• Title/Summary/Keyword: Active switched-capacitor

Search Result 51, Processing Time 0.018 seconds

Novel Single Switch DC-DC Converter for High Step-Up Conversion Ratio

  • Hu, Xuefeng;Gao, Benbao;Huang, Yuanyuan;Chen, Hao
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.662-671
    • /
    • 2018
  • This paper presents a new structure for a step up dc-dc converter, which has several advantageous features. Firstly, the input dc source and the clamped capacitor are connected in series to transfer energy to the load through dual voltage multiplier cells. Therefore, the proposed converter can produce a very high voltage and a high conversion efficiency. Secondly, a double voltage clamped circuit is introduced to the primary side of the coupled inductor. The energy of the leakage inductance of the coupled inductor is recycled and the inrush current problem of the clamped circuits can be shared equally by two synchronous clamped capacitors. Therefore, the voltage spike of the switch tube is solved and the current stress of the diode is reduced. Thirdly, dual voltage multiplier cells can absorb the leakage inductance energy of the secondary side of the coupled inductor to obtain a higher efficiency. Fourthly, the active switch turns on at almost zero current and the reverse-recovery problem of the diodes is alleviated due to the leakage inductance, which further improves the conversion efficiency. The operating principles and a steady-state analysis of the continuous, discontinuous and boundary conduction modes are discussed in detail. Finally, the validity of this topology is confirmed by experimental results.

The Design of Continuous-Time MOSFET-C Filter (연속시간의 MOSFET-C 필터 설계)

  • 최석우;윤창훈;조성익;조해풍;이종인;김동용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.2
    • /
    • pp.184-191
    • /
    • 1993
  • Continuous-time integrated filters, implemented in MOS VLSI technology, have been receiving considerable attention. In this paper, a continuous-time fifth order elliptic low-pass MOSFET-C filter has been designed with a cutoff frequency 3,400Hz. First an active RC filter is designed using cascade method which each block can be tunable. And then the resistors of an active RC network are replaced by a linear resistor using NMOS depletion transistors operated in the triode region. This continuous-time MOSFET filter have simpler structure than switched-capacitor filter, so reduce the chip area. The designed MOSFET-C filter characteristics are simulated by PSPICE program.

  • PDF

Low Pass Filter Design using CMOS Floating Resister (CMOS Floating 저항을 이용한 저역통과 필터의 설계)

  • 이영훈
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.2
    • /
    • pp.77-84
    • /
    • 1998
  • The continuous time signal system by development of CMOS technology have been receiving consideration attention. In this paper, Low pass filter using CMOS floating resistor have been designed with cut off frequency for speech signal processing. Especially a new floating resistor consisting entirely of CMOS devices in saturation has been developed. Linearity within $\pm$0.04% is achieved through nonlineartiy via current mirrors over an applied range of $\pm$1V. The frequency response exceeds 10MHz, and the resistors are expected to be useful in implementing integrated circuit active RC filters. The low pass filter designed using this method has simpler structure than switched capacitor filter. So reduce the chip area. The characteristics of the designed low pass filter using this method are simulated by pspice program.

  • PDF

A Rail-to-Rail Input 12b 2 MS/s 0.18 μm CMOS Cyclic ADC for Touch Screen Applications

  • Choi, Hee-Cheol;Ahn, Gil-Cho;Choi, Joong-Ho;Lee, Seung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.3
    • /
    • pp.160-165
    • /
    • 2009
  • A 12b 2 MS/s cyclic ADC processing 3.3 Vpp single-ended rail-to-rail input signals is presented. The proposed ADC demonstrates an offset voltage less than 1 mV without well-known calibration and trimming techniques although power supplies are directly employed as voltage references. The SHA-free input sampling scheme and the two-stage switched op-amp discussed in this work reduce power dissipation, while the comparators based on capacitor-divided voltage references show a matched full-scale performance between two flash sub ADCs. The prototype ADC in a $0.18{\mu}m$ 1P6M CMOS demonstrates the effective number of bits of 11.48 for a 100 kHz full-scale input at 2 MS/s. The ADC with an active die area of $0.12\;mm^2$ consumes 3.6 m W at 2 MS/s and 3.3 V (analog)/1.8 V (digital).

Design of Low Power Sigma-delta ADC for USN/RFID Reader (USN/RFID Reader용 저전력 시그마 델타 ADC 변환기 설계에 관한 연구)

  • Kang, Ey-Goo;Hyun, Deuk-Chang;Hong, Seung-Woo;Lee, Jong-Seok;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.800-807
    • /
    • 2006
  • To enhance the conversion speed more fast, we separate the determination process of MSB and LSB with the two independent ADC circuits of the Incremental Sigma Delta ADC. After the 1st Incremental Sigma Delta ADC conversion finished, the 2nd Incremental Sigma Delta ADC conversion start while the 1st Incremental Sigma Delta ADC work on the next input. By determining the MSB and the LSB independently, the ADC conversion speed is improved by two times better than the conventional Extended Counting Incremental Sigma Delta ADC. In processing the 2nd Incremental Sigma Delta ADC, the inverting sample/hold circuit inverts the input the 2nd Incremental Sigma Delta ADC, which is the output of switched capacitor integrator within the 1st Incremental Sigma Delta ADC block. The increased active area is relatively small by the added analog circuit, because the digital circuit area is more large than analog. In this paper, a 14 bit Extended Counting Incremental Sigma-Delta ADC is implemented in $0.25{\mu}m$ CMOS process with a single 2.5 V supply voltage. The conversion speed is about 150 Ksamples/sec at a clock rate of 25 MHz. The 1 MSB is 0.02 V. The active area is $0.50\;x\;0.35mm^{2}$. The averaged power consumption is 1.7 mW.

A Study on the Characteristics Improvement of Chebyshev Filter Function (Chebyshev 필터 함수의 특성 개선에 관한 연구)

  • You, Jae-Hoon;Choi, Seok-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.753-759
    • /
    • 2020
  • A modified Chebyshev lowpass filter function with progressively diminishing ripples in the passband is proposed and analyzed in the frequency domain. Owing to the diminishing ripples, the passband magnitude characteristic of the proposed Chebyshev function has improved compared to the classical Chebyshev function. In addition, the phase characteristics of the proposed Chebyshev function were improved considerably compared to that of the Chebyshev function, and the time delay of the proposed function was much simpler and flatter. In addition, the proposed Chebyshev filter was realizable by the passive doubly terminated ladder network delivering maximum power transfer for the order n, even or odd, thus making themselves amenable to low-sensitivity active RC or switched capacitor filters through the simulation techniques. To verify the proposed Chebyshev filter characteristics, a 6th order passive doubly terminated ladder lowpass filter was designed and analyzed using the MATLAB and SPICE program. Thus, the proposed Chebyshev function can remove the drawbacks of the classical Chebyshev function and could be applicable to the design of a filter with an improved filter size, phase, and time delay characteristics for various signal processing.

A Range-Scaled 13b 100 MS/s 0.13 um CMOS SHA-Free ADC Based on a Single Reference

  • Hwang, Dong-Hyun;Song, Jung-Eun;Nam, Sang-Pil;Kim, Hyo-Jin;An, Tai-Ji;Kim, Kwang-Soo;Lee, Seung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.98-107
    • /
    • 2013
  • This work describes a 13b 100 MS/s 0.13 um CMOS four-stage pipeline ADC for 3G communication systems. The proposed SHA-free ADC employs a range-scaling technique based on switched-capacitor circuits to properly handle a wide input range of $2V_{P-P}$ using a single on-chip reference of $1V_{P-P}$. The proposed range scaling makes the reference buffers keep a sufficient voltage headroom and doubles the offset tolerance of a latched comparator in the flash ADC1 with a doubled input range. A two-step reference selection technique in the back-end 5b flash ADC reduces both power dissipation and chip area by 50%. The prototype ADC in a 0.13 um CMOS demonstrates the measured differential and integral nonlinearities within 0.57 LSB and 0.99 LSB, respectively. The ADC shows a maximum signal-to-noise-and-distortion ratio of 64.6 dB and a maximum spurious-free dynamic range of 74.0 dB at 100 MS/s, respectively. The ADC with an active die area of 1.2 $mm^2$ consumes 145.6 mW including high-speed reference buffers and 91 mW excluding buffers at 100 MS/s and a 1.3 V supply voltage.

A 14b 200KS/s $0.87mm^2$ 1.2mW 0.18um CMOS Algorithmic A/D Converter (14b 200KS/s $0.87mm^2$ 1.2mW 0.18um CMOS 알고리즈믹 A/D 변환기)

  • Park, Yong-Hyun;Lee, Kyung-Hoon;Choi, Hee-Cheol;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.65-73
    • /
    • 2006
  • This work presents a 14b 200KS/s $0.87mm^2$ 1.2mW 0.18um CMOS algorithmic A/D converter (ADC) for intelligent sensors control systems, battery-powered system applications simultaneously requiring high resolution, low power, and small area. The proposed algorithmic ADC not using a conventional sample-and-hold amplifier employs efficient switched-bias power-reduction techniques in analog circuits, a clock selective sampling-capacitor switching in the multiplying D/A converter, and ultra low-power on-chip current and voltage references to optimize sampling rate, resolution, power consumption, and chip area. The prototype ADC implemented in a 0.18um 1P6M CMOS process shows a measured DNL and INL of maximum 0.98LSB and 15.72LSB, respectively. The ADC demonstrates a maximum SNDR and SFDR of 54dB and 69dB, respectively, and a power consumption of 1.2mW at 200KS/s and 1.8V. The occupied active die area is $0.87mm^2$.

A Re-configurable 0.8V 10b 60MS/s 19.2mW 0.13um CMOS ADC Operating down to 0.5V (0.5V까지 재구성 가능한 0.8V 10비트 60MS/s 19.2mW 0.13um CMOS A/D 변환기)

  • Lee, Se-Won;Yoo, Si-Wook;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.3
    • /
    • pp.60-68
    • /
    • 2008
  • This work describes a re-configurable 10MS/s to 100MS/s, low-power 10b two-step pipeline ADC operating at a power supply from 0.5V to 1.2V. MOS transistors with a low-threshold voltage are employed partially in the input sampling switches and differential pair of the SHA and MDAC for a proper signal swing margin at a 0.5V supply. The integrated adjustable current reference optimizes the static and dynamic performance of amplifiers at 10b accuracy with a wide range of supply voltages. A signal-isolated layout improves the capacitor mismatch of the MDAC while a switched-bias power-reduction technique reduces the power dissipation of comparators in the flash ADCs. The prototype ADC in a 0.13um CMOS process demonstrates the measured DNL and INL within 0.35LSB and 0.49LSB. The ADC with an active die area of $0.98mm^2$ shows a maximum SNDR and SFDR of 56.0dB and 69.6dB, respectively, and a power consumption of 19.2mW at a nominal condition of 0.8V and 60MS/s.

A 10b 25MS/s $0.8mm^2$ 4.8mW 0.13um CMOS ADC for Digital Multimedia Broadcasting applications (DMB 응용을 위한 10b 25MS/s $0.8mm^2$ 4.8mW 0.13um CMOS A/D 변환기)

  • Cho, Young-Jae;Kim, Yong-Woo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.37-47
    • /
    • 2006
  • This work proposes a 10b 25MS/s $0.8mm^2$ 4.8mW 0.13um CMOS A/D Converter (ADC) for high-performance wireless communication systems such as DVB, DAB and DMB simultaneously requiring low voltage, low power, and small area. A two-stage pipeline architecture minimizes the overall chip area and power dissipation of the proposed ADC at the target resolution and sampling rate while switched-bias power reduction techniques reduce the power consumption of analog amplifiers. A low-power sample-and-hold amplifier maintains 10b resolution for input frequencies up to 60MHz based on a single-stage amplifier and nominal CMOS sampling switches using low threshold-voltage transistors. A signal insensitive 3-D fully symmetric layout reduces the capacitor and device mismatch of a multiplying D/A converter while low-noise reference currents and voltages are implemented on chip with optional off-chip voltage references. The employed down-sampling clock signal selects the sampling rate of 25MS/s or 10MS/s with a reduced power depending on applications. The prototype ADC in a 0.13um 1P8M CMOS technology demonstrates the measured DNL and INL within 0.42LSB and 0.91LSB and shows a maximum SNDR and SFDR of 56dB and 65dB at all sampling frequencies up to 2SMS/s, respectively. The ADC with an active die area if $0.8mm^2$ consumes 4.8mW at 25MS/s and 2.4mW at 10MS/s at a 1.2V supply.