Browse > Article
http://dx.doi.org/10.6111/JKCGCT.2020.30.1.001

Effects of AlN buffer layer on optical properties of epitaxial layer structure deposited on patterned sapphire substrate  

Park, Kyoung-Wook (Division of Energy Engineering, Graduate School of Dongshin University)
Yun, Young-Hoon (Division of Energy Engineering, Graduate School of Dongshin University)
Abstract
In this research, 50 nm thick AlN thin films were deposited on the patterned sapphire (0001) substrate by using HVPE (Hydride Vapor Phase Epitaxy) system and then epitaxial layer structure was grown by MOCVD (metal organic chemical vapor deposition). The surface morphology of the AlN buffer layer film was observed by SEM (scanning electron microscopy) and AFM (atomic force microscope), and then the crystal structure of GaN films of the epitaxial layer structure was investigated by HR-XRC (high resolution X-ray rocking curve). The XRD peak intensity of GaN thin film of epitaxial layer structure deposited on AlN buffer layer film and sapphire substrate was rather higher in case of that on PSS than normal sapphire substrate. In AFM surface image, the epitaxial layer structure formed on AlN buffer layer showed rather low pit density and less defect density. In the optical output power, the epitaxial layer structure formed on AlN buffer layer showed very high intensity compared to that of the epitaxial layer structure without AlN thin film.
Keywords
Aluminium nitride (AlN); Sapphire ($Al_2O_3$); Gallium nitride (GaN); Lattice constant; Lattice mismatch; Crystal quality;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 G.S. Lee, C. Lee, H. Jeon, C. Lee, S.G. Bae, H.S. Ahn, M. Yang, S.N. Yi, Y.M. Yu, J.H. Lee, Y. Honda, N. Sawaki and S.W. Kim, "Growth of AlN layer on patterned sapphire substrate by hydride vapor phase epitaxy", Jpn. J. Appl. Phys. 55 (2016) 05FC02.   DOI
2 C. Sasaoka, H. Sunakawa, A. Kimura, M. Nido, A. Usui and A. Sakai, "High-quality InGaN MQW on lowdislocation-density GaN substrate grown by hydride vapor-phase epitaxy", J. Cryst. Growth 189 (1998) 61.   DOI
3 W.J. Lee, M.S. Park, W.J. Lee, Y.J. Choi and H.Y. Lee, "Characteristic comparison between GaN layer grown on c-plane cone shape patterned sapphire substrate and planar c-plane sapphire substrate by HVPE", J. Cryst. Growth 493 (2018) 8.   DOI
4 S. Yoshida, S. Misawa and S. Gonda, "Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates", Appl. Phys. Lett. 42 (1983) 427.   DOI
5 H.K. Son, Y.J. Lee, M.J. Lee, J.H. Kim, D.W. Jeon, J.H. Hwang and H.Y. Lee, "Properties of GaN film grown on AlN/PSS template by hydride vapor phase epitaxy", J. Korean Inst. Electr. Electron. Mater. Eng. 29 (2016) 348.   DOI
6 S. Nakamura, "The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes", Science 281 (1998) 956.   DOI
7 H.Y. Shin, Y.I. Chang, S.K. Kwon, K.T. Lee, M.J. Cho and K.H. Park, "The growth characteristics of a GaN layer on a cone-shaped:, J. Korean Phys. Soc. 50 (2007) 1147.   DOI
8 W.J. Lee, M.S. Park, W.J. Lee, I.S. Kim, Y.J. Choi and H.Y. Lee, "Crystalline properties of GaN layers grown on PSS and AlN buffered PSS by HVPE method", J. Korean Inst. Electr. Electron. Mater. Eng. 31 (2018) 386.   DOI
9 J. Guo, D.E. Ellis and D.J. Lam, "Electronic structure and energetics of sapphire (0001) and (1102) surfaces", Phys. Rev. B 45 (1992) 13647.   DOI
10 K. Hiramatsu, S. Itoh, H. Amano and I. Akasaki, "Growth mechanism of GaN grown on sapphire with A1N buffer layer by MOVPE", J. Cryst. Growth 115 (1991) 628.   DOI
11 E.V. Etzkorn and D.R. Clarke, "Cracking of GaN films", J. Appl. Phys. 89 (2001) 1025.   DOI
12 T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L.T. Romano and S. Sakai, "Direct evidence that dislocations are non-radiative recombination centers in GaN", Jpn. J. Appl. Phys. 37 (1998) L398.   DOI
13 S. Nakamura, "The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes", Science 281 (1998) 956.   DOI
14 Y. Liao, C. Thomidis, C.K. Kao and T.D. Moustakasa, "AlGaN based deep ultraviolet light emitting diodes with high internal quantum efficiency grown by molecular beam epitaxy", Appl. Phys. Lett. 98 (2011) 081110.   DOI
15 T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki and M. Kameshima, "Recent progress of nitride-based light emitting devices", Phys. Status Solidi A 200 (2003) 52.   DOI
16 A. Khan, K. Balakrishnan and T. Katona, "Ultraviolet light-emitting diodes based on group three nitrides", Nat. Photonics 2 (2008) 77.   DOI
17 H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki and N. Kamata, "222-282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on highquality AlN on sapphire", Phys. Status Solidi A 206 (2009) 1176.   DOI
18 J. Yan, J. Wang, Y. Zhang, P. Cong, L. Sun, Y. Tian, C. Zhao and J. Li, "AlGaN-based deep-ultraviolet lightemitting diodes grown on High-quality AlN template using MOVPE", J. Cryst. Growth 414 (2015) 254.   DOI
19 H. Hirayama, "Growth of high-quality aln on sapphire and development of AlGaN-based deep-ultraviolet lightemitting diodes", Semiconductors and Semimetals 96 (2017) 85.   DOI
20 T.H. Seo, S. Lee, K.H. Min, S. Chandramohan, A.H. Park, G.H. Lee, M. Park, E.K. Suh and M.J. Kim, "The role of graphene formed on silver nanowire transparent conductive electrode in ultraviolet light emitting diodes", Sci. Rep. 6 (2016) 29464.   DOI
21 C.G. Dunn and E.F. Koch, "Comparison of dislocation densities of primary and secondary recrystallization grains of Si-Fe", Acta Metall. 5 (1957) 548.   DOI
22 S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita H. Kiyoku and Y. Sugimoto, "InGaN-based multi-quantum-well-structure laser diodes", Jpn. J. Appl. Phys. 35 (1996) L74.   DOI
23 S.C. Jain, M. Willander, J. Narayan and R. Van Overstraeten, "III-nitrides: Growth, characterization, and properties", J. Appl. Phys. 87 (2000) 965.   DOI
24 S. Yoshida, S. Misawa and S. Gonda, "Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates", Appl. Phys. Lett. 42 (1983) 427.   DOI
25 C.E. Dreyer, A. Janotti and C.G. Van de Walle, "Brittle fracture toughnesses of GaN and AlN from first-principles surface-energy calculations", Appl. Phys. Lett. 106 (2015) 212103.   DOI
26 X.H. Wu, P. Fini, E.J. Tarsa, B. Heying, S. Keller, U.K. Mishra, S.P. DenBaars and J.S. Speck, "Dislocation generation in GaN heteroepitaxy", J. Cryst. Growth 189 (1998) 231.   DOI
27 H. Amano, I. Akasaki, K. Hiramatsu, N. Koide and N. Sawaki, "Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate", Thin Solid Film 163 (1988) 415.   DOI