+ 1
1

] i−1
∑

m=0

[

l + 1
k −m

]

i− 1 j + l + 1

j i+ l

i−m− 1 j + l +m+ 1

m

j − i+m+ 1

Figure 9. The reduction on the left side of equation (1).

i−m

i
j + l +m

j + l

j − i+m

1

m

i− 1 j + l + 1

j i + l

= α

i− 1 j + l + 1

j i+ l

i−m j + l +m

m− 1

j − i+m + β

i−m

i−m− 1

j + l +m

j + l +m+ 1

j − i+m

1

m
i − 1 j + l + 1

j i+ l

= α

i− 1 j + l+ 1

j i+ l

i−m j + l+m

m− 1

j − i+m + γ

i− 1 j + l + 1

j i+ l

i−m− 1 j + l +m+ 1
m

j − i+m+ 1

Figure 10. The reduction on the right side of equation (1).

by framed links inside M with local relations known as Kauffman relations.
In the case of M = S3 this construction reduces to the Jones polynomial and
in the general case, the evaluation of the skein module at the root of unity is
known to fir with the Topological Quantum Field Theory constructed in [2]. It
can be generalized for arbitrary Lie algebra, remind that the Jones polynomial
came from the representation category of the quantum sl(2). By replacing M
by F × [0, 1], framed links by framed links with a color and Kauffman relation
by relations given Figure 1 and Lemma 3.2 one can obtain a C[A±1]-module.



1002 MYEONG-JU JEONG AND DONGSEOK KIM

We call it the quantum sl(n) skein modules. In this section, we concentrate on
the quantum sl(n) skein modules and prove Theorem 3.4.

The authors have been trying to find a complete relation of the quantum
sl(n) representation theory, but we find that the size of a polygon we have
to find a suitable relation is increasing as n increases: there a rectangular
relation for the quantum sl(3), a hexagonal relation for the quantum sl(4) and
an octagonal relation for the quantum sl(6). In particular, a complete set of
relations for the quantum sl(4) representation theory is conjectured [17].

Remark 3.3. For a given n and sufficiently large m, i.e., n ≪ m, we conjecture
that any 2n polygon of the sign type (+, −, +, . . . , −) can be expanded to a
sum of webs of polygons of smaller sizes and 2n polygons of the sign type (−,
+, −, . . ., +) by relations of the quantum sl(m) representation theory.

As mentioned before, a complete set of relations for the representation the-
ory of the quantum sl(n) which contain our relations in Figure 4, Lemma 3.2
and new relation called ‘Kekulé relation’, which was first found by the second
author for sl(4) [17], is conjectured in [23]. Furthermore, it was also shown
that Remark 3.3 is false [23]. Without using extra relations found in [23], we
can prove the following theorem.

Theorem 3.4. The quantum sl(n) skein module of the plane or sphere has

dimension 1.

Proof. If we look at these webs without decorations, they are directed, weighted,
trivalent and planar graphs. We will consider these graphs on S2 instead of R2

and assume that all webs are without boundary for the rest of proof, i.e., no
vertex of valence 1.

We will claim that the dimension of the web space without boundary is 1.
Suppose it is not true, then there exists a web for which we can not take a value

in C[q
1
2 , q−

1
2 ] by repeatedly applying relations for the representation theory of

the quantum sl(n), say D. We assume that D has the smallest number of faces
among all counterexamples. Since a face of size less than 4 can be removed by
using relations found in Figure 4, we assume that all faces in D have at least 4
edges. Since it can be shown easily that there are finitely many trivalent graphs
with a fixed number of faces whose sizes are bigger than 3, we further assume
that D has the maximum number of rectangular faces among counterexamples
of the minimal number of faces. Let V,E and F be the number of vertices,
edges and faces in D on S2, respectively. Let Fi be the number of faces with i
edges. We can easily find the following equations:

3V = 2E,(3)

2 = V − E + F,(4)

2E =
∑

4≤i

iFi.(5)
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The outline of the proof is as follow. First, we prove the existence of rectan-
gular face in D in Lemma 3.7. Then we divide cases depending on the neigh-
borhood of the rectangular faces. Lemma 3.6 will show that if a rectangular
face is adjacent to a pentagon, then the adjacent pentagon is unique, we call
it an isolated rectangular face. If a rectangular face is not isolated, we call it
a non-isolated rectangular face. For non-isolated rectangular faces, we further
divide them as follow; if the sizes of all adjacent faces are bigger than 6, then
we call it a non-moveable rectangular face. If a rectangular face is non-isolated
and it is adjacent to a hexagon, then we call it a moveable rectangular face.
Then we observe the neighborhood of rectangular faces, (i) isolated rectangular
faces in Lemma 3.8, (ii) moveable rectangular faces in Lemma 3.9. By looking
at all polygons whose sizes are bigger than 6, we find a contradictory inequality
to prove the theorem.

Lemma 3.5. Let D be a counterexample with the hypothesis, the minimality

of the number of faces and the maximality of the number of rectangular faces

among counterexamples. Then, there can not be two adjacent rectangles of a

valid sign type in D.

Proof. Suppose not, then there exist two adjacent rectangles of a valid sign
type in D. We apply an equation in Lemma 3.2 to change one of adjacent
rectangles to a linear combination of webs with the rectangular faces with the
opposite sign type. Then, two opposite edges of the other rectangle of adjacent
rectangles have the same signs at each ends. By applying the last two relations
in Figure 4, a web with two adjacent rectangles are now changed to a linear
combination of webs with a hexagon and a bigon as depicted in Figure 11,
consequently, just a hexagon. These processes result that the original web D
is a linear combination of webs of less numbers of faces, however, since D is
a counterexample, at least one of webs in this linear combination has to be a
counterexample. But this can not be happened because of the minimality of
the number of faces in D. �

Let I be the number of non-isolated rectangular faces in D. The following
lemma shows that each pentagon is adjacent to a unique isolated rectangular
face, i.e., F4 − I = F5.

Lemma 3.6. Let D be a counterexample with the hypothesis, the minimality

of the number of faces and the maximality of the number of rectangular faces

among counterexamples. If there exists a pentagonal face in D, the pentagonal

face is adjacent to a unique rectangular face.

Proof. Suppose the pentagon is not adjacent to a rectangle, i.e., the sizes of
all adjacent faces of the pentagon are bigger than 4. But by applying one of
the last two relations as shown in Figure 4 to the pentagonal face, it can be
changed to a rectangle without changing the total number of faces but increas-
ing the number of the rectangles by 1 in D. This contradicts the maximality
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+ −

− +

+

− =
∑

i

αi

− +

+ −

+

− =
∑

i

αi

Figure 11. Two adjacent rectangles with a valid sign type
and its linear expansion of webs with less number of faces.

of the number of the rectangular faces in D. Therefore, it must be adjacent
to a rectangle. To show the uniqueness of the adjacent rectangle we consider
the pentagon relations. There are five possible shapes by rotating the web in
Figure 12 by 2π

5 . By applying the equations in Lemma 3.2, one can see that
any two out of these five shapes are related as the equation as illustrated in
Figure 13, which is called a pentagon relation. If two rectangles are adjacent
to a pentagon, we use a pentagon relation to make a linear combinations of
webs with two adjacent rectangles and webs of one less number of faces. Since
D is a counterexample, one of these webs in the linear combination has to be
a counterexample. However, a web with two adjacent rectangles can not be a
counterexample as described before. A web with one less number of faces than
that of D can not be a counterexample neither because of the minimality of
the number of faces in D. Therefore, the adjacent rectangle of the pentagon
has to be unique. �

The rectangular faces play the key role in the proof as mentioned before.
We will show the existence of a rectangular face in the following lemma.

Lemma 3.7. Let D be a counterexample with the hypothesis, the minimality

of the number of faces and the maximality of the number of rectangular faces

among counterexamples. Then, there exists a rectangular face in D.

Proof. By Lemma 3.6, if there does not exist a rectangular face in D, then
the size of all faces are bigger than 5, i.e., 2E ≥ 6F . By combining with
equations (3) and (4), we easily find a contradiction as follows,

2 = V − E + F ≤
2

3
E − E +

1

3
E = 0.

�

To proceed the proof of Theorem 3.4, we introduce a way modifying the web
which has a moveable rectangular face, recall that a moveable rectangular face is
a rectangular face adjacent to a hexagon. If a rectangular face is moveable, the
relations in Lemma 3.2 allow us to change the web D to a linear combination
of webs with a rectangular face of an opposite sign type and webs of less
number of faces. For the webs with a rectangular face of an opposite sign type,
one can see that two edges in the hexagonal face have the same sign at the
ends. By applying relations shown in Figure 4, the positions of the rectangle
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Figure 12. A valid sign type for an isolated rectangle and
its adjacent pentagon and their corresponding new pentagon
presented by dashed lines considered in Lemma 3.8.
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Figure 13. A pentagonal relation.
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Figure 14. A general swapping move for a moveable rectan-
gular face.

and the hexagon are now interchanged as illustrated in Figure 14 which is
called a swapping move. Because of the hypothesis of D, one of these new
webs with adjacent rectangle and hexagon has to be a counterexample, say D′.
Slightly abusing notation, we will say that the original counterexample D can
be changed to D′ by a swapping move.

In the following lemma, we look at the neighborhood of each isolated rect-
angular face. Since every isolated rectangular face is adjacent to a pentagon,
we will treat these two adjacent polygons as a new pentagon as depicted in the
right side of Figure 12.

Lemma 3.8. Let D be a counterexample with the hypothesis, the minimality

of the number of faces and the maximality of the number of rectangular faces

among counterexamples. Suppose D has an isolated rectangular face. Then, the

size of all adjacent polygons of a new pentagon drawn for an isolated rectangular

face and its adjacent pentagon as in the right side of Figure 12 must be bigger

than 7.

Proof. First we already know that these polygons adjacent to the pentagon can
not be a rectangle nor a pentagon. Suppose one of them is either a hexagon or a
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7+ 8+

7+ 8+

8+ 8+
,

8+8+

7+ 7+ 8+ 7+ 7+ 7+

. . .

7+ 7+ 8+ 7+ 7+ 7+

Figure 15. Two possible neighborhoods of the moveable rect-
angular face.

heptagon. Either case, we can rotate the pentagon using the pentagon relations
as shown in Figure 13 such that the rectangular face is adjacent to the hexagon
or the heptagon (since the rectangle must have a valid sign type, otherwise, it
can be removed resulting a contradiction of the minimality of the number of
faces in D). But, we can change the heptagon to a hexagon using the relations
as illustrated in Figure 4. Then by a swapping move as depicted in Figure 14,
the rectangle in D can be separated from the pentagon. Then every web in the
linear combinations has either one less number of faces or a pentagon which is
not adjacent to a rectangle, thus this pentagon can be changed to a rectangle
using the relations shown in Figure 4, consequently, it increases the number of
rectangular faces. Since D is a counterexample, at least one webs in the linear
combinations has to be a counterexample but neither cases is possible because
of the hypothesis of D. �

Now we proceed to the next lemma, we look at the neighborhood of a move-
able rectangular face. One can easily see that all adjacent hexagonal faces must
have a valid sign type (otherwise, they become two adjacent rectangular faces
using the relations shown in Figure 4, which is impossible).

Lemma 3.9. Let D be a counterexample with the hypothesis, the minimality of

the number of faces and the maximality of the number of rectangular faces. The

only possible neighborhood of a moveable rectangular face must be either one of

webs in Figure 15 or a circular web obtained from the right one in Figure 15

by attaching the rightmost and leftmost hexagons.

Proof. We will divide cases by the number of adjacent hexagonal faces of the
moveable rectangular face. If there is only one hexagon in the neighborhood of
the rectangle, we do swap the rectangle with the hexagon. After a swapping
move, we repeat the process from the new rectangle. If there is still only one
hexagon, then we find the desired result as shown in the left side of Figure 15.
If there are more than one hexagon, it will be dealt with in the next cases.

If there are two adjacent hexagonal faces, there are also two possibilities. If
these two hexagons of valid sign types are adjacent to each other, we use the
relations in Lemma 3.2 to change the rectangular face to a linear combination
of webs of less number of faces or webs with hexagons which can be changed
into two rectangles as illustrated in Figure 16. Since D is a counterexample,
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Figure 16. Two adjacent hexagons in the neighborhood of
the rectangle can not exist in D.

one of webs in the linear combination has to be a counterexample but neither
cases can be a counterexample because of the hypothesis of D. If these two
hexagons are not adjacent each other, then after a swapping move toward to
both directions, we can repeat the process at the new rectangles. Since there
are only finitely many faces, this process either stops in finite steps which gives
a web in the right side of Figure 15 or repeats infinitely which gives a circular
web obtained from the right one in Figure 15 by attaching the rightmost and
leftmost hexagons. For three or four adjacent hexagons, we must have at least
two adjacent hexagons which is not possible as described previously.

Furthermore, the traces of swapping moves of different moveable rectangular
faces are disjoint. Otherwise, we can repeat swapping moves to make these two
moveable rectangular faces adjacent. But as we mentioned before, it is not
possible to have adjacent rectangles. �

Now, we are set to find a contradictory inequality. Instead of rectangular
faces, we are going to look at all polygons whose sizes are bigger than 6. From
Lemma 3.8, three edges from isolated rectangular face and four edges from
its adjacent pentagon, total 4F5 + 3(F4 − I) edges, can be common edges
of faces which have more than seven edges. From Lemma 3.9, for edges in
polygons whose size is bigger than 6 which is not a common edge with isolated
rectangles and their adjacent pentagon, there exists at most one edge of a
moveable rectangular face can travel to become the common edge of the given
edge by a sequence of swapping moves. Furthermore, since all webs are trivalent
and no two rectangles are adjacent, for each face of size n ≥ 9, there are at most
⌊ 2n

3 ⌋ rectangular faces or pentagonal faces which are originally adjacent to the
given face or adjacent to the given face by a finite sequence of swapping moves.
For a heptagon, it is not adjacent to an isolated rectangle by Lemma 3.8 and we
can see that three rectangles can not be adjacent to the heptagon because one
can easily see that two of these three rectangles can be adjacent by a swapping
move, and having two adjacent rectangles is impossible as mentioned before.
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For an octagon, it is not adjacent to an isolated rectangle by Lemma 3.8 and
it can be adjacent to up to 4 rectangular faces. These can be summarized as
the following inequality,

4F5 + 3(F4 − I) + 4I ≤ 2F7 + 4F8 + 6F9 + 6F10 + · · ·+ ⌊
2n

3
⌋Fn + · · · .(6)

Since I = F4−F5, we have 4F5+3(F4−I)+4I = 4F5+3F4+I = 3F5+4F4.
Using the fact (n−6) ≥ ⌈ 1

2⌊
2n
3 ⌋⌉ for all n ≥ 9, we get the following inequalities,

4F4 + 2F5 ≤ 4F4 + 3F5 ≤ 2F7 + 4F8 + 6F9 + 6F10 + · · ·+ ⌊
2n

3
⌋Fn + · · · ,(7)

2F4 + F5 ≤ 1F7 + 2F8 + 3F9 + 4F10 + · · ·+ (n− 6)Fn + · · · ,(8)

0 ≤ −2F4 − F5 + 1F7 + 2F8 + 3F9 + 4F10 + · · ·+ (n− 6)Fn + · · · .(9)

By adding the last inequality (9) to the equality (10), we obtain the desired
inequality between the number of faces and edges as follows,

6F = 6F4 + 6F5 + 6F6 + 6F7 + 6F8 + · · ·+ 6Fn + · · · ,(10)

6F ≤ 4F4 + 5F5 + 6F6 + 7F7 + 8F8 + · · ·+ nFn + · · · = 2E.(11)

If we substitute the inequality (11), F ≤ 1
3E, and the equation (3) into the

equation (4), then we find a contradiction as

2 = V − E + F ≤
2

3
E − E +

1

3
E = 0.

Therefore, this completes the proof. �

4. Proofs of main results

If links are decorated by the fundamental representations Vλi
of the quantum

sl(n), denoted by i, Murakami, Ohtsuki and Yamada [27] found a quantum
invariant for framed links by resolving each crossing in a link diagram D of L
as shown in Figures 12 and 13.

For negative crossings, we replace q with q−1. Pn(q) is the special case of
q−ω(D)n

2 [D]n, when all components are colored by the fundamental represen-
tation Vλ1 . They showed that Pn(q) is an isotopy invariant and that [D]n is a
regular isotopy invariant for other colorings [27]. However, one can make it a
link invariant by using a suitable writhe but we have to be careful since there
are more than one colors. For a coloring µ of a diagram D of a link L, we first
consider a colored writhe ωi(D) as the sum of writhes of components colored
by i. Then we set

Kn(L, µ) =
∏

i

q−ωi(D) i(n−i+1)
2 [D]n,

where the product runs over all colors i.
By Theorem 3.4, we know Kn(L, µ) is well defined. It was shown that [D]n

is a regular isotopy invariant [27], so is Kn(L, µ). One can find the equations
in Figure 18 by the second relation in Figure 4 and a routine induction. Then
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Figure 17. Skein expansions of a crossing.
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Figure 18. Resolving Reidemeister move I.

Kn(L, µ) is invariant under Reidemeister move I. Therefore, Kn(L, µ) is an
isotopy invariant of a link L. A coloring µ on a p-periodic link L is a p-
periodic coloring of L if the periodic homeomorphism h of order p used for the
periodicity of L also preserves the coloring i.e., h(L, µ) = (L, µ). For such a
coloring µ on a periodic link L, we also denote the factor link L = π(L) and
natural coloring on L by µ. Now we discuss the relation between Kn(L, µ) and
Kn(L, µ) for a p-periodic link L in the following theorems.

Theorem 4.1. Let p be a positive integer and L be a p-periodic link in S3

with its factor link L. Let µ be a p-periodic coloring of L and µ be the induced

coloring of L. Then for n ≥ 0,

Kn(L, µ) ≡ Kn(L, µ)
p modulo In,

where In is the ideal of Z[q±
1
2 ] generated by p and [ ni ]

p−[ ni ] for i=1, 2, . . . , ⌊n
2 ⌋.

Proof. Let µ be a p-periodic coloring of L. Let R be the fundamental region
by the action h. Let C be the set of all crossings of L and let C be the set of all
crossings in the region R. Let i(c) and j(c) be the weights of two components
at the crossing c as in Figure 17. Let J(c) be the minimum of i(c) and j(c)
for the crossing c. Let D be the diagram after the expansion by the equations
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in Figures 17. Let D′ be the diagram obtained by identical expanding of the
crossings which are the same by the action h and D′′ be the diagram obtained
from D′ by identical applications of relations at the faces which are in the same
orbit by the action h. Let D′′ = D′′/Zp and Zp is generated by the action h.

Let In be the ideal of Z[q±
1
2 ] generated by p and [ ni ]

p−[ ni ] for i = 1, 2, . . . , ⌊n
2 ⌋.

Kn(L, µ) =
∏

c∈C

J(c)
∑

k=0

(−1)k+(i(c)+1)j(c)q
(j(c)−k)

2 [D]n(14)

≡
∏

c∈C

J(c)
∑

k=0

((−1)k+(i(c)+1)j(c)q
(j(c)−k)

2 )p[D′]n (mod p)

≡
∏

c∈C

J(c)
∑

k=0

((−1)k+(i(c)+1)j(c)q
(j(c)−k)

2 )p[D′′]n (mod p)

≡
∏

c∈C

J(c)
∑

k=0

((−1)k+(i(c)+1)j(c)q
(j(c)−k)

2 )p([D′′]n)
p (mod In)

≡
∏

c∈C

J(c)
∑

k=0

((−1)k+(i(c)+1)j(c)q
(j(c)−k)

2 [D]n)
p (mod p)

≡ (
∏

c∈C

J(c)
∑

k=0

(−1)k+(i(c)+1)j(c)q
(j(c)−k)

2 [D]n)
p (mod p)

≡ (Kn(L, µ))
p (mod p).

If any expansion of crossings occurs in R, it must be used identically for
all other p − 1 copies of R. Otherwise there will be p identical shapes by the
rotation of order p, then the term in the expansion is congruent to zero modulo
p. This implies the first congruence in equation (14). By the same philosophy,
if any expansion of relations occurs in R, it must be used identically for all
other p − 1 copies of R. Otherwise it is congruent to zero modulo p and this
implies the second congruence. Let us remark that we have not used relations
that might occur in the faces which are not entirely contained in R. If there
is an unknot in D′′ which was in D′′, there are p copies in D′′. Thus raising
p-power gives us the equality. But if there is an unknot in D′′ which was not in
D′′, it should count once in D′′ and D′′, thus we have to use In congruence. �

Remark 4.2. In the proof, one can easily generalize the congruence relation
between the quantum invariants [ ]n of a web diagram W of symmetry of order
p and its quotient W modulo In as

[W ]n ≡ ([W ]n)
p (mod In).

But in general, this congruence is not true if W is a base web diagram [18].
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Next, we find that Theorem 4.1 remains true for the colored sl(n) HOMFLY
polynomial of a periodic link whose components are colored by irreducible
representations of quantum sl(n).

Theorem 4.3. Let p be a positive integer and L be a p-periodic link in S
3

with its factor link L. Let µ be a p-periodic coloring of L and µ be the induced

coloring of L. Then for n ≥ 0,

Gn(L, µ) ≡ Gn(L, µ)
p modulo In,

where In is the ideal of Z[q±
1
2 ] generated by p and [ ni ]

p−[ ni ] for i=1, 2, . . . , ⌊n
2 ⌋.

Proof. Since all clasps are idempotents, we put p-copies of clasps to each copy
of the fundamental region by the action h of the periodicity of L. Thus without
expanding the clasps, we obtain the theorem by the same idea of the proof of
the Theorem 4.1. �

We also give a criterion for periodic links by using the invariant Kn(L, µ)
and mirror image of knots in the following theorem.

Theorem 4.4. Let L be a p-periodic link for a prime p and let L∗ be the link

obtained from the mirror image of a diagram of L. Let µ be a coloring of L
and µ∗ be the coloring of L∗ induced from the coloring µ of L. Then we have

Kn(L, µ) ≡ Kn(L
∗, µ∗) mod (p, qp − 1).

Proof. For a colored link diagram D we denote its mirror image by D∗ which
is the colored link diagram obtained from D by changing all of the crossings.
We study another necessary condition for a colored link to be periodic by using
the invariant Kn(L, q). Let L be a colored link diagram with a crossing x.
Let L+, L−, and L0 be the link diagrams obtained by resolving the crossing
x as shown in Figure 1 respectively. Then from Figure 17, we see that there

exist web diagrams L1, . . . , Lm and polynomials f1, . . . , fm ∈ Z[q±
1
2 ] for some

positive integer m such that

[L+]n − [L−]n = (q
1
2 − q−

1
2 )(f1[L1]n + · · ·+ fm[Lm]n).

In particular, by applying this relation repeatedly for a colored periodic link
we obtain the following lemma.

Lemma 4.5. Let D be a colored p-periodic link diagram and π be the quotient

map of the periodic homeomorphism h of order p and D be the factor link of

D so that π−1(D) = D. Let x be a crossing of a nontrivial diagram D, and let

D+ and D− be the colored link diagram obtained by changing the crossing x to

a positive crossing and negative crossing respectively. Then we have

[π−1(D+)]n ≡ [π−1(D−)]n mod (p, qp − 1).
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Proof. Let D1, . . . , Dm be web diagrams and let f1, . . . , fm ∈ Z[q±
1
2 ] be poly-

nomials for some positive integer m such that

[D+]n − [D−]n = (q
1
2 − q−

1
2 )(f1[D1]n + · · ·+ fm[Dm]n).

Then by considering the periodic action induced from the map h, we get

[π−1(D+)]n − [π−1(D−)]n

≡ (q
1
2 − q−

1
2 )p(fp

1 [π
−1(D1)]n + · · ·+ fp

m[π−1(Dm)]n) mod (p)

≡ 0 mod (p, qp − 1).
�

Now, we are ready to prove theorem. For a tangle T , we denote its closure
by Cl(T ) if it is well defined. Let L be a p–periodic link and T be a tangle such
that L is the closure Cl(T p) of the tangle T p which is p times self-product of
T . Let D be a diagram of L and x be a crossing of the diagram D. Let T+ and
T− be the diagram obtained from the diagram of T by changing the crossing
x to a positive crossing and negative crossing respectively. If the two colorings
of the strands near the crossing x are different then by using Lemma 4.5, we
see that

Kn(Cl((T+)
p), µ)−Kn(Cl((T−)

p), µ)

=
∏

i

q−wi(D)
i(n−i+1)

2 ([Cl((T+)
p)]n − [Cl((T−)

p)]n)

≡ 0 mod (p, qp − 1).

If two colorings of the strands near the crossing x are equal, say i, then
wi(Cl((T+)

p)) = wi(Cl((T+)
p)) + 2p. Then we see that there exists a polyno-

mial g ∈ Z[q±
1
2 ] such that

Kn(Cl((T+)
p), µ)−Kn(Cl((T−)

p), µ)

= g([Cl((T+)
p)]n − qpi(n−i+1)[Cl((T−)

p)]n)

≡ 0 mod (p, qp − 1).

The last congruence relation in the above formulae can be obtained by using
Lemma 4.5. Thus we see that

Kn(Cl((T+)
p), µ) ≡ Kn(Cl((T−)

p), µ) mod (p, qp − 1).

Since T can be obtained from its mirror image T ∗ by a finite sequence of
crossing changes, we get

Kn(L, µ) ≡ Kn(L
∗, µ∗) mod (p, qp − 1).

It completes the proof the theorem. �
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5. Discussion

To compare our result with previous results, one has to compare the size of
ideal used in Theorem 4.1 with ideals in [4, 6, 30, 25]. As we have mentioned,
we have corrected the false conjecture given by Chbili [4] and Przytycki and
Sikora [30]. To compare with the ideal in [25], we observe that the ideal In of

Z[q±
1
2 ] generated by p and [ ni ]

p − [ ni ] for i = 1, 2, . . . , ⌊n
2 ⌋ is a subset of the

ideal generated by p and [2]p− [2] by the strong integrality of the quantum link
invariant [21]. Furthermore, if n is odd, the ideal In is a subset of the ideal
generated by p and [3]p− [3]. To compare the ideal generated by p and [2]p− [2]
with the ideal of Murasugi’s [25] generated by p and

ξp(t) =

p−1
∑

j=0

(−t)j − t
p−1
2 ,

we observe

(t+ 1)ξp(t) ≡ q−
p

2 ([2]p − [2])|√q=− 1
√

t

(mod p).

To compare with the ideal in [6], we use only fundamental representations
of the quantum Lie algebras sl(n) which are finite but Chen and Le used all
representations of the quantum sl(n) which are obviously infinite. Thus, our
criterion is sharper than other previous results. However, we were not able to
find a new periodicity of knots using our criteria.

Acknowledgements. The authors would like to thank Greg Kuperberg for
introducing the subject and helpful discussion, Younghae Do, Mikhail Kho-
vanov, Hitoshi Murakami for their attentions to this work. Also, the referee
has been very critical during refereing and pointing out the comparison in Sec-
tion 5. The TEX macro package PSTricks [37] were essential for typesetting
the equations and figures.

References

[1] C. Adams, The Knot Book: An Elementary Introduction to the Mathematical Theory
of Knots, New York, W. H. Freeman, 1994.

[2] C. Blanchet, N. Habegger, G. Masbaum, and P. Vogel, Topological quantum field theories

derived from the Kauffman bracket, Topology 34 (1995), no. 4, 883–927.
[3] S. Cautis and J. Kamnitzer, Knot homology via derived categories of coherent sheaves

I. The SL(2) case, Duke Math. J. 142 (2008), no. 3, 511–588.
[4] N. Chbili, The quantum SU(3) invariant of links and Murasugi’s congruence, Topology

Appl. 122 (2002), no. 3, 479–485.
[5] , Quantum invariants and finite group actions on three-manifolds, Topology

Appl. 136 (2004), no. 1-3, 219–231.
[6] Q. Chen and T. Le, Quantum invariants of periodic links and periodic 3-manifolds,

Fund. Math. 184 (2004), 55–71.
[7] I. Frenkel and M. Khovanov, Canonical bases in tensor products and graphical calculus

for Uq(sl2), Duke Math. J. 87 (1997), no. 3, 409–480.
[8] W. Fulton and J. Harris, Representation Theory, Graduate Texts in Mathematics, 129,

Springer-Verlag, New York-Heidelberg-Berlin, 1991.



1014 MYEONG-JU JEONG AND DONGSEOK KIM

[9] V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25.
[10] , Hecke algebra representations of braid groups and link polynomials, Ann. of

Math. 126 (1987), no. 2, 335–388.
[11] M.-J. Jeong and C.-Y. Park, Lens knots, periodic links and Vassiliev invariants, J. Knot

Theory Ramifications 13 (2004), no. 8, 1041–1056.
[12] C. Kassel, M. Rosso, and V. Turaev, Quantum Groups and Knot Invariants, Panoramas

et Syntheses, 5, Societe Mathematique de France, 1997.
[13] M. Khovanov, sl(3) link homology, Algebr. Geom. Topol. 4 (2004), 1045–1081.
[14] , Categorifications of the colored Jones polynomial, J. Knot Theory Ramifications

14 (2005), no. 1, 111–130.
[15] , private communication.
[16] M. Khovanov and L. Rozansky, Matrix factorizations and link homology, Fund. Math.

199 (2008), no. 1, 1–91.
[17] D. Kim, Graphical Calculus on Representations of Quantum Lie Algebras, Thesis, UC-

Davis, 2003, arXiv:math.QA/0310143.
[18] D. Kim and J. Lee, The quantum sl(3) invariants of cubic bipartite planar graphs, J.

Knot Theory Ramifications 17 (2008), no. 3, 361–375.
[19] R. Kirby and P. Melvin, The 3-manifold invariants of Witten and Reshetikhin-Turaev

for sl(2), Invent. Math. 105 (1991), no. 3, 473–545.
[20] G. Kuperberg, Spiders for rank 2 Lie algebras, Comm. Math. Phys. 180 (1996), no. 1,

109–151.
[21] T. Le, Integrality and symmetry of quantum link invariants, Duke Math. J. 102 (2000),

no. 2, 273–306.
[22] W. Lickorish, Distinct 3-manifolds with all SU(2)q invariants the same, Proc. Amer.

Math. Soc. 117 (1993), no. 1, 285–292.
[23] S. Morrison, A Diagrammatic Category for the Representation Theory of Uq(sln), UC

Berkeley Ph.D. thesis, arXiv:0704.1503.
[24] K. Murasugi, On periodic knots, Comment. Math. Helv. 46 (1971), 162–174.
[25] , Jones polynomials of periodic links, Pacific J. Math. 131 (1988), no. 2, 319–329.
[26] H. Murakami, Asymptotic Behaviors of the colored Jones polynomials of a torus knot,

Internat. J. Math. 15 (2004), no. 6, 547–555.
[27] H. Murakami, T. Ohtsuki, and S. Yamada, Homfly polynomial via an invariant of colored

plane graphs, Enseign. Math. (2) 44 (1998), no. 3-4, 325–360.
[28] T. Ohtsuki and S. Yamada, Quantum SU(3) invariant of 3-manifolds via linear skein

theory, J. Knot Theory Ramifications 6 (1997), no. 3, 373–404.
[29] J. H. Przytycki, On Murasugi’s and Traczyk’s criteria for periodic links, Math. Ann.

283 (1989), no. 3, 465–478.
[30] J. Przytycki and A. Sikora, SUn-quantum invariants for periodic links, Diagrammatic

morphisms and applications (San Francisco, CA, 2000), 199–205, Contemp. Math., 318,
Amer. Math. Soc., Providence, RI, 2003.

[31] , On skein algebras and Sl2(C)-character varieties, Topology 39 (2000), no. 1,
115–148.

[32] N. Yu. Reshetikhin and V. G. Turaev, Ribbob graphs and their invariants derived from
quantum groups, Comm. Math. Phys. 127 (1990), no. 1, 1–26.

[33] , Invariants of 3-manifolds via link polynomials and quantum groups, Invent.
Math. 103 (1991), no. 3, 547–597.

[34] A. Sikora and B. Westbury, Confluence theory for graphs, Algebr. Geom. Topol. 7

(2007), 439–478.
[35] P. Traczyk, A criterion for knots of period 3, Topology Appl. 36 (1990), no. 3, 275–281.
[36] V. G. Turaev, The Conway and Kauffman modules of a solid torusa, (translation) J.

Soviet Math. 52 (1990), no. 1, 2799–2805.



THE QUANTUM sl(n,C) REPRESENTATION THEORY 1015

[37] T. Van Zandt, PSTricks: PostScript macros for generic TEX, Available at ftp://

ftp.princeton.edu/pub/tvz/.
[38] M. Vybornov, Solutions of the Yang-Baxter equation and quantum sl(2), J. Knot Theory

Ramifications 8 (1999), no. 7, 953–961.
[39] H. Wenzl, On sequences of projections, C. R. Math. Rep. Acad. Sci. Canada 9 (1987),

no. 1, 5–9.
[40] B. Westbury, Invariant tensors for the spin representation of so(7), Math. Proc. Cam-

bridge Philos. Soc. 144 (2008), no. 1, 217–240.
[41] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121

(1989), no. 3, 351–399.
[42] Y. Yokota, The skein polynomial of periodic knots, Math. Ann. 291 (1991), no. 2, 281–

291.
[43] , The Jones polynomial of periodic knots, Proc. Amer. Math. Soc. 113 (1991),

no. 3, 889–894.
[44] , The Kauffman polynomial of periodic knots, Topology 32 (1993), no. 2, 309–

324.
[45] , Skein and quantum SU(N) invariants of 3-manifolds, Math. Ann. 307 (1997),

no. 1, 109–138.

Myeong-Ju Jeong

Korea Science Academy

Busan 614-822, Korea

E-mail address: mjjeong@kaist.ac.kr

Dongseok Kim

Department of Mathematics

Kyonggi University

Suwon 443-760, Korea

E-mail address: dongseok@kgu.ac.kr


