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ALEXANDER POLYNOMIAL FOR LINK CROSSINGS
YouN W. LEE

ABSTRACT. We define a crossing of a link without referring to a
specific projection of the link and describe a construction of a non-
normalized Alexander polynomial associated to collections of such
crossings of oriented links under an equivalence relation, called ho-
mology relation. The polynomial is computed from a special Seifert
surface of the link. We prove that the polynomial is well-defined for
the homology equivalence classes, investigate its relationship with the
combinatorially defined Alexander polynomials and study some of its
properties.

1. Link projections (or diagrams) contain crossings as double points
of projection maps. Under the Reidemeister moves, crossings can be
created or eliminated and their relative positions can be altered. It is
possible to define a crossing so that it remains unaffected up to an equiv-
alence relation by the Reidemeister moves. The definition we give here
is a generalization of conventional crossings. Assume that all links are
oriented.

Let B = D' x D! be the subset of the z — y plane in Figure 1, where
D! =[~1,1]. Orient B = (8D! x D')U (D" x &D") as in the figure. Let
W = D! x {0}, and orient W in the positive direction of the z axis.
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DEFINITION 1. Given a link L, a crossing ¢ of L is defined to be :
embedding ¢ : B — R? such that ¢(B)"L = (8D 'x D'}y and ¢ | dD'x 1
preserves the orientation. Two crossings ¢ and ¢ of L are equivalent
there exists a diffeomorphism f of (R)® such that ¢ = fc and f(L) = 1
preserving the orientation of L. Given a crossing ¢, we call ¢(B) the ban
of the crossing.

In Figure 1, an example of a crossing of the trivial knot is given. A
conventional crossing in a link projection is naturally a crossing under
Definition 1 as in Figure 2. Conversely, a crossing in the definition is
easily seen to be equivalent to a conventional crossing in a projection
of the link, where it can be positive or negative. So a sign can not be
assigned to a crossing. Furthermore, the change of a crossing is not
defined for crossings under the definition although splicing at a crossing
is. Given a crossing c of link L, define Lo(c), the link obtained by splicing
L at ¢, by Lo(c) = (L — ¢(B)) U (D' x 6DY).

Band
(W) ———>
Negative Positive
Figure 2

DEFINITION 2. A collection of crossings of a link is defined to be a
finite set of disjoint crossings of the link. Two collections are equivalent
if there exists a diffeomorphism of R? carrying one collection onto the
other such that each corresponding pair of crossings is equivalent under
the diffeomorphism.

To avoid confusion, we make the following definition of a Seifert surface
of a link.

DerFINITION 3. A Seifert surface of a link L is defined to be a con-
nected, orientable 2-surface F in R? such that 8F = L and F can be
oriented compatibly with L.

236



Alexander polynomial for link crossings

A canonical Seifert surface of any link projection is a Seifert surface
in the sense of the definition if it is connected. The shaded surface F' in
Figure 3 is not a Seifert surface of the 2 component link L although F is
orientable.

Figure 3

Let C be a collection of crossings of a link L. Then it is easy to see
that there exists a Seifert surface F' of L that contains the bands of the
crossing in C as a submanifold [1]. We call F' a Seifert surface of C. If cis
a crossing and F a Seifert surface of ¢, then c,(w) € Hy(F,0F; Z), where
w is the canonical generator of H;(W,0W; Z) = Z corresponding to the
orientation of W in Figure 1. We say that two crossings are homologous
if they determine the same element in H,(F,0F; Z) for some Seifert
surface F' of the two crossings. Given collections C and D of crossings,
we say that they are homologous if there exists a Seifert surface F of
C and D, and a one-to-one correspondence between C' and D such that
corresponding crossings are homologous in H,(F,0F; Z).

DEFINITION 4. The equivalence relation in Definition 2 and the above
homologous relation generate an equivalence relation on the set of col-
lections of crossings of a link. We say that two collections are homology
equivalent if they are equivalent under this extended equivalence. It may
be possible that two collections are homology equivalent without being
homologous.

The paper should be regarded as a study of non-normalized Alexander
polynomial of links computed from Seifert surfaces. A problem with this
old approach is that the polynomial is only well-defined up to a factor
of +(a power of t). We show (Theorem 1 of Section 3) that the non-
normalized polynomials constructed from Seifert surfaces in Section 2 are
well-defined for homology equivalence classes of collections of crossings.
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For a collection C of a link L, we denote this polynomial by A(C) and
call it the Alexander polynomial for the collection.

Given a link L, let AL be the Alexander polynomial of L defined
combinatorially using the skein relation, AL, — AL_ + (t2 —t~%)ALy =
0.

We show (Theorem 2 of Section 3) that A(C) = (—1)|C|tﬂ’2:Igl ALy(C),
where k is the number of components in L, |C| the number of crossings in
C and Ly(C) the link obtained by splicing L at the crossings in C . The
identity implies that ZLO(C) is an invariant of the homology equivalence
class of C, and it answers partially the question about what properties
of crossings imply that the Alexander polynomials of the spliced links
at distinct crossings are the same. In Section 5, we give an example of
two homology equivalent collections C and D of crossings in a link, thus
ALy(C) = ALy(D), but Ly(C) is not equivalent to Ly(D) as links.

If C = @, we denote A\(C) by AL and call it the signed Alexan-
der polynomial of L. Under this notation the above relation becomes
AL = t*T AL. This raises the question whether or not there exist links
with the same Alexander polynomial but with different signed Alexander
polynomial. We answer the question positively in Remark 3 of Section
3.3.

The skein relation of the Alexander polynomial for a single crossing
is generalized (Theorem 4 of Section 4) to that of the signed Alexander
polynomial for a collection of crossings: Given a collection C of crossings
in a link projection L, let L'(C) be the link obtained from L by changing
all the crossings in C' and €(C) the product of the signs of the crossings
in C. Then

AL'C)= Y &(S)1-1)IN(S),
SeP(C)

where P(C) is the power set of C.

In Section 5, for two knots 10,53 and 1094 [3] we compute the Alexander
and other polynomials derived from the construction given in Section 3.
In Section 6, we study how the Alexander polynomial changes when
twists are introduced to the band of a crossing. Using a result of [1], we
apply this to show that given any crossing of a knot, a proper number of
twists on the band always causes the index of the knot to change if the
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crossing with the additional twists is changed. The second application is
that Alexander polynomial can be used as an invariant for the equivalence
classes of arcs (or tunnels) of a link if it is regarded as an element of a
quotient ring of Z[t,¢!].

The collection of homology equivalence classes of crossings of a link
is an invariant of the link and can be useful in the study of links. The
collection could be quite small if we ignore knotted crossings like the one
given for the trivial knot in Figure 1, and the Alexander polynomials of
the crossings in the collection may be used to distinguish different links.
We will take up this in another paper. Finally, the author would like to
thank the referee of this paper for carefully checking the computations
and finding numerous mistakes.

2. Let C be a collection of crossings of a link L and F a Seifert
surface of C. Choose an orientation of F’ and a positive normal direction
of F in R3. Let @ = (a1,a,,--- ,a,) be an ordered basis for H;(F;Z).
Then there exists a basis a* = (af,a},--+ ,a’) of Hi(S® — F;Z) dual
to o under the linking pairing. Let h, : H(F;Z) — Hy(S® — F;Z)
be the homomorphism induced by h, where h is an embedding obtained
by pushing F into S® — F in the positive normal direction of F. Let
M, = (my;) be the n x n matrix representing h, with respect to the
basis a (and a*). Then m;; is equal to the linking number of h(v) with
u, where u and v are the i* and j®* elements of a, respectively. M, is
a Seifert matrix of L (3]. Let V, = tMT — M,, where M denotes the
transpose of M,. If L is a knot, then det(V},) # 0.

Now consider the unimodular bilinear pairing, H,(F,0F; Z)QH\(F;Z)
— Z, defined by = ® y = u(y), where u € H'(F;Z) is the Poincare dual
of z with respect to the orientation of F. Let @ = (@,,a,,- -+ ,@,) be the
basis of H;(F,0F; Z) dual to o under this pairing.

For any z € Hy(F,0F; Z), let X,(x) be the row coordinate vector of
z with respect to @ so that z = X, (z)a’. The i* coordinate of X,(z) is
equal to the intersection number of z with the i** element of c.

Given a crossing c in a collection C, let X, (c) denote X,(c.(w)). To
save notation we use ¢ for X,(c) if there is no danger of confusion. Finally,
for any n-dimensional vectors X, Xy, --- , X, and an n x n matrix V, let
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X,
V(XI)X%'",XT) = 0 );.1
xr ... Xt v
DEFINITION 5. For a collection C = (¢, ¢p,--- ,¢,) and a Seifert sur-

face F of C, define

MC) =t 9det(Vy(c1, 00, - , ),
where g is the genus of F. If V, is non-singular, then for any pair (c, d),
define {c,d) = X,(c)V;!X,(d)T. The matrix V! has been used in [4] for
the study of non-singular Seifert matrices.

REMARK 1. Both det(V,( )) and the pairing < , > do not depend on
the choice of an orientation of F' and a basis for H,(F,0F; Z): First,
the reverse of orientation changes X,(c) to —X,(c). So the quantities
do not change. Secondly, if 8 is another basis for H,(F,0F; Z), then
there exists a unimodular matrix A such that § = aA, where o and 3 are
regarded as row vectors. This implies that My = ATM,A, V; = ATV, A,
and Xj(c) = X,(c)A. With respect to S,

MC) = t79 det(Va(Xp(cr), -+ , Xp(cr)))
= 179 det(ATVoA(Xa(er)A, - -+ , Xa(er)A))
=t 9det(I ® AT)det(Vy(ci,c, -+ ,¢)) det(I ® A)
=t9det(Vy(cry 2y 5 6r))-

Asfor < ,>, Xp(c)V; ' Xp(d)"
=X,(c)AATV1(AT) 1 AT X, (d)T
=Xa(Q)V; ' Xa(d)"

REMARK 2. In the definition of A(C), the order of crossings in V,(c;,
C2, ..., Cr) OF a replacement of a crossing with one that has the opposite
orientation does not matter. We show later (Theorem 5 of Section 4)
that A(C) can be described in terms of < , > when V, is non-singular.

It is curious to note that < ¢, d > is not an invariant of a pair. If c is
a crossing of a knot, then < ¢ , ¢ > (—1) is shown to be an invariant of

240



Alexander polynomial for link crossings

the homology equivalence class of ¢ in [1]. This rational number valued
invariant of a crossing completely determines the change in the index of
the knot when the crossing is changed. The construction of the Alexander
polynomial for collections of crossings of links grew out of that of the
rational invariant of crossings of knots [1]. But the definition of the
rational invariant does not generalize to crossings of links since the matrix
V, may be singular for links.

3. We now show that the construction in Section 2 gives a well-defined
polynomial.

THEOREM 1. The function A is well-defined for homology equivalence
classes of collections of crossings of links.

Proof. We need to show that ) is invariant under a change of orien-
tation and positive normal direction of a chosen Seifert surface, under a
change of basis for the first homology group of the Seifert surface, under
a different choice of Seifert surfaces, and under the homology equiva-
lence. O

In Remark 1, we observed that A is invariant under a change of ori-
entation of a Seifert surface and a change of basis of the first homology
group of the Seifert surface.

3.1. We next consider a change of positive normal direction of a Seifert
surface. The reverse of a positive normal direction changes M, to M7.
With the new normal direction,

AMC) = t79 det((tM, — MT)(cy, c2, -y 1))
= t79 det(((tMa — MT)(c1, 2y -y ¢r))T)
=t~ det((tMZ — M., )(c1, 2, o) Cr))-
Therefore, A is invariant under a change of positive normal direction.

3.2. For this part of the proof we assume that the collection C has a
single crossing c. Let F' and F” be Seifert surfaces of the crossing c. We
first show that after an isotopy there exists a cobordism between F’ and
F’ away from c(B). There are two cases to consider (see Figure 4):

Case 1. Splicing L at ¢ reduces the number of components by one.
Case 2. Splicing L at c increases the number of components by one.
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- -

W c(B)’, %&

Case 1 Case 2
Figure 4

Let G = Closure(F — ¢(B)) and G' = Closure(F' — ¢(B)). In Case
1, let K = L, and in Case 2, K = G = 8G'. Here we only verify the
existence of the desired cobordism for Case 2. A similar argument works
for Case 1 if G and G’ are replaced with F’ and F”, respectively. Observe
that it suffices to show that there exists an isotopy of R® that keeps the
points of K Uc¢(B) fixed and put G in general position with G’ such that
G U G’ bounds a 3-manifold in R®.

The orientation of L induces an orientation of K, and the surfaces,
G and G', admit orientations compatible with that of K. Let K, be a
component of K. Then G and G’ are oriented cobordisms between Ko and
the rest of the components of K which can be regarded as an element of
Hy(S3— Ko; Z). This implies that if N is a thin solid torus neighborhood
of Ko, then AN NG and ON N G’ are two isotopic circles in ON. Using
the fact that K intersects c(B) in no more than one arc, find an isotopy
of R3 that fixes the points of K U ¢(B) and puts G in general position
with G’ such that G N G’ copsists of K and circles embedded in the
interior of G and G’'. After the isotopy, G and G’ are cobordant in a
general sense, i.e., there exists a compact 3-manifold H in R? such that
O8H=(HNG)U(HNG) and (HNG)N(HNG') =GNG". Since we
can choose H such that HN¢(B) ¢ GNG', H is a cobordism between
F and F" relative to ¢(B).

By the Morse function theory [2], F' is obtained from F by attaching,
away from ¢(B), 0, 1, 2 and 3-dimensional handles, and then taking a
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proper subset of the boundary. Without loss of generality, assume that
the handles are attached in the order of dimension. By working with
each component of H, eliminate all 0-handles with an equal number of
1-handles, and similarly, eliminate all 3-handles regarding them as com-
plementary 0-handles. Therefore, we may assume that H has a handle
decomposition consisted of a sequence of 1 and 2-handles. Any surface,
obtained as the result of successive handle attachings in this sequence, is
connected since F' and F” are. Furthermore, we may assume that each
1-handle is attached on one side of the surface. Therefore, to show A is
invariant under a different choice of Seifert surface, it suffices to verify
the assertion, assuming that F and F” are connected and F’ is obtained
from F by attaching a 1-handle on one side of F since a 2-handle is
complementary to a 1-handle.

Suppose that F' is obtained from F' by attaching a 1-handle H as in
Figure 5, where H =2 D' x D?, HNF = 8D' x D?> C F — ¢(B) and
HNF' = D'x8D%. Let a and b be the elements of H,(F’; Z) represented
by the oriented circles as in the figure.

Figure 5
Let o be a basis of H;(F;Z). Then 8 = (a,b) U a is a basis for
H,(F';Z). If the positive normal directions of F and F' are chosen con-
sistently as in the figure, then

0 -1 0 0 1 0
Mg=10 z =z and Vg=| —t = =z |, where0 denotes
0 = M, 0 z V,

a zero row or column vector of a proper dimension, and z denotes a row
or column vector of a proper dimension with unspecified entries.
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Since the coordinates of cin Hy(F’, OF’; Z) with respect to 3 is Xs(c) =
(0,z, X,(c)), if A(c) is computed from F” and (3, then A(c) = t~(9+1) det
(VB((0, z, Xo(c)))) = t79 det(V,(X,(c))). Therefore, ) is invariant.

3.3 Suppose that crossing c is equivalent to crossing d through a dif-
feomorphism f of R3. Let F be a Seifert surface of ¢ and a a basis of
H{(F;2Z). Then F' = f(F) is a Seifert surface of d and 3 = f,(a) is a
basis of H;(F";Z). Choose also orientations and positive normal direc-
tions of F' and F’ such that f preserves them. Since both data give the
identical A-value for ¢ and d, A is invariant. Finally, if two collections are
homologous, they clearly have the same A-value by definition. This com-
pletes the proof of Theorem 1 when the collection has a single crossing.
To begin the proof of general case, we first make the following definition.

DEFINITION 6. For a link L, define the signed Alexander polynomial
of L by AL = \(@) = t9det(tMT — M), where M is a Seifert matrix
of L associated to a Seifert surface of genus g. Here we consider the
determinant of an empty matrix to be 1.

REMARK 3. It follows from the proof of Theorem 1 that AL is an
invariant of link L. We show (Theorem 2) that if L has k components,
then ¢t~*~1/2AL = AL, the Alexander polynomial of L defined combi-
natorially using the skein relation.

This implies that if two links with the same number of components
have the same Alexander polynomial, then they must have the same
signed Alexander polynomial. The assertion is no longer true if we con-
sider links with different number of components. Two links Liand Ly
are given in Figure 6. Link L; has 2 components and L, 4 components.
They have the same Alexander polynomial ¢% — 3¢t~% + 3t? — t? but
AL =t'-3+3t—tand

ALy =1-3t+ 382 — &3,
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(N ri\—f@m

(C';_J

Figure 6

3.4 Here we study the effect of crossing changes on AL and A(C),
from which the proof of the general case of the theorem follows. We
first make it clear what it means by changing a collection of crossings.
Given any collection C of crossings of a link L, there exists a projection
of L such that each crossing in the collection is equivalent to one of
the two standard forms in Figure 2. To change the collection C, put
the crossings in C into standard forms in a projection of L and then
change the crossings. This operation is not well-defined since the new
link obtained by changing the collection depends on the standard forms
which the crossings are put into. In the rest of this section assume that
all crossings are in standard forms in a link projection.

DEFINITION 7. For a crossing c, define the sign € of ¢ by €(c) =1 if
c is a positive crossing, and e(c) = —1 otherwise. For a collection C of
crossings, let £(C) be the product of signs of crossings in C.

Given a crossing c of link L, denote by L'(c) the new link obtained
by changing ¢, and ¢ the crossing in L'(c) corresponding to c. Note
that ¢ and ¢ have the opposite signs. If C is a collection of cross-
ings, then L'(C) denotes the link obtained by changing every cross-
ing in C. For a collection, (¢i,¢2,--+,¢,d1,da, - ,ds) of crossings,
let. (CI,C2) G d{h ,2) o ,d;) or (cla C2y° 4 Cry L,(dla d21 ot 1ds)) be the
collection {cy,¢s,- -+ ,¢) in the link L'(dy, ds, - - - , ds).

LEMMA 1. Under the above notation, for any collection (¢, ¢z, -+ , ¢, C)
of crossings of a link L, we have:

(1) AL'(c) = AL +e(c)(1 — t)A(c).

(2) /\(cl, Coy" - ,C,.,C’) = /\(clcha Gy C).

245



Youn W. Lee

(3) Alery o, -+ e d) = Aler, €2, -+, &) He(e)(1—=t) (e, €2, -+ - 4 Cry ©).

(4) ALyg(c) = —tA(c) if Ly has one more component than L, and
ALy(c) = —X(c) if Ly has one less component than L.

Proof of Lemma 1. Let F be a canonical Seifert surface of L as in
Figure 7 that is also a Seifert surface of c. Let F’ be the surface obtained
from F' by attaching two 1-handles (or bands) to F. Then F” is a Seifert
surface of the crossing ¢ of L'. Choose positive normal directions and
orientations of F and F’ as in the figure. Let a and b be the elements
of H,(F'; Z) represented by the oriented circles as in Figure 7. Then for
any basis o of Hi(F;Z), f = (a,b) U a is a basis for H;(F';Z). Put
e =¢€(c). O

L'

Figure 7

The Seifert matrix associated to F’ and (3 is

0 -1 X 0 1 -X
Mg=|0 & 0 | and V3= | —t e(t—1) 0 |,
0 0 M, tx 0 Vv
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where X = X,(c) is the coordinate of c,(w) with respect to @, z = X7,
and V = tMT — M,.

AL'(c) = 79+ det(Vp)
=t~ (tdet(V) — e(t — 1)t det(V(X)))
=t"9det(V) + £(1 — t)t ?det(V(X)) = AL + e(c)(1 — t)A(c).
This completes the proof of (1).

To prove (2), observe that Xs(c) = (0, —1,0) and Xz(c;) = (0,0, Xa(c:)).
By definition,

Aer, 0,000y 6, )
= t~*D det(V3((0, —1,0), (0,0, X, (c1)), (0,0, Xa(c3)), - - , (0,0, Xa(cy)))-

Successive expansions of the above determinant in proper rows and columns
show that the expression is equal to

¢ det(V(X, Xa(cl), Xa(CQ)’ e 7Xa(cr))'
Therefore, A(c1, ¢, ,¢r, ) = AMey, €2, -+, Gy €).
Similarly,
RICHRIEN S
= t—(g+l) det(‘/ﬁ((oa 01 Xa(Cl)), (07 0’ XOI(C2))’ Tt (O, O, Xa(cr))))
=t~ det(V(Xa(c), Xa(c2), -+ 5 Xalcr)))
— 7+ g(t — Dt det(V(X, Xa(c1), Xalea), -+, Xaler)))
= XMen, ¢,y ¢) He(c)(1 —t)A(er, ¢, -, 6y 0).
This proves (3).

For the last assertion of the lemma, let Fy be the Seifert surface of
Ly(c) obtained from surface F” in Figure 7 by deleting the band of ¢.
Then Fjis obtained from F by attaching a single band. If the band is
attached to the same component of L, then Ly has one more component

than L. This does not affect the genus of the Seifert surface. Therefore,
Fyand F have the same genus. Since (a,a) is a basis for Hy(Fy; Z),

ALy = t™9det [ t(;: _‘5( ] = —tt~9det(V (X)) = —tA(c). If the band is
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attached to two distinct components of L, then L, has one less component
than L and the genus of Fy is one larger than that of F. So ALy =

t=971det t?c —‘5( } = —t9det(V(X)) = —A(c). This completes the

proof of Lemma 1.

Back to the proof of Theorem 1. Given a collection C of (r + 1) cross-
ings, the identity (3) of Lemma 1 expresses A(C) in terms of A—values
of collections containing r crossings. Therefore, A is well-defined for col-
lections with two crossings since it was proven in the first part that A
is well-defined for collections with one crossing. By induction, it is well-
defined for arbitrary collections. This completes the proof of Theorem 1.
O

THEOREM 2. For any link L, AL = t~®~D/2AL_ where k is the num-
ber of components of L.

Proof. Let L,, L_ and Lg be the usual three link projections that
differ only at the neighborhood of a crossing ¢. Without loss of gener-
ality, assume that c is a negative crossing, and apply (1) of Lemma 1 to
get AL, — A L_+ (1—t)A(c) = 0. Multiply t~¢-1/2 to the identity. If
Ly has one more component than L, then from (4) of Lemma 1,

t~C-VRAL, —t~C-V2AL_ 4 (#Y2 - Y2 2ALy = 0.

Similarly, if Ly has one less component than L, then

tEDRAL, DAL 4 (#Y2 - 72 k-D2A L, = 0.

Therefore, t~*%~V/2A [, satisfies the defining skein relation for AL, which
implies that the two polynomials are the same. O

REMARK 4. The proof of the above theorem shows that if we use a
Seifert matrix M to define the (normalized) Alexander polynomial, then
we must use det(tMT — M) rather than det(M — tM7T). Otherwise, the
polynomial does not satisfy the skein relation after normalization.

THEOREM 3. For any collection C of crossings of L,
AC) = (=1L ALy(C),
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where k is the number of components in L and |C| the number of crossings

in C.

Proof. We induct on the number of crossings in C. If C is empty,
the assertion is that of Theorem 2. Suppose that the theorem holds
for any collection with 7 or less crossings. Let C = (¢, ¢2,+-+ , ¢, ©)
and D = (¢, ¢ -+ ,¢). Then by (3) of Lemma 1,

e(c)(1 = t)A(C) = A(D; ) — M D)
By the induction hypothesis, Lemma 1 and Theorem 2, if £ is the
number of components in Ly(D), then

1) 5 AL (€))o(D)

1)t 7 A(L(¢))o(D)

k—r—¢

(-
(-

(=1t F [ALo(D) + e(e)(1 — )A(c; Lo(D))]
(~1)78F [¢F ALo(D) + e(e)(1 — t)(=t T )AL(C))]

A(D; )

k—1-n k—r-2

F ALy(D) + (~1)™e(e)(1 — £)(£*F*)ALy(C)

(-1)"
On the other hand,

k—1-r

AD) = (—1y ¥ ALy(D)

Therefore,
et ™ 1~ O
AC) = (1) AL(C) = (—1) 75 AL(C)
4. We derive other identities involving A.
LEMMA 2. Let (ci,co,--- ,¢rydy,da, -+ ,ds) be a collection of cross-

ings of link L. Then

A(Cl,c%”' )c’radllad,27 )d.,s)

= Y 1=t N\e, e 6, 8).
SeP({dy,d2,+ ,ds})
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Proof. Use induction on s. If s = 1, the lemma is (3) of Lemma 1.
Assume that the lemma is true for (d;,ds,- -+ ,ds-1). Then by Lemma 1,

/\(01,02, cr G d’p df?) T ,d;)
= Mey, ey ,Cr;dln ’2, ’d;—l)
+e(ds)(1 = t)A(cr, €2, s 6y dgs by, dgy - -+, )
- > e(T)(1 - )T\, e, ¢, T)
TeP({d1,dy,~ ds_1})
+e(d,)(1—t) > eU)1 = )" Ney, 2, ¢, ds, U).
UeP({dy,dz, - ds—1})

The lemma follows from the fact that P({d;,dz,- - ,d,}) is the disjoint
union of P({dy,ds,--- ,ds_1}) and {UU{d,} : U € P({d1,ds,--- ,ds_1})}.
O

THEOREM 4. For any collection C of crossings of link L,

AL(C) = D &(S)A—t)¥IN(S).

SeP(C)

Proof. We prove the theorem by an induction on |C|. If |C| = 1, then
the theorem is (1) of Lemma 1. Assume that it is true for any C, |C] <
r—1. Suppose that C = (¢, ¢z, - ,¢). By Lemma 1, 2 and the induction
hypothesis,

ALI(CI; Coy vy cr)
= ALI(CI’ Coy e ’CT—I) + E(C,)(l - t)A(cT;c'l’ c,2; T ,c,r—l)
= Y ana-o™m

TeP({c1,c2, ver-1})

+ele)(1-t) Y, -1\, V)

UeP({c1,e2, ,er-1})

= Y (S)1-t)¥INS).

SeP(C)
This completes the proof. O
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Suppose that AL # 0, equivalently, AL # 0. In this case, recall that
(¢, d) is defined for a pair of crossings of L in Definition 5.

DEFINITION 8. Given a collection C = (¢, ¢, - ,¢;), define the ma-
trix of C, (C,C), to be t79(c;;), where ¢;; = (¢, ¢;) .

THEOREM 5. Let C be a collection of crossings of a link L. If AL #
0, then A(C) = (-1)IClAL det((C, C)).

Proof. Put V =V, and X; = X,(¢;). By definition,

A(C) =17 det(V(Xl, X2, L ,X,-)).

1 0 —-X,v1!
Multiply the determinant of ' E to the both sides
1 ——le_l
0 --- 0 yv-1
of the preceding identity. Then
det(V-1Y)A(C) = (-1)t~9 det({C, C)).
So
MC) = (1)t 9det(V)det((C,C)) = (-1)ICIAL det({C, C)),
which completes the proof. a

In the above theorem, if C' = (¢, d), then

Me,d) = AL({c, ¢) (d,d) — (c,d) (d, c))
= AL(—(AL)'ANe)(=1)(AL)'A(d) — (¢, d) (d, c))
= (AL)'"Mc)A(d) — AL{c,d) (d,c) .
Therefore, we have:

THEOREM 6. If AL # 0, then for any pair (c,d) of crosssings of link
L, (AL)?{c,d) (d, c) is an invariant of the pair under the homology equiv-
alence. We denote this polynomial by A\y(c, d).

5. We compute some of the polynomials constructed in previous sec-
tions. Knots 10,3 and 104 [3] are given in Figure 8 together with some
chosen crossings and their Seifert surfaces. Both knots have —4t~2 +
14t71 — 19 + 14t — 442 as their Alexander polynomial. Choose a =
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(a1,by,a9,b9) as bases for the first homology groups of the canonical
Seifert surfaces as in the figure. Then

2 -11 -1 2 0 00
0 -2 0 0 1 -100
Ma(lolg) = 0 0 1 1 and Ma(1024) = -1 0 10
-1 0 0 2 0 0 1 2

Figure 8

The coordinates of the crossings are:

()
¢ (0,0,1,1) 10 ﬁ“g ) .
d (1,0,1,0) d (O’ 1’ 0’ 0)
e (1,0,0,-1) N (1’0’_’1 0)
f (0’ 0) 0) 1) f (0, 0,1 1’)
g (110’01 O) (0’0’0’ 1)
B (0,1,0,0) g S

The Alexander polynomials of the crossings are:
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1018 A( ) 10
c 42412t — 12+ 4¢ 2
d  —4t2+12t71 — 12+ 4¢ 2

€ —u2 T T+ 2

foo—AtT I - 11+ 4t €

g —4724+10t71—10+4¢ f

h 22 -4t 442 g

AC)

—2t"2 45t - 542t
472 — 8t 1 4+ 8 — 4t
—4t72 413t ~ 13 4+ 4t
—4t72 4 13t71 - 13 4+ 4t
—22 46t —642t

The Alexander polyriomials for some pairs are:

1013 )\(C, )

d 27245t -2

e 2 r4+5t71-2

f o —4at?+9tl—4

g 4248t —4=—4t1!-1)
h  2t2-3t7 142

The value of Ay for some of the pairs are:

1024 A(C, )

d 2?2 -3t"142
e —2(t7* —1)2

F =2t -1)?

g —@1-1y

(2672 —7¢71 + 10 — 4¢)(4t72 ~ 10t + 7 - 2¢)

e —t}(2t71 -5+ 2t)?
[ t22-3t)(3-2t)
g 4@t 1-1)?

h -t

A0(61 )

d —t71(2t71 - 3+ 2t)?

e (—t1'+3-2)(2t72-3t71+1)
f (21 +3-t)(t?-3t"1+2)
g (t1-1)?

The second set of tables show that no two crossings in knot 1045 or
10,4 are homology equivalent, in particular, no two are equivalent under
diffeomorphisms, including orientation-reversing ones, of R® (Property 1
of Section 6) except possibly for c and d in 10,5 or e and f in 10z

We next give an example of two homologous collections such that the
spliced links at the collections are not equivalent as links. Let C = (¢;, ¢2)
and D = (d;,dz) be the collections of crossings in knot 85, (3] as in Figure
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9. C and D are homologous, thus ALy(C) = ALy(D) (= 0) but Ly(C)
is not equivalent to Lo(D) as links.

| Lo(C) Lo(D)

Figure 9

6. We discuss more properties of Alexander polynomials of crossings.
One of them deals with the change in A(c) when twists are introduced to
c.

Suppose that C' is a collection crossings of link L. Let 7L and rC be
the mirror images of L and C, respectively. If M is Seifert matrix of L,
then —M is a Seifert matrix of L. It follows:

PROPERTY 1. If C is a collection of crossings of link L with k com-
ponents. Then M\(C) = (=1)¥"+CI\(rC), where |C| is the number of
crossing in C.

DEFINITION 9. Given a crossing c of link L and an integer n, define
the crossing ¢, to be the one obtained from ¢ by giving its band n right
handed full-twists as in Figure 10. Notice that ¢ | W =¢; | W.
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L& //}/ < /Q/ L
L~
o Cp

s

Y

=

Figure 10
PROPERTY 2. For any pair (¢, d) of link L and integer
n, A(cn) = n(t™ — JAL + A(c), A{en, d) =n(t™! — 1)A(d) + Alc, d)

and
Xo(cn, @) = Aofc, d).

Proof. Let F be a Seifert surface of (¢,d). Perform a O-surgery on
¢(B) C F as in Figure 11. Let F’ be the result of the surgery.

Eogown

Figure 11 L
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Define an embedded arc ¢(W) as in the figure such that the arc has
the same the end points as ¢(W) and winds around the surgery tube
n times in the right handed direction. We consider € as a crossing by
taking a thin tubular neighborhood of ¢(W) in F” as its band. It is clear
that € is equivalent to c, as crossings of L. Let a and b be the elements
of Hy(F';Z) represented by the oriented circles as in the figure. Let o
be a basis of H(F;Z). Then # = (a,b) U a is a basis of H,(F";Z). We
may assume that b does not intersect any elements of a. By choosing
positive normal directions and orientations of F' and F' consistently as
in the figure, we obtain

0
0 |, and

0 -1 0 0
Mg=|0 0 0 |, V=] —t
0 0 M, v,

R

Now Xj5(2) = (1,n, Xa(c)) and Xs(d) = (0, 0, X.(d)).
Mea) = t7*D det(V5((1,n, Xa(c))))
=t~ (—tndet(V,) + ndet(V,) + tdet(Va(Xa(c))))
=n(t™' = 1)AL + Xc).

Xen, d) = t79*D det(V3((1, 7, Xa(e)), (0,0, Xa)))
= t~0*D(—tn det(Va(Xa(d)))
+ ndet(Vy(Xa(d))) + tdet(Va(Xa(c), Xa(d)))
= n(t™! = )Md) + A(c, d).

o(cn, d) = (ALY*(1, 7, Xa(c))V;57(0,0, Xa(d))”
(0,0, Xa(d))V5 (1,1, Xa(e))”
= (AL Xo(e) Vi Xa(d)T Xa(d) Ve Xa(e)
= Ao(c, d).
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REMARK 5. It follows from Lemma 1 that for any link L, if AL # 0,
then L/, (¢,)(or L' (cn)),n € Z, are distinct links, where L/ (c,) is the link
obtained from L by changing c, after ¢, is put into a negative crossing
(or a positive crossing). A picture of L' (¢,) is given in Figure 12.

L Li(c)
Figure 12

If ¢ is a crossing of a knot projection K|, it is shown in Theorem 2 of
[1] that

Me) =< ¢, ¢ > (=1) = —A\(c)(—1)/AK(-1)

determines completely the change in the index of the knot when c is
changed. We used A(c) for A(c) in [1] and called it the rational invariant
of c. The above property implies that A(c,) = A(c) + 2n. Hence by
Theorem 2 of [1], we have

PROPERTY 3. Let ¢ be a crossing in a knot projection K. If c is a
positive crossing, then the index of the knot increases by 2 if we change
¢n provided that n < —} — $A(c) and it remains the same otherwise. If
c is a negative crossing, then the index of the knot decreases by 2 if we
change c,, provided that n > 1 —1X(c) and it remains the same otherwise.

The above property can be used to produce knots with a given index
from any knot projection by introducing a proper number of twists to
each member of a collection of crossings.

DEFINITION 10. An arc u of a link L is defined to be an embedding
u: [—1,1] — R® such that u([-1,1]) N L = u({-1,1}).
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A pair of arcs of a link is defined the same way as a pair of crossings is
defined, and the homology equivalence of arcs and pairs of arcs is defined
similarly.

Given a pair (u, v) of arcs of link L, there exists a pair (c, d) of crossings
of L such that ¢ | W = u and d | W = v. Notice that ¢ and d are not
unique.

DEFINITION 11. Under the above notation, define A(u) = A(c) €
Z[t,t7']/(AL) and Ag(u,v) = Ao(c,d), where (AL) is the ideal gener-
ated by AL.

It follows from Property 2:

PrOPERTY 4. The functions A and Ay in the above definition are in-

variants of the homology equivalence classes of arcs and pairs of arcs of
a link.
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