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TWO DIMENSIONAL ARRAYS FOR ALEXANDER

POLYNOMIALS OF TORUS KNOTS

Hyun-Jong Song

Abstract. Given a pair p, q of relative prime positive integers, we have

uniquely determined positive integers x, y, u and v such that vx−uy = 1,
p = x + y and q = u + v. Using this property, we show that∑

1≤i≤x,1≤j≤v

t(i−1)q+(j−1)p −
∑

1≤k≤y,1≤l≤u

t1+(k−1)q+(l−1)p

is the Alexander polynomial ∆p,q(t) of a torus knot t(p, q). Hence the

number Np,q of non-zero terms of ∆p,q(t) is equal to vx + uy = 2vx− 1.

Owing to well known results in knot Floer homology theory, our ex-
panding formula of the Alexander polynomial of a torus knot provides a

method of algorithmically determining the total rank of its knot Floer ho-

mology or equivalently the complexity of its (1,1)-diagram. In particular
we prove (see Corollary 2.8);

Let q be a positive integer> 1 and let k be a positive integer. Then

we have
(1) Nkq+1,q = 2k(q − 1) + 1
(2) Nkq+q−1,q = 2(k + 1)(q − 1) − 1

(3) Nkq+2,q = 1
2
k(q2 − 1) + q

(4) Nkq+q−2,q = 1
2

(k + 1)(q2 − 1) − q

where we further assume q is odd in formula (3) and (4).

Consequently we confirm that the complexities of (1,1)-diagrams of
torus knots of type t(kq + 2, q) and t(kq + q − 2, q) in [5] agree with

Nkq+2,q and Nkq+q−2,q respectively.

1. Introduction

We exhibit a 2-dimensional expanding formula of the Alexander polynomial
∆p,q(t) of a torus knot t(p, q). Intriguing numerical conditions involved in
such expansion naturally reveal the number Np,q of non-zero terms of ∆p,q(t).
Indeed they arise from derivation of a (1,1)-diagram of t(p, q) as illustrated in
Fig.1. For more details see [6].
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Figure 1. a (1,1)-diagram of t(8, 5)

A (1,1)-diagram of a knot K in S3 means a genus one Heegaard diagram of
S3 with a pair of points P,Q representing intersection of K and the associated
Heegaard torus T such that the part of K in each solid torus determined by T
constitutes a trivial arc therein. Moreover the meridian disk of the solid torus
bounding each meridian circle in the Heegaard diagram is chosen to be disjoint
from the trivial arc. For more systematic treatments of a (1,1)-decomposition
of (S3,K), see [3]. For a (1,1)-diagram of (S3,K) the intersection number of
the two meridian circles is said to be its complexity, A (1,1)-diagram is said to
be minimal if it has the minimal complexity in the usual sense. In [3] Hayashi
showed that a minimal (1,1)-diagram is uniquely determined up to isotopic
type of the associated (1,1)-decomposition.

Nowadays knot Floer homology theorists pay much attention to (1,1)-diag-
rams. For computational aspect of knot Floer homology of (1,1)-diagrams,
see [2], [8] or [9]. In particular it is well known that for a torus knot (or
more generally a lens space surgery knot) the total rank of its knot Floer
homology, the number of non-zero terms of its Alexander polynomial and the
complexity of its minimal (1,1)-diagram, are same. See Theorem 1.2 of [7]
and Corollary 3.4.5 of [8]. But for torus knots we can get those numbers
quite easily and systematically from the expanding formula of their Alexander
polynomials. For instance Figure 1 shows a minimal (1,1)-diagram of torus
knot t(8, 5) with complexity 19. Indeed we show that N5,8 = 19 in Example 1.
Matthew Hedden [4] kindly informed me that to his knowledge there was no
such formula available.

Surprisingly in 1966 Carlitz [1] has already suggested a method of computing
Np,q viewing ∆p,q(t) as a generalization of a binary cyclotomic polynomial.
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Indeed ∆p,q(t) is equal to Φpq(t), the pq-th cyclotomic polynomial if p, q are
distinct primes. His approach to Np,q is sightly different from ours. Through
our expanding formula of ∆p,q(t), we prove in Proposition 2.1 the Carlitz’s four
formulas stated without proof in [1]. Finally we show that the complexities of
(1,1)-diagrams of torus knots t(p, q) in [5] agree with Np,q in Corolary 2.8.

2. Proof of the main theorem

Proposition 2.1. Given a pair p, q of relative prime positive integers, we have
uniquely determined positive integers x, y, u and v such that vx − uy = 1,
p = x+ y and q = u+ v.

The proof can be done with the following lemmas:

Lemma 2.2. Let p, q be positive integers. If α0, β0 are integers such that
pα0 + qβ0 = 1, then pα+ qβ = 1 in Z if and only if α = α0 + qk, β = β0 − pk
for some integer k.

Lemma 2.3. Given a pair p, q of relative prime positive integers,
(1) there exist uniquely determined integers α, β such that pα+ qβ = 1 and

0 < α < q.
(2) there exist uniquely determined positive integers x, y, u and v such that

vx− uy = 1, p = x+ y and q = u+ v.

Proof. (1) Let α0, β0 be any integers such that pα0 + qβ0 = 1. Let α be
the unique positive integer such that α0 = qk + α with 0 < α < q, and let
β = β0 + pk. Then we have pα+ qβ = 1. From the first lemma, it follows that
such α, β are uniquely determined.

(2) Let α, β be integers such that pα + qβ = 1 and 0 < α < q. Then
0 < −β < p since q(−β) = pα − 1 < pα − 1 < pq. Let v = α, y = −β, and
x = p− y, u = q − v). Then

p = x+ y, q = u+ v.

It follows from

vx− uy = v(p− y)− (q − v)y = pv + q(−y) = pα+ qβ = 1

that vx − uy = 1. Since pv + q(−y) = 1 is such an expression in (1), the
uniqueness of such expression follows from (1). �

As consequences of Proposition 2.1, we have:

Corollary 2.4. With the notations in proposition 2.1, the following equations
hold;

(1) pv + qx = pq + 1,
(2) pu+ qy = pq − 1,
(3) qx− pu = 1,
(4) pv − qy = 1.
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Put

Ap,q(t) =
∑

1≤i≤x,1≤j≤v

t(i−1)q+(j−1)p −
∑

1≤k≤y,1≤l≤u

t1+(k−1)q+(l−1)p.

Theorem 2.5. Ap,q(t) is equal to (tpq−1)(t−1)
(tp−1)(tq−1) , the Alexander polynomial

∆p,q(t) of a torus knot t(p, q).

Proof. Put

tp+qAp,q(t) =
∑

1≤i≤x,1≤j≤v

tiq+jp − t
∑

1≤k≤y,1≤l≤u

tkq+lp

≡ P1 − tN1

tpAp,q(t) =
∑

1≤i≤x,1≤j≤v

t(i−1)q+jp − t
∑

1≤k≤y,1≤l≤u

t(k−1)q+lp

≡ P2 − tN2

tqAp,q(t) =
∑

1≤i≤x,1≤j≤v

tiq+(j−1)p − t
∑

1≤k≤y,1≤l≤u

tkq+(l−1)p

≡ P3 − tN3

Ap,q(t) =
∑

1≤i≤x,1≤j≤v

t(i−1)q+(j−1)p − t
∑

1≤k≤y,1≤l≤u

t(k−1)q+(l−1)p

≡ P4 − tN4.

Then we have:

(tp − 1)(tq − 1)Ap,q(t) = {(P1 − P2)+(P4 − P3)} − t{(N1 −N2)+(N4 −N3)}
≡ P − tN.

Since

P1 − P2 =
∑

1≤i≤x,1≤j≤v

tiq+jp −
∑

1≤i≤x,1≤j≤v

t(i−1)q+jp

=
∑

1≤j≤v

txq+jp −
∑

1≤j≤v

tjp

and

P4 − P3 =
∑

1≤i≤x,1≤j≤v

t(i−1)q+(j−1)p −
∑

1≤i≤x,1≤j≤v

tiq+(j−1)p

=
∑

1≤j≤v

t(j−1)p −
∑

1≤j≤v

txq+(j−1)p

we have

P = (
∑

1≤j≤v

txq+jp −
∑

1≤j≤v

txq+(j−1)p) + (
∑

1≤j≤v

t(j−1)p −
∑

1≤j≤v

tjp)

= tqx+pv − tqx + 1− tpv.
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Replacing v and x in the right hand side of the above equation by u ad y
respectively, we have

N = tqy+pu − tqy + 1− tpu.
Consequently we have

P − tN = tqx+pv − tqy+pu+1 + (tpu+1 − tqx) + (tqy+1 − tpv)− t+ 1.

By Corollary 2.4, the above equation is equal to (tpq − 1)(t− 1). �

Corollary 2.6. The number Np,q of all non-zero terms of ∆p,q(t) is equal to
vx+ uy = 2vx− 1.

Example 1. N8,5 = 19.

Proof. The desired x, u is uniquely determined by an equation:

5x− 8u = 1.

Hence we have x = 5, y = 3 = u and v = 2; N8,5 = vx+ uy = 19. �

Example 2. N55,21 = 545.

Proof. Applying the Euclidean algorithm to an equation:

21x− 55u = 1

we have
8(x− 2u)− 13(3u− x) = 1.

Hence we get the claim from x = 21, y = 34, u = 8 and v = 13. �

We provide proofs for the Carlitz’s four formulas in [1] by means of our
method.

Theorem 2.7.
(1) N+

kq+1,q = k(q − 1)− 1,

(2) N+
kq+q−1,q = k(q − 1) + q − 1,

(3) N+
kq+2,q = 1

4k(q2 − 1) + 1
2 (q + 1),

(4) N+
kq+q−2,q = 1

4 (k + 1)(q2 − 1)− 1
2 (q − 1),

where we assume q is odd in formula (3) and (4).

One would immediately notice that the Caritz’s original formula (4) has a
typographical error.

Proof. (1) An equation

qx− (kq + q − 1)u = 1

yields solutions u = 1, x = k + 1 and v = q − 1. Hence we have

N+
qk+q−1,q = xv = k(q − 1) + 1.

(2) An equation
qx− (kq + 1)u = 1
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yields solutions u = q − 1, x = k(q − 1) + 1: v = 1 and y = k. Hence we have

N+
qk+q−1,q = xv = (k + 1)(q − 1) = k(q − 1) + q − 1.

(3) Let q = 2u0 + 1. Then an equation

qx− (kq + 2)u = 1

is equivalent to

q(x− 1)− qku− r(u− u0) + (q − 2u0) = 1.

Since the last term of the left hand side of the above equation is equal to 1, we
have

q(x− ku− 1) = 2(u− u0).

Since q must divide u − u0 and |u − u0| < q, it is possible only when u = u0.
And hence x = ku0 + 1 and v = q − u0. Since u0 = q−1

2 , we have

N+
kq+2,q = xv = (ku0 + 1)(q − u0)

= q + qku0 − ku20 − u0

= q + (qk − 1)
q − 1

2
− k (q − 1)2

4

=
1

4
k(q2 − 1) +

1

2
(q + 1).

(4) Let q = 2u0 − 1. Then an equation

qx− (kq + q − 2)u = 1

is equivalent to

q(x+ 1)− (kq + q)u+ 2(u− u0) + (2u0 − q) = 1.

Since the last term of the left hand side of the above equation is equal to 1, we
have

q{x− (k + 1)u+ 1} = 2(u0 − u).

By the argument in proof of (3), we have u = u0, x = (k + 1)u0 − 1 and
v = q − u0. Since u0 = q+1

2 , we have

N+
kq+q−2,q = xv = {(k + 1)u0 − 1}(q − u0)

= {(k + 1)q + 1}u0 − (k + 1)u20 − q

= {(k + 1)q + 1}q + 1

2
− (k + 1)

(q + 1)2

4
− q

=
1

4
(k + 1)(q2 − 1)− 1

2
(q − 1).

�

Since Np,q = 2N+
p,q − 1, from Theorem 2.7 we have:
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Corollary 2.8. Let q be a positive integer > 1. Then for any positive integer
k we have

(1) Nkq+1,q = 2k(q − 1) + 1,
(2) Nkq+q−1,q = 2(k + 1)(q − 1)− 1,
(3) Nkq+2,q = 1

2k(q2 − 1) + q,

(4) Nkq+q−2,q = 1
2 (k + 1)(q2 − 1)− q,

where we further assume q is odd in formula (3) and (4).

In [5] Kim and Kim introduced a (1,1)-diagram D(a, b, c, r) parameterized
by four nonnegative integers a, b, c, and r such that its complexity is denoted
by d = 2a + b + c. For more details see Section 4 of [5]. And they claimed
in Corollary 1 of page 1117 that for all odd q > 1 and k ≥ 1, a torus knot

t(kq+2, q) admits a (1,1)-diagram D( q−1
2 , 1, k(q

2−1)
2 , r), and a torus knot t(kq+

q − 2, q) admits a (1,1)-diagram D( q−1
2 , 1, (k+1)(q2−1)−4q

2 , s).
Thus we have:
the complexcity of D( q−1

2 , 1, k(q
2−1)
2 , r) is equal to

d = 2a+ b+ c = (q − 1) + 1 +
k(q2 − 1)

2

=
1

2
k(q2 − 1) + q

= Nkq+2,q

and
the complexcity of D( q−1

2 , 1, (k+1)(q2−1)−4q
2 , s) is equal to

d = 2a+ b+ c = (q − 1) + 1 +
(k + 1)(q2 − 1)− 4q

2

=
1

2
(k + 1)(q2 − 1)− q

= Nkq+q−2,q.
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