1 |
I. Frenkel and M. Khovanov, Canonical bases in tensor products and graphical calculus for (sl2), Duke Math. J. 87 (1997), no. 3, 409-480.
DOI
|
2 |
W. Fulton and J. Harris, Representation Theory, Graduate Texts in Mathematics, 129, Springer-Verlag, New York-Heidelberg-Berlin, 1991.
|
3 |
V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1-25.
DOI
|
4 |
V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987), no. 2, 335-388.
DOI
|
5 |
M.-J. Jeong and C.-Y. Park, Lens knots, periodic links and Vassiliev invariants, J. Knot Theory Ramifications 13 (2004), no. 8, 1041-1056.
DOI
ScienceOn
|
6 |
C. Kassel, M. Rosso, and V. Turaev, Quantum Groups and Knot Invariants, Panoramas et Syntheses, 5, Societe Mathematique de France, 1997.
|
7 |
M. Khovanov, sl(3) link homology, Algebr. Geom. Topol. 4 (2004), 1045-1081.
DOI
|
8 |
M. Khovanov, Categorifications of the colored Jones polynomial, J. Knot Theory Ramifications 14 (2005), no. 1, 111-130.
DOI
ScienceOn
|
9 |
M. Khovanov, private communication.
|
10 |
M. Khovanov and L. Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008), no. 1, 1-91.
DOI
|
11 |
D. Kim, Graphical Calculus on Representations of Quantum Lie Algebras, Thesis, UC-Davis, 2003, arXiv:math.QA/0310143.
|
12 |
D. Kim and J. Lee, The quantum sl(3) invariants of cubic bipartite planar graphs, J. Knot Theory Ramifications 17 (2008), no. 3, 361-375.
DOI
ScienceOn
|
13 |
C. Adams, The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, New York, W. H. Freeman, 1994.
|
14 |
C. Blanchet, N. Habegger, G. Masbaum, and P. Vogel, Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995), no. 4, 883-927.
DOI
ScienceOn
|
15 |
S. Cautis and J. Kamnitzer, Knot homology via derived categories of coherent sheaves I. The SL(2) case, Duke Math. J. 142 (2008), no. 3, 511-588.
DOI
|
16 |
N. Chbili, The quantum SU(3) invariant of links and Murasugi's congruence, Topology Appl. 122 (2002), no. 3, 479-485.
|
17 |
J. Przytycki and A. Sikora, On skein algebras and (C)-character varieties, Topology 39 (2000), no. 1, 115-148.
DOI
ScienceOn
|
18 |
N. Chbili, Quantum invariants and finite group actions on three-manifolds, Topology Appl. 136 (2004), no. 1-3, 219-231.
DOI
ScienceOn
|
19 |
Y. Yokota, The Kauffman polynomial of periodic knots, Topology 32 (1993), no. 2, 309-324.
DOI
ScienceOn
|
20 |
Y. Yokota, Skein and quantum SU(N) invariants of 3-manifolds, Math. Ann. 307 (1997), no. 1, 109-138.
DOI
|
21 |
N. Yu. Reshetikhin and V. G. Turaev, Ribbob graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), no. 1, 1-26.
DOI
|
22 |
N. Yu. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547-597.
DOI
|
23 |
T. Van Zandt, PSTricks: PostScript macros for generic , Available at ftp://ftp.princeton.edu/pub/tvz/.
|
24 |
A. Sikora and B. Westbury, Confluence theory for graphs, Algebr. Geom. Topol. 7 (2007), 439-478.
DOI
|
25 |
P. Traczyk, A criterion for knots of period 3, Topology Appl. 36 (1990), no. 3, 275-281.
DOI
ScienceOn
|
26 |
V. G. Turaev, The Conway and Kauffman modules of a solid torusa, (translation) J. Soviet Math. 52 (1990), no. 1, 2799-2805.
DOI
|
27 |
M. Vybornov, Solutions of the Yang-Baxter equation and quantum sl(2), J. Knot Theory Ramifications 8 (1999), no. 7, 953-961.
DOI
|
28 |
H. Wenzl, On sequences of projections, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no. 1, 5-9.
|
29 |
B. Westbury, Invariant tensors for the spin representation of so(7), Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 1, 217-240.
|
30 |
E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351-399.
DOI
|
31 |
Y. Yokota, The skein polynomial of periodic knots, Math. Ann. 291 (1991), no. 2, 281-291.
DOI
|
32 |
Y. Yokota, The Jones polynomial of periodic knots, Proc. Amer. Math. Soc. 113 (1991), no. 3, 889-894.
DOI
ScienceOn
|
33 |
R. Kirby and P. Melvin, The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl(2), Invent. Math. 105 (1991), no. 3, 473-545.
DOI
|
34 |
G. Kuperberg, Spiders for rank 2 Lie algebras, Comm. Math. Phys. 180 (1996), no. 1, 109-151.
DOI
|
35 |
K. Murasugi, On periodic knots, Comment. Math. Helv. 46 (1971), 162-174.
DOI
|
36 |
T. Le, Integrality and symmetry of quantum link invariants, Duke Math. J. 102 (2000), no. 2, 273-306.
DOI
|
37 |
W. Lickorish, Distinct 3-manifolds with all SU(2)q invariants the same, Proc. Amer. Math. Soc. 117 (1993), no. 1, 285-292.
|
38 |
S. Morrison, A Diagrammatic Category for the Representation Theory of (), UC Berkeley Ph.D. thesis, arXiv:0704.1503.
|
39 |
K. Murasugi, Jones polynomials of periodic links, Pacific J. Math. 131 (1988), no. 2, 319-329.
DOI
|
40 |
H. Murakami, Asymptotic Behaviors of the colored Jones polynomials of a torus knot, Internat. J. Math. 15 (2004), no. 6, 547-555.
DOI
ScienceOn
|
41 |
H.Murakami, T. Ohtsuki, and S. Yamada, Homfly polynomial via an invariant of colored plane graphs, Enseign. Math. (2) 44 (1998), no. 3-4, 325-360.
|
42 |
T. Ohtsuki and S. Yamada, Quantum SU(3) invariant of 3-manifolds via linear skein theory, J. Knot Theory Ramifications 6 (1997), no. 3, 373-404.
DOI
ScienceOn
|
43 |
J. H. Przytycki, On Murasugi's and Traczyk's criteria for periodic links, Math. Ann. 283 (1989), no. 3, 465-478.
DOI
|
44 |
J. Przytycki and A. Sikora, -quantum invariants for periodic links, Diagrammatic morphisms and applications (San Francisco, CA, 2000), 199-205, Contemp. Math., 318, Amer. Math. Soc., Providence, RI, 2003.
|
45 |
Q. Chen and T. Le, Quantum invariants of periodic links and periodic 3-manifolds, Fund. Math. 184 (2004), 55-71.
DOI
|