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CLASSIFICATION OF A FAMILY OF RIBBON 2-KNOTS

WITH TRIVIAL ALEXANDER POLYNOMIAL

Taizo Kanenobu and Toshio Sumi

Abstract. We consider a family of ribbon 2-knots with trivial Alexan-

der polynomial. We give nonabelian SL(2,C)-representations from the
groups of these knots, and then calculate the twisted Alexander polyno-

mials associated to these representations, which allows us to classify this
family of knots.

1. Introduction

A ribbon 2-knot is an embedded 2-sphere in S4 obtained by adding r 1-
handles to a trivial 2-link with r + 1 components for some r, which is called a
ribbon 2-knot of r-fusion (cf. [14,15]). Yasuda [16–20] studied an enumeration
of ribbon 2-knot with ribbon crossing number up to 4, where the Alexander
polynomial of each ribbon 2-knot was given but it was not referred about the
classification of the knots so much. Takahashi [12] classified ribbon 2-knots of
1-fusion with small ribbon crossing number using the Alexander polynomial,
representations of the knot group into SL(2,C), and twisted Alexander poly-
nomial. Recently, Kanenobu and Komatsu [2] have enumerated ribbon 2-knots
based on the virtual arc presentation of ribbon 2-knots, and Kanenobu and
Sumi [3] have attempted the classification of these ribbon 2-knots, where they
used the Alexander polynomial, homology of double branched covering space,
representations of the knot group into SL(2,F ), F a finite field, and twisted
Alexander polynomial.

In order to classify ribbon 2-knots the Alexander polynomial is a very useful
invariant. However, it is difficult to distinguish ribbon 2-knots sharing the same
Alexander polynomial. In this paper, we show the effectiveness of the twisted
Alexander polynomial in classifying the ribbon 2-knots, which was first achieved
by Takahashi [12], and then by the authors [3] as mentioned above. The twisted
Alexander polynomial was introduced by Lin [6] for knots in S3 and by Wada
[13] for finitely presentable groups, which is a generalization of the classical
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Alexander polynomial and has many applications. In this paper, we classify a
family of ribbon 2-knots of 1-fusion with trivial Alexander polynomial Kn =
R(1, n,−n − 1, 1), n ∈ Z (see Sect. 2 for the definition of R(1, n,−n − 1, 1)).
First, we show that the number of irreducible representations ρ : π1(S4−Kn)→
SL(2,C) up to conjugate is 2n (Proposition 3.5), where n ≥ 0, classifying the
knots Kn, n ≥ 0. Next, we distinguish Kn and K−n−1, which are mirror images
one another, by Wada’s twisted Alexander polynomials (Proposition 4.1). Our
main theorem is the following.

Theorem 1.1. For the family of ribbon 2-knots Kn, n ∈ Z, of 1-fusion we
have the following:

(i) Kn has trivial Alexander polynomial.
(ii) The mirror image of Kn is isotopic to K−n−1.
(iii) Kn is trivial if and only if n = 0 or −1.
(iv) For m, n ∈ Z−{−1, 0}, Km and Kn are isotopic if and only if m = n.

This paper is organized as follows: In Sect. 2 we define a ribbon 2-knot
Kn of 1-fusion and give some properties. In Sect. 3 we decide irreducible
representations of the group of the knot Kn into SL(2,C) up to conjugate. In
Sect. 4 we calculate the twisted Alexander polynomial of Kn associated to the
representations given in Sect. 3.

2. Ribbon 2-knot of 1-fusion

We define a ribbon 2-knot R(p1, q1, . . . , pn, qn) of 1-fusion as follows. Let
L0 = S1

0 ∪ S1
1 be a trivial link with 2 components in R3. We add a band B to

L0 as shown in Fig. 1, where τp1 , . . . , τpn , σq1 , . . . , σqn are pairs (D3, a ∪ β) of
a 3-ball D3 and a properly embedded arc a and band β as shown in Fig. 2.

S1
0

⌧p1 ⌧pn

�q1 �qn

S1
1

1

Figure 1. Adding a band B to a trivial link L0 = S1
0 ∪ S1

1 .

Regard the band B as the image of an embedding b : I × I → R3, B =
b(I × I), so that S1

i ∩ b(I × I) = b(I × {i}), i = 0, 1, where I is the unit

interval [0, 1]. We take disjoint 2-disks D0 ∪D1 in R3 so that S1
i = ∂Di, i = 0,
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Figure 2. τp and σq.

1. Let K0 = (L0 − b(I × ∂I)) ∪ b(∂I × I). Then we obtain a ribbon 2-knot
R(p1, q1, . . . , pn, qn) of 1-fusion in S4 = R4 ∪ {∞} by the moving pictures:

R(p1, q1, . . . , pn, qn) ∩ (R3 × {t}) =



K0 for |t| < 1;

K0 ∪B = L0 ∪B for |t| = 1;

L0 for 1 < |t| < 2;

D0 ∪D1 for |t| = 2;

∅ for |t| > 2.

Any ribbon 2-knot of 1-fusion is represented in this form.
Note that a ribbon 2-knot is negative-amphicheiral, that is, a ribbon 2-knot

K is ambient isotopic to −K!, which is obtained from K by taking the mirror
image and then reversing the orientation (see [11, Theorem 2.18], [10, Proposi-
tion 4.1]). So, we show that the knot Kn, n > 0, is non-positive-amphicheiral
and non-invertible. If a ribbon 2-knot has a non-reciprocal Alexander poly-
nomial, that is, ∆K(t) 6= ∆K(t−1) up to ±tk, then it is not non-positive-
amphicheiral and is non-invertible (cf. [11, Proposition 3.26]).

Example 2.1. Figure 3 shows the ribbon 2-knot K2 = R(1, 2,−3, 1).

Note that R(p1, q1, . . . , pn, qn) is isotopic to R(−qn,−pn, . . . ,−q1,−p1), which
is the mirror image of R(qn, pn, . . . , q1, p1).

The group of K = R(p1, q1, . . . , pn, qn), G = π1(S4 − K), has a Wirtinger
presentation

(1) 〈 x, y | x−1w−1yw 〉, w = xp1yq1 · · ·xpnyqn ,

where x and y are meridians of S2
0 and S2

1 , respectively.
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|t| < 1 |t| = 1 1 < |t| < 2 |t| = 2

1

Figure 3. The ribbon 2-knot R(1, 2,−3, 1).

The Alexander polynomial of a ribbon 2-knot K, ∆K(t) ∈ Z[t±1], is defined
up to ±tn, which we normalize so that ∆K(1) = 1 and (d/dt)∆K(1) = 0
(cf. [1, 4, 7]). For a ribbon 2-knot of 1-fusion we have the following.

Proposition 2.2. The normalized Alexander polynomial of the ribbon 2-knot
R(p1, q1, . . . , pn, qn) of 1-fusion is

t−q1−q2−···−qn
(
1− tp1 + tp1+q1 − tp1+q1+p2 + · · ·

−tp1+q1+···+pn + tp1+q1+···+pn+qn
)

= tpn+pn−1+···+p1
(
1− t−qn + t−qn−pn − t−qn−pn−qn−1 + · · ·

−t−qn−pn−qn−1−···−q1 + t−qn−pn−qn−1−···−q1−p1
)
.

3. Representation to SL(2, C)

Let G be a finitely presented group. Two representations, namely homo-
morphisms, ρ, ρ′ : G→ SL(2,C) are called conjugate if ρ(g) = Cρ′(g)C−1 for
some C ∈ SL(2,C) and for any g ∈ G. A representation ρ : G → SL(2,C) is
said to be abelian if ρ(G) is an abelian subgroup of SL(2,C). A representation
ρ is called reducible if there exists a proper invariant subspace of C2 under
the action of ρ(G). This is equivalent to saying that ρ can be conjugate to a
representation whose image consists of upper triangular matrices. It is easy to
see that every abelian representation is reducible, but the converse does not
hold. When ρ is not reducible, it is called irreducible.

The following is due to Riley [8, 9].

Proposition 3.1. If two matrices X, Y are conjugate in SL(2,C) and XY 6=
Y X, then there exists a matrix C ∈ SL(2,C) such that

CXC−1 =

(
s 1
0 s−1

)
, CY C−1 =

(
s 0
u s−1

)
,

where s, u ∈ C with s 6= 0 and (s, u) 6= (±1, 0).
Furthermore, if there exists a matrix D ∈ SL(2,C) such that

DXD−1 =

(
s′ 1
0 s′−1

)
, DY D−1 =

(
s′ 0
u′ s′−1

)
,



CLASSIFICATION OF A FAMILY OF RIBBON 2-KNOTS 595

where s′, u′ ∈ C with s′ 6= 0 and (s′, u′) 6= (±1, 0), then (s′, u′) = (s, u) or
(s−1, u).

Let us consider the presentation Eq. (1) of the group G of the ribbon 2-
knot R(p1, q1, . . . , pn, qn) of 1-fusion. Then since x and y are conjugate, by
Proposition 3.1 any nonabelian representation G→ SL(2,C) is conjugate to a
representation ρ : G→ SL(2,C) given by

(2) ρ(x) = X =

(
s 1
0 s−1

)
, ρ(y) = Y =

(
s 0
u s−1

)
for some s, u ∈ C with s 6= 0 and (s, u) 6= (±1, 0); such a representation ρ is
parametrized by the trace s+ s−1 and u. Furthermore, it is easy to prove the
following.

Lemma 3.2. A nonabelian representation ρ in Eq. (2) is reducible if and only
if either u = −(s− s−1)2 or u = 0.

From now on we focus on the family of ribbon 2-knots Kn = R(1, n,−n −
1, 1), n ∈ Z of 1-fusion. Let Gn = π1(S4 −Kn). Then

Gn = 〈 x, y | wnx = ywn 〉, wn = xynx−n−1y.

We define a nonabelian representation

ρ : Gn → SL(2,C)

by the correspondence Eq. (2), where s, u ∈ C with s 6= 0 and (s, u) 6= (±1, 0).
Then, we have the following.

Proposition 3.3. Suppose n > 0. The parameters s and u satisfy:

s = ξkn (k = 1, 2, . . . , 2n, 2n+ 2, 2n+ 3, . . . , 4n+ 1);(3)

u2 +
(
p2 − 4

)
u+ εp+ 2 = 0,(4)

where ξn = exp π
√
−1

2n+1 , p = s+ s−1, and ε = (ξkn)2n+1 = (−1)k.

We use the following lemma in the proof of Proposition 3.3.

Lemma 3.4. For i ∈ Z, we have:

Xi =

(
si fi
0 s−i

)
, Y i =

(
si 0
ufi s−i

)
,

where

fi =


si − s−i
s− s−1 if s 6= ±1;

isi−1 if s = ±1.

Proof. Induction on i. �
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Proof of Proposition 3.3. Let

Wn = XY nX−n−1Y =

(
(Wn)11 (Wn)12
(Wn)21 (Wn)22

)
.

Then using Lemma 3.4, we have:

(Wn)11 = s+ u
(
s+ s−nfn + sn+1f−n−1

)
+ u2fnf−n−1(5)

= s+ u(1− s2)fnfn+1 − u2fnfn+1;

(Wn)12 = 1 + snf−n−1 + us−1f−n−1fn(6)

= −sn+1fn − us−1fnfn+1;

(Wn)21 = u+ us−n−1fn + u2s−1f−n−1fn(7)

= us−nfn+1 − u2s−1fnfn+1;

(Wn)22 = s−1 + us−2fnf−n−1

= s−1 − us−2fnfn+1,

where we use f−k = −fk and skfk+1 − sk+1fk = 1 for k ∈ Z.
Let

Rn = WnX − YWn =

(
(Rn)11 (Rn)12
(Rn)21 (Rn)22

)
.

Then

(Rn)11 = 0;

(Rn)12 = (Wn)11 − (s− s−1)(Wn)12;(8)

(Rn)21 = (s− s−1)(Wn)21 − u(Wn)11;(9)

(Rn)22 = (Wn)21 − u(Wn)12.(10)

From the relation wnx = ywn, it should hold that Rn = WnX − YWn = O.
Using Eqs. (6) and (7), we have (Wn)21 − u(Wn)12 = uf2n+1. Then from
(Rn)22 = 0, Eq. (10) yields either u = 0 or f2n+1 = 0. If u = 0, then by
Eqs. (5) and (6) (Wn)11 = s and (Wn)12 = −sn+1fn. Substituting them into
Eq. (8) we have (Rn)12 = s− (s− s−1)(−sn+1fn) = s2n+1 6= 0, and so u 6= 0.
From f2n+1 = 0 we obtain Eq. (3).

Next, using Eqs. (5) and (6), we have

(Wn)11 − (s− s−1)(Wn)12 = s2n+1 − u(s− s−1)2fnfn+1 − u2fnfn+1.

Then from (Rn)21 = 0, Eq. (9) yields Eq. (4). In fact, if s = ξkn, then s2n+1 = ε
and fnfn+1 = −s/(s+ ε)2 = −1/(s+ s−1 + 2ε). �

For a group G we denote by r(G) the number of irreducible representations
to SL(2,C) up to conjugate. Then, by Lemmas 3.6 and 3.7 below, we obtain
the following.

Proposition 3.5. For n > 0, we have r(Gn) = 4n.
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Lemma 3.6. The nonabelian representations ρ : Gn → SL(2,C) defined as
above are irreducible.

Proof. Assume the representation ρ in Eq. (2) is reducible. Then by Lemma 3.2,
u = 4 − p2 or u = 0. Then Eq. (4) implies εp + 2 = 0, which contradicts
Eq. (3). �

Lemma 3.7. If s = ξkn (k = 1, 2, . . . , 2n, 2n + 2, 2n + 3, . . . , 4n + 1), then the
quadratic equation (4) does not have a double root.

Proof. From Eq. (4) we have

2u = −(p2 − 4)±
√
p4 − 8p2 − 4εp+ 8

= −(p+ 2ε)(p− 2ε)±
√

(p+ 2ε)(p3 − 2εp2 − 4p+ 4ε).

So, we have only to prove p3−2εp2−4p+4ε 6= 0. Suppose p3−2εp2−4p+4ε = 0.
Letting γ(t) = t6−2t5− t4− t2−2t+1, we have p3−2εp2−4p+4ε = s−3γ(εs),
and so γ(εs) = 0. Note that εs is a primitive dth root of unity for some d, which
is a divisor of 4n+ 2. Let Fd(t) be the dth cyclotomic polynomial, which is an
irreducible polynomial with integer coefficients. So, Fd(t) is a factor of γ(t).
Then since degFd(t) ≤ 6 and s 6= ±1, we obtain d ∈ {3, 5, 6, 7, 9, 10, 14, 18}. For
each d, we see that Fd(t) is not a factor of γ(t) (see Table 1), a contradiction. �

Table 1. Cyclotomic polynomials.

d Fd(t)
3 1 + t+ t2

5 1 + t+ t2 + t3 + t4

6 1− t+ t2

7 1 + t+ t2 + t3 + t4 + t5 + t6

9 1 + t3 + t6

10 1− t+ t2 − t3 + t4

14 1− t+ t2 − t3 + t4 − t5 + t6

18 1− t3 + t6

Example 3.8. For G1, we have p = s+ s−1 = 2 cos(kπ/3) = (−1)k−1 (k = 1,
2), and there are 4 irreducible representations ρj : G1 → SL(2,C) up to
conjugate, 1 ≤ j ≤ 4; in Table 2 we list the parameters p, u for each ρj .

Remark 3.9. Takahashi [12] considered K1 = R(1, 1,−2, 1) and R(−2, 1, 1,−2);
both of which have trivial Alexander polynomial. He has distinguished their
knot groups by the representations to SL(2,C). In fact, the knot group of
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Table 2. Parameters for the representations ρj : G1 → SL(2,C).

Representation p u

ρ1 1 3+
√
5

2

ρ2 1 3−
√
5

2

ρ3 −1 3+
√
5

2

ρ4 −1 3−
√
5

2

R(−2, 1, 1,−2) has infinitely many representations ρ as in Eq. (2) for s ∈ C −
{0,±1} and u = u0, where

u0 =
−(1− s2)2(1 + s2)±

√
(1− s2 − 2s3 − s4 + s6)(1− s2 + 2s3 − s4 + s6)

2s2(1 + s2)
.

Note that R(−2, 1, 1,−2) is positive-amphicheiral.

Example 3.10. For G2, we have p = s + s−1 = 2 cos(kπ/5) (k = 1, 2, 3, 4)

= 1+
√
5

2 , −1+
√
5

2 , 1−
√
5

2 , −1−
√
5

2 , and there are 8 irreducible representations
ρj : G2 → SL(2,C) up to conjugate, 1 ≤ j ≤ 8; in Table 3 we list the
parameters p, u for each ρj .

Table 3. Parameters for the representations ρj : G2 → SL(2,C).

Representation p u

ρ1
1+
√
5

2 1

ρ2
1+
√
5

2
3−
√
5

2

ρ3
−1+

√
5

2 1

ρ4
−1+

√
5

2
3+
√
5

2

ρ5
1−
√
5

2 1

ρ6
1−
√
5

2
3+
√
5

2

ρ7
−1−

√
5

2 1

ρ8
−1−

√
5

2
3−
√
5

2
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4. Twisted Alexander polynomial of Kn

Let α : Gn → 〈t〉 ∼= Z be an abelianization defined by α(x) = α(y) = t,
which induces the ring homomorphism α̃ : ZGn → Z[t, t−1]. For an SL(2,C)
representation of Gn ρ : Gn → SL(2,C) the ring homomorphism ρ̃ : ZGn →
M(2,C) is brought out from ρ. For the free group 〈x, y〉 with free basis {x, y}
let φ : 〈x, y〉 → Gn be the canonical homomorphism, which induces the ring

homomorphism φ̃ : Z〈x, y〉 → ZGn. Now, we define a ring homomorphism

Φ = (ρ̃⊗ α̃) ◦ φ̃ as follows.

Φ : Z〈x, y〉 φ̃ // ZGn
ρ̃⊗α̃ // M(2,C[t, t−1])

∂rn
∂y

� //∑ νgg
� //∑ νgρ(g)α(g),

where rn = wnx − ywn, ∂/∂y denotes the Fox derivation, g ∈ Gn, and νg ∈
Z. Let Aρ,y = Φ(∂rn/∂y). Then the twisted Alexander polynomial of Gn
associated to the representation ρ [13] is defined to be a rational function

(11) ∆Gn,ρ(t) =
detAρ,y

det Φ(x− 1)
.

Note that if two representations ρ, ρ′ are conjugate, then ∆Gn,ρ(t) = ∆Gn,ρ′(t).
The remainder of this section will be devoted to the proof of the following

proposition, where the breadth of a Laurent polynomial is the difference between
the highest and lowest degrees.

Proposition 4.1. Suppose n > 0. For the irreducible representation ρ defined
in Sect. 3 the twisted Alexander polynomial of Gn, ∆Gn,ρ(t) in Eq. (11), is a
Laurent polynomial of breadth 2n such that the coefficients of the highest degree
term and lowest degree term are 1 and u/(εp+ 2), respectively.

Since
∂rn
∂y

=
∂wn
∂y
− y ∂wn

∂y
− 1,

we have

α̃ ◦ φ̃
(
∂rn
∂y

)
= (1− t)

(
α̃ ◦ φ̃

(
∂wn
∂y

))
− 1.

For wn = xynx−n−1y we have

∂wn
∂y

= x+ xy + xy2 + · · ·+ xyn−1 + wny
−1.

Thus, we obtain

Aρ,y = Φ

(
∂rn
∂y

)
= (E − tY )

(
tX(E + tY + t2Y 2 + · · ·+ tn−1Y n−1) +WnY

−1)− E.
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On the other hand,

det Φ(x− 1) = det(tX − E)t2 − t(s+ s−1) + 1 = (t− s)(t− s−1).(12)

We can prove the following by induction.

Lemma 4.2.

E + tY + t2Y 2 + · · ·+ tn−1Y n−1 =

(
gn 0

u

s− s−1 (gn − hn) hn

)
,

where

gn =
1− (st)n

1− st , hn =
1− (s−1t)n

1− s−1t .

Put

detAρ,y = ϕ0 + ϕ1u+ ϕ2u
2,

where ϕi ∈ C[t, t−1].
Then,

ϕ0 = t2n+2;

(s2 − 1)2ϕ1 =− t2s−2n−1
(
sn+1tn − sn+3tn − s3n+3tn + s3n+5tn

+2s2n+3 − s4n+5 − s
)
− s−2n−1

(
2s2n+3 − s4n+3 − s3

)
− ts−2n−1

(
−sn+2tn + sn+4tn + s3n+2tn − s3n+4tn

−s2n+2 − s2n+4 − s2n+6 + s4n+2 + s4n+6 − s2n + s4 + 1
)

;

(s2 − 1)2ϕ2 = − ts−2n−1
(
−s2n+2 − s2n+4 + s4n+4 + s2

)
.

Substituting s2n+1 = ε = (−1)k, we obtain:

(s2 − 1)2ϕ1 =− εt2
(
sn+1tn − sn+3tn − εsn+2tn + εsn+4tn + 2εs2 − s3 − s

)
− ε
(
2εs2 − s− s3

)
− εt

(
−sn+2tn + sn+4tn

+ εsn+1tn − εsn+3tn − εs− εs3 − εs5 + 2 + 2s4 − εs−1
)

=− εt2
(
(1− s2 − εs+ εs3)sn+1tn − s(ε− s)2

)
+ εs(ε− s)2

− εt
(
(−s+ s3 + ε− εs2)sn+1tn

−εs−1(s2 + s4 + s6 − 2εs− 2εs5 + 1
)

=− εt2
(
ε(ε− s)(1− s2)sn+1tn − s(ε− s)2

)
+ εs(ε− s)2

− εt
(
(ε− s)(1− s2)sn+1tn − εs−1(ε− s)2(1 + s4)

)
;

(s2 − 1)2ϕ2 = − εt
(
−εs− εs3 + 2s2

)
= st(ε− s)2.

Since s2 − 1 = (s− ε)(s+ ε), we have:

(ε+ s)2ϕ1 =− εt2
(
ε(ε+ s)sn+1tn−s

)
+ εs− εt

(
(ε+ s)sn+1tn − εs−1(1 + s4)

)
=− (ε+ s)sn+1(ε+ t)tn+1 + εst2 + εs+ s−1(1 + s4)t

=− (s−2n−1 + s)sn+1(ε+ t)tn+1 + εst2 + εs+ s−1(1 + s4)t;
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(ε+ s)2ϕ2 =st.

Since (ε+ s)2 = s(s+ s−1 + 2ε), we have:

(s+ s−1 + 2ε)ϕ1 = −(s−n−1 + sn+1)(ε+ t)tn+1 + εt2 + ε+ ((s+ s−1)2 − 2)t;

(s+ s−1 + 2ε)ϕ2 = t.

Putting p = s+ s−1 and ψn(p) = s−n−1 + sn+1 ∈ Z[p], we obtain:

(p+ 2ε)ϕ1 = −ψn(p)(ε+ t)tn+1 + εt2 + ε+ (p2 − 2)t;

(p+ 2ε)ϕ2 = t.

Thus, we have:

(p+ 2ε) detAρ,y

= (p+ 2ε)t2n+2 +
(
−ψn(p)(ε+ t)tn+1 + εt2 + ε+ (p2 − 2)t

)
u+ u2t

= εu+
(
(p2 − 2)u+ u2

)
t+ εut2 − ψn(p)u(ε+ t)tn+1 + (p+ 2ε)t2n+2.

Since u2 + (p2 − 4)u+ εp+ 2 = 0 from Eq. (4), this becomes:

(13)
(p+ 2ε) detAρ,y

= εu+ (2u− εp− 2)t+ εut2 − ψn(p)u(ε+ t)tn+1 + (p+ 2ε)t2n+2.

Lemma 4.3. For the irreducible representation ρ defined in Sect. 3 the twisted
Alexander polynomial of Gn, ∆Gn,ρ(t) in Eq. (11), is a Laurent polynomial.

Proof. Let P (t) be the right-hand side polynomial of Eq. (13). Then by Eq. (12)
the result follows from P (s) = P (s−1) = 0. In fact,

P (s) =εu+ (2u− εp− 2)s+ εus2 − ψn(p)u(ε+ s)sn+1 + (p+ 2ε)s2n+2

=εu+ (2u− εp− 2)s+ εus2 − (εs+ 1)u(ε+ s) + (p+ 2ε)εs

=εu+ (2u)s+ εus2 − u(2s+ ε+ εs2) = 0;

P (s−1) = 0 is similar. �

Remark 4.4. It is known [5] that the twisted Alexander polynomial of a knot
in S3 for any nonabelian representation into SL(2,F ) over a field F is always a
Laurent polynomial. For a reducible representation ρ : πK → SL(2,C) and for
a representation ρ : πK → SL(2,F p) over a prime field F p there are ribbon
2-knots K of 1-fusion whose twisted Alexander polynomial are not Laurent
polynomials (see [3]).

Proof of Proposition 4.1. By Eqs. (12), (13) and Lemma 4.3 we obtain Propo-
sition 4.1. �

Example 4.5. For n = 1, we give explicit forms of the twisted Alexander
polynomials ∆G1,ρ(t). Since p = −ε and ψ1(p) = −1, Eqs. (12) and (13)
become

det Φ(x− 1) = 1 + εt+ t2;
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detAρ,y = u+ ε(2u− 1)t+ 2ut2 + εut3 + t4

= (1 + εt+ t2)(u+ ε(u− 1)t+ t2),

from which we obtain

∆G1,ρ(t) = u+ ε(u− 1)t+ t2

= (εu− t)(ε− t).
For each representation ρj we list the polynomial in Table 4.

Table 4. Twisted Alexander polynomials of G1.

Representation ∆G1,ρ(t)

ρ1
3+
√
5

2 + 1+
√
5

2 t+ t2

ρ2
3−
√
5

2 + 1−
√
5

2 t+ t2

ρ3
3+
√
5

2 − 1+
√
5

2 t+ t2

ρ4
3−
√
5

2 − 1−
√
5

2 t+ t2

Remark 4.6. The twisted Alexander polynomial of R(−2, 1, 1,−2) associated
to the representation ρ given in Remark 3.9 is u0(1 + t2).

Example 4.7. For n = 2, we give explicit forms of the twisted Alexander
polynomials ∆G2,ρ(t) in Table 5.

Proof of Theorem 1.1. Part (i) follows from Proposition 2.2. Since the mirror
image of Kn is isotopic to R(1,−n− 1, n, 1), which is K−n−1; this implies Part
(ii). By Lemma 3.7 (or also Proposition 4.1), the knot groups Gm and Gn are
isomorphic if and only if either m = n or m+ n = −1. This implies Part (iii)
since K0 and K−1 are trivial.

In order to prove Part (iv) we prove Kn and K−n−1 are not isotopic. Suppose
n > 0. By Proposition 4.1 the coefficients of the highest degree term and
lowest degree term of the twisted Alexander polynomials of Kn, ∆Gn,ρ(t), are
1 and u/(εp + 2), respectively. Since K−n−1 is the mirror image of Kn, the
set of the twisted Alexander polynomials of K−n−1 consists of ∆Gn,ρ(t

−1),
and so the coefficients of their highest degree terms are u/(εp + 2), where
p = 2 cos(kπ/(2n+ 1)) and u is a root of Eq. (4). For p = p0 there are double
roots u = u1, u2 for Eq. (4) by Lemma 3.7, and so at least one of u1/(εp0 + 2)
and u2/(εp0 + 2) does not equal to 1. Thus, Kn and K−n−1 have different
twisted Alexander polynomials. �

Remark 4.8. Part (iii) of Theorem 1.1, the non-triviality of Kn (n 6= 0, −1),
also follows from [7].
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Table 5. Twisted Alexander polynomials of G2.

Representation ∆G2,ρ(t)

ρ1
3+
√
5

2 + 1+
√
5

2 t3 + t4

ρ2 1 + −1+
√
5

2 t+ t2 + 1+
√
5

2 t3 + t4

ρ3
3−
√
5

2 + −1+
√
5

2 t3 + t4

ρ4 1 + 1+
√
5

2 t+ t2 + −1+
√
5

2 t3 + t4

ρ5
3−
√
5

2 + 1−
√
5

2 t3 + t4

ρ6 1 + −1−
√
5

2 t+ t2 + 1−
√
5

2 t3 + t4

ρ7
3+
√
5

2 + −1−
√
5

2 t3 + t4

ρ8 1 + 1−
√
5

2 t+ t2 + −1−
√
5

2 t3 + t4
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