• Title/Summary/Keyword: AlN buffer

Search Result 130, Processing Time 0.026 seconds

Effect of metal buffer layers on the growth of GaN on Si substrates (실리콘 기판위에 금속 완충층을 이용한 GaN 성장과 특성분석)

  • Lee, Jun Hyeong;Yu, Yeon Su;Ahn, Hyung Soo;Yu, Young Moon;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.4
    • /
    • pp.161-166
    • /
    • 2013
  • AlN buffer layers have been used for the growth of GaN layers on Si substrates. However, the doping of high concentration of carriers into AlN layers is still not easy, therefore it may cause the increase of series resistance when it is used for the electrical or optical devices. In this work, to improve such a problem, the growth of GaN layers on Si substrates were performed using metal buffer layers instead of AlN buffer layer. We tried combinations of Ti, Al, Cr and Au as metal buffer layers for the growth of GaN on Si substrates. Surface morphology was measured by optical microscope and scanning electron microscope (SEM), and optical properties and crystalline quality were measured by photoluminescence (PL) and X-ray diffractometer (XRD), respectively. Electrical resistances for both cases of AlN and metal buffer layer were compared by current-voltage (I-V) measurement.

The Influence of AlN Buffer Layer Thickness on the Growth of GaN on a Si(111) Substrate with an Ultrathin Al Layer

  • Kwon, Hae-Yong;Moon, Jin-Young;Bae, Min-Kun;Yi, Sam-Nyung;Shin, Dae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.461-467
    • /
    • 2008
  • It was studied the effect of a pre-deposited ultrathin Al layer as part of a buffer layer for the growth of GaN. AlN buffer layers were deposited on a Si(111) substrate using an RF sputtering technique, followed by GaN using hydride vapor phase epitaxy (HVPE). Several atomic layers of Al were deposited prior to AlN sputtering and the samples were compared with the others grown without pre-deposition of Al. And it was also studied the influence of AlN buffer layer thickness on the growth of GaN. The peak wavelength of the photoluminescence (PL) was varied with increasing the thickness of the GaN and AlN layers. The optimum thickness of AlN on a Si(111) substrate with an ultrathin Al layer was about $260{\AA}$. Scanning electron microscope (SEM) images showed coalescent surface morphology and X-ray diffraction (XRD) showed a strongly oriented GaN(0002) peak.

Effects of AlN buffer layer on optical properties of epitaxial layer structure deposited on patterned sapphire substrate (패턴화된 사파이어 기판 위에 증착된 AlN 버퍼층 박막의 에피층 구조의 광학적 특성에 대한 영향)

  • Park, Kyoung-Wook;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • In this research, 50 nm thick AlN thin films were deposited on the patterned sapphire (0001) substrate by using HVPE (Hydride Vapor Phase Epitaxy) system and then epitaxial layer structure was grown by MOCVD (metal organic chemical vapor deposition). The surface morphology of the AlN buffer layer film was observed by SEM (scanning electron microscopy) and AFM (atomic force microscope), and then the crystal structure of GaN films of the epitaxial layer structure was investigated by HR-XRC (high resolution X-ray rocking curve). The XRD peak intensity of GaN thin film of epitaxial layer structure deposited on AlN buffer layer film and sapphire substrate was rather higher in case of that on PSS than normal sapphire substrate. In AFM surface image, the epitaxial layer structure formed on AlN buffer layer showed rather low pit density and less defect density. In the optical output power, the epitaxial layer structure formed on AlN buffer layer showed very high intensity compared to that of the epitaxial layer structure without AlN thin film.

GaN Film Growth Characteristics Comparison in according to the Type of Buffer Layers on PSS (PSS 상 버퍼층 종류에 따른 GaN 박막 성장 특성 비교)

  • Lee, Chang-Min;Kang, Byung Hoon;Kim, Dae-Sik;Byun, Dongjin
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.645-651
    • /
    • 2014
  • GaN is most commonly used to make LED elements. But, due to differences of the thermal expansion coefficient and lattice mismatch with sapphire, dislocations have occurred at about $109{\sim}1010/cm^2$. Generally, a low temperature GaN buffer layer is used between the GaN layer and the sapphire substrate in order to reduce the dislocation density and improve the characteristics of the thin film, and thus to increase the efficiency of the LED. Further, patterned sapphire substrate (PSS) are applied to improve the light extraction efficiency. In this experiment, using an AlN buffer layer on PSS in place of the GaN buffer layer that is used mainly to improve the properties of the GaN film, light extraction efficiency and overall properties of the thin film are improved at the same time. The AlN buffer layer was deposited by using a sputter and the AlN buffer layer thickness was determined to be 25 nm through XRD analysis after growing the GaN film at $1070^{\circ}C$ on the AlN buffer CPSS (C-plane Patterned Sapphire Substrate, AlN buffer 25 nm, 100 nm, 200 nm, 300 nm). The GaN film layer formed by applying a 2 step epitaxial lateral overgrowth (ELOG) process, and by changing temperatures ($1020{\sim}1070^{\circ}C$) and pressures (85~300 Torr). To confirm the surface morphology, we used SEM, AFM, and optical microscopy. To analyze the properties (dislocation density and crystallinity) of a thin film, we used HR-XRD and Cathodoluminescence.

Characteristics of TiAlN Film on Different Buffer Layer by D.C Magnetron Sputter (D.C magnetron sputter법으로 증착된 TiAlN의 중간층에 따른 특성연구)

  • Kim, Myoung-Ho;Lee, Doh-Jae;Lee, Kwang-Min;Kim, Woon-Sub;Kim, Min-Ki;Park, Burm-Su;Yang, Kook-Hyun
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.558-563
    • /
    • 2008
  • TiAlN films were deposited on WC-5Co substrates with different buffer layers by D.C. magnetron sputtering. The films were evaluated by microstructural observations and measuring of preferred orientation, hardness value, and adhesion force. As a process variable, various buffer layers were used such as TiAlN single layer, TiAlN/TiAl, TiAlN/TiN and TiAlN/CrN. TiAlN coating layer showed columnar structures which grew up at a right angle to the substrates. The thickness of the TiAlN coating layer was about $1.8{\mu}m$, which was formed for 200 minutes at $300^{\circ}$. XRD analysis showed that the preferred orientation of TiAlN layer with TiN buffer layer was (111) and (200), and the specimens of TiAlN/TiAl, TiAlN/CrN, TiAlN single layer have preferred orientation of (111), respectively. TiAlN single layer and TiAlN/TiAl showed good adhesion properties, showing an over 80N adhesion force, while TiAlN/TiN film showed approximately 13N and the TiAlN/CrN was the worst case, in which the layer was destroyed because of high internal residual stress. The value of micro vickers hardness of the TiAlN single layer, TiAlN/TiAl and TiAlN/TiN layers were 2711, 2548 and 2461 Hv, respectively.

Characteristics of polycrystalline AlN thin films deposited on 3C-SiC buffer layers for M/NEMS applications (3C-SiC 버퍼층위에 증착된 M/NEMS용 다결정 AlN 박막의 특성)

  • Chung, Gwiy-Sang;Lee, Tae-Won
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.462-466
    • /
    • 2007
  • Aluminum nitride (AlN) thin films were deposited on Si substrates by using polycrystalline (poly) 3C-SiC buffer layers, in which the AlN film was grown by pulsed reactive magnetron sputtering. Characteristics of grown AlN films were investigated experimentally by means of FE-SEM, X-ray diffraction, and FT-IR, respectively. The columnar structure of AlN thin films was observed by FE-SEM. X-ray diffraction pattern proved that the grown AlN film on 3C-SiC layers had highly (002) orientation with low value of FWHM (${\Theta}=1.3^{\circ}$) in the rocking curve around (002) reflections. These results were shown that almost free residual stress existed in the grown AlN film on 3C-SiC buffer layers from the infrared absorbance spectrum. Therefore, the presented results showed that AlN thin films grown on 3C-SiC buffer layers can be used for various piezoelectric fields and M/NEMS applications.

Crystal growth of AlN thin films on 3C-SiC buffer layer (3C-SiC 완충층을 이용한 AIN 박막의 결정성장)

  • Lee, Tae-Won;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.346-347
    • /
    • 2007
  • Aluminum nitride (AlN) thin films were deposited on Polycrystalline (poly) 3C-SiC buffer layers using pulsed reactive magnetron sputtering. Characteristics of AlN films were investigated experimentally by means of FE-SEM, X-ray diffraction, and FT-IR, respectively. As a result, highly (002) oriented AlN thin films with almost free residual stress were achieved using 3C-SiC buffer layers. Therefore, AlN thin films grown on 3C-SiC buffer layers can be used for various piezoelectric fields and M/NEMS applications.

  • PDF

Surface Analysis of Plasma Pretreated Sapphire Substrate for Aluminum Nitride Buffer Layer

  • Jeong, Woo Seop;Kim, Dae-Sik;Cho, Seung Hee;Kim, Chul;Jhin, Junggeun;Byun, Dongjin
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.699-704
    • /
    • 2017
  • Recently, the use of an aluminum nitride(AlN) buffer layer has been actively studied for fabricating a high quality gallium nitride(GaN) template for high efficiency Light Emitting Diode(LED) production. We confirmed that AlN deposition after $N_2$ plasma treatment of the substrate has a positive influence on GaN epitaxial growth. In this study, $N_2$ plasma treatment was performed on a commercial patterned sapphire substrate by RF magnetron sputtering equipment. GaN was grown by metal organic chemical vapor deposition(MOCVD). The surface treated with $N_2$ plasma was analyzed by x-ray photoelectron spectroscopy(XPS) to determine the binding energy. The XPS results indicated the surface was changed from $Al_2O_3$ to AlN and AlON, and we confirmed that the thickness of the pretreated layer was about 1 nm using high resolution transmission electron microscopy(HR-TEM). The AlN buffer layer deposited on the grown pretreated layer had lower crystallinity than the as-treated PSS. Therefore, the surface $N_2$ plasma treatment on PSS resulted in a reduction in the crystallinity of the AlN buffer layer, which can improve the epitaxial growth quality of the GaN template.

Temperature-dependent Electrical Properties in organic light-emitting diodes of ITO/Buffer layer/TPD/$Alq_3$/Al structure (ITO/Buffer layer/TPD/$Alq_3$/Al 구조의 유기 발광 소자에서 온도 변화에 따른 전기적 특성 연구)

  • Chung, Dong-Hoe;Kim, Sang-Keol;Oh, Hyun-Seok;Hong, Jin-Woong;Lee, Joon-Ung;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.534-537
    • /
    • 2002
  • We have studied conduction mechanism that is interpreted in terms of space charge limited current (SCLC) region and tunneling region. The OLEDs are based on the molecular compounds, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) as a hole transport, tris (8- hydroxyquinolinoline) aluminum(III) $(Alq_3)$ as an electron injection and transport and emitting later, copper phthalocyanine (CuPc) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and poly(vinylcarbazole) (PVK) as a buffer layer respectively. Al was used as cathode. We manufactured reference structure that has in ITO/TPD/$Alq_3$/Al. Buffer layer effects were compared to reference structure. And we have analyzed out luminance efficiency-voltage characteristics in ITO/Buffer layer/TPD/$Alq_3$/Al with buffer-layer materials.

  • PDF

Investigation of Buffer Traps in AlGaN/GaN Heterostructure Field-Effect Transistors Using a Simple Test Structure

  • Jang, Seung Yup;Shin, Jong-Hoon;Hwang, Eu Jin;Choi, Hyo-Seung;Jeong, Hun;Song, Sang-Hun;Kwon, Hyuck-In
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.478-483
    • /
    • 2014
  • We propose a new method which can extract the information about the electronic traps in the semi-insulating GaN buffer of AlGaN/GaN heterostructure field-effect transistors (HFETs) using a simple test structure. The proposed method has a merit in the easiness of fabricating the test structure. Moreover, the electric fields inside the test structure are very similar to those inside the actual transistor, so that we can extract the information of bulk traps which directly affect the current collapse behaviors of AlGaN/GaN HEFTs. By applying the proposed method to the GaN buffer structures with various unintentionally doped GaN channel thicknesses, we conclude that the incorporated carbon into the GaN back barrier layer is the dominant origin of the bulk trap which affects the current collapse behaviors of AlGaN/GaN HEFTs.