Browse > Article
http://dx.doi.org/10.5666/KMJ.2016.56.3.1017

Colourings and the Alexander Polynomial  

Camacho, Luis (Departamento de Matematica, Faculdade de Ciencias Exatas e da Engenharia, Universidade da Madeira)
Dionisio, Francisco Miguel (SQIG - Instituto de Telecomunicacoes and Department of Mathematics, Instituto Superior Tecnico, Universidade de Lisboa)
Picken, Roger (Center for Mathematical Analysis, Geometry and Dynamical Systems and Department of Mathematics, Instituto Superior Tecnico, Universidade de Lisboa)
Publication Information
Kyungpook Mathematical Journal / v.56, no.3, 2016 , pp. 1017-1045 More about this Journal
Abstract
Using a combination of calculational and theoretical approaches, we establish results that relate two knot invariants, the Alexander polynomial, and the number of quandle colourings using any finite linear Alexander quandle. Given such a quandle, specified by two coprime integers n and m, the number of colourings of a knot diagram is given by counting the solutions of a matrix equation of the form AX = 0 mod n, where A is the m-dependent colouring matrix. We devised an algorithm to reduce A to echelon form, and applied this to the colouring matrices for all prime knots with up to 10 crossings, finding just three distinct reduced types. For two of these types, both upper triangular, we found general formulae for the number of colourings. This enables us to prove that in some cases the number of such quandle colourings cannot distinguish knots with the same Alexander polynomial, whilst in other cases knots with the same Alexander polynomial can be distinguished by colourings with a specific quandle. When two knots have different Alexander polynomials, and their reduced colouring matrices are upper triangular, we find a specific quandle for which we prove that it distinguishes them by colourings.
Keywords
knot invariant; quandles; Alexander polynomial;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. S. Carter, D. Jelsovsky, S. Kamada and M. Saito, Computations of quandle cocycle invariants of knotted curves and surfaces, Adv. Math., 157(1)(2001), 36-94.   DOI
2 R. Crowell and R. Fox, Introduction to knot theory, Graduate Texts in Mathematics. Springer-Verlag (1977).
3 F. M. Dionisio and P. Lopes, Quandles at finite temperatures II, J. Knot Theory Ramifications, 12(8)(2003), 1041-1092.   DOI
4 N. Gilbert and T. Porter, Knots and surfaces, Oxford Science Publications. Oxford University Press (1994).
5 C. Hayashi, M. Hayashi and K. Oshiro, On linear n-colorings for knots, J. Knot Theory Ramifications 21(14)(2012), 1250123, 13 pp.   DOI
6 A. Inoue, Quandle homomorphisms of knot quandles to Alexander quandles, J. Knot Theory Ramifications, 10(6)(2001), 813-821.   DOI
7 D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra, 23(1)(1982), 37-65.   DOI
8 L. H. Kauffman Knots and Physics, K & E Series on Knots and Everything. World Scientific (1991).
9 L. H. Kauffman, Virtual knot theory, Eur. J. Comb., 20(7)(1996), 663-691.   DOI
10 A. Kawauchi, A Survey of Knot Theory, Birkhauser Basel (1996).
11 S. Nelson, Classi cation of nite Alexander quandles, Topology Proc., 27(1)(2003), 245-258.
12 C. Livingston, Knot Theory, The Carus Mathematical Monographs Number 24, Mathematical Association of America (1993).
13 P. Lopes, Quandles at nite temperatures I, J. Knot Theory Ramifications, 12(2)(2003), 159-186.   DOI
14 S. V. Matveev, Distributive groupoids in knot theory, Mat. Sb. (N.S.), 119(161)(1)(1982), 78-88, 160.
15 M. Newman, Integral matrices, Pure and Applied Mathematics. Elsevier Science (1972).
16 D. Rolfsen, Knots and Links, AMS Chelsea Publishing. American Mathematical Society (2003).
17 J. Carter, A survey of quandle ideas, Kauffman, Louis H. (ed.) et al., Introductory lectures on knot theory. Series on Knots and Everything 46(2012), 22-53.
18 J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc., 30(1928), 275-306.   DOI
19 Y. Bae, Coloring link diagrams by Alexander quandles, J. Knot Theory Ramifications, 21(10)(2012), 1250094, 13 pp.   DOI
20 A. T. Butson and B. M. Stewart, Systems of linear congruences, Can. J. Math., 7(1955), 358-368.   DOI
21 J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford and M. Saito, Quandle cohomology and state-sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc., 355(1999), 3947-3989.