Browse > Article
http://dx.doi.org/10.6113/JPE.2018.18.3.662

Novel Single Switch DC-DC Converter for High Step-Up Conversion Ratio  

Hu, Xuefeng (School of Electrical Engineering, Anhui University of Technology)
Gao, Benbao (School of Electrical Engineering, Anhui University of Technology)
Huang, Yuanyuan (School of Electrical Engineering, Anhui University of Technology)
Chen, Hao (School of Electrical Engineering, Anhui University of Technology)
Publication Information
Journal of Power Electronics / v.18, no.3, 2018 , pp. 662-671 More about this Journal
Abstract
This paper presents a new structure for a step up dc-dc converter, which has several advantageous features. Firstly, the input dc source and the clamped capacitor are connected in series to transfer energy to the load through dual voltage multiplier cells. Therefore, the proposed converter can produce a very high voltage and a high conversion efficiency. Secondly, a double voltage clamped circuit is introduced to the primary side of the coupled inductor. The energy of the leakage inductance of the coupled inductor is recycled and the inrush current problem of the clamped circuits can be shared equally by two synchronous clamped capacitors. Therefore, the voltage spike of the switch tube is solved and the current stress of the diode is reduced. Thirdly, dual voltage multiplier cells can absorb the leakage inductance energy of the secondary side of the coupled inductor to obtain a higher efficiency. Fourthly, the active switch turns on at almost zero current and the reverse-recovery problem of the diodes is alleviated due to the leakage inductance, which further improves the conversion efficiency. The operating principles and a steady-state analysis of the continuous, discontinuous and boundary conduction modes are discussed in detail. Finally, the validity of this topology is confirmed by experimental results.
Keywords
Clamp circuits; DC-DC; Dual voltage multiplier cells; Floating active switch; Switched-coupled-inductor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. J. Wai, C. Y. Lin, C. Y. Lin, R. Y. Duan, and Y. R. Chang, “High efficiency power conversion system for kilowattlevel stand-alone generation unit with low input voltage,” IEEE Trans. Ind. Electron., Vol. 55, No. 10, pp. 3702-3714, Oct. 2008.   DOI
2 Bo Yang, W. Li, Y. Zhao, and X. He, “Design and analysis of a grid connected PV power system,” IEEE Trans. Power Electron., Vol. 25, No. 4, pp. 992-1000, Apr. 2010.   DOI
3 X. F. Hu, M. Zhang, Y. Li, L. Li, and G. Wu, “A ripple- free input current interleaved converter with dual coupled inductors for high step-up applications,” J. Power Electron., Vol. 17, No. 3, pp. 590-600, May 2017.   DOI
4 H. C. Liu, L. C. Wang, F. Li, and Y. Ji, “Bidirectional active clamp DC-DC converter with high conversion ratio,” Electron. Lett., Vol. 53 , No. 22, pp. 1483-1485, 2017.   DOI
5 Y. M. Ye, K. W. E. Cheng, S. Z. Chen, “A high step-up PWM DC-DC converter with coupled-inductor and resonant switched-capacitor,” IEEE Trans. Power Electron., Vol. 32, No. 10, pp. 7739-7749, Oct. 2017.   DOI
6 B. Axelrod, Y. Beck, and Y. Berkovich, “High step-up DC-DC converter based on the switched-coupled-inductor boost converter and diode-capacitor multiplier: Steady state and dynamics,” IET Power Electron., Vol. 8, No. 8, pp. 1420-1428, Feb. 2015.   DOI
7 X. F. Hu, J. Z. Wang, L. P. Li, and Y. C. Li, “A threewinding coupled-inductor DC-DC converter topology with high voltage gain and reduced switch stress,” IEEE Trans. Power Electron., Vol. 33, No. 2, pp. 1453-1462, Feb. 2018.   DOI
8 Yan Zhang, Jinjun Liu, Zhuo Dong, “Dynamic Performance Improvement of Diode-capacitor-Based High Step-up DC-DC Converter Through Right-Half-Plane Zero Elimination,” IEEE Trans. Power Electron., Vol. 32, No. 8, pp. 6532-6543, Aug. 2016.   DOI
9 L. S. Yang, T. J. Liang, H. C. Lee, and J. F. Chen, “Novel high step-up DC-DC converter with coupled-inductor and voltage-doubler circuits,” IEEE Trans. Ind. Electron., Vol. 58, No. 9, pp. 4196-4206, Sep. 2011.   DOI
10 F. S. F. Silva, A. A. A Freitas, S. Daher, S. C. Ximenes, S. K. A. Sousa, M. S. Edilson, F. L. M. Antunes, and C. M. T. Cruz, "High gain DC-DC boost converter with a coupling inductor," Power Electronics Conference. IEEE, pp. 486-492, 2009.
11 X. F. Hu and C. Y. Gong, “A high voltage gain DC-DC converter integrating coupled-inductor and diode-capacitor techniques,” IEEE Trans. Power Electron., Vol. 29, No. 2, pp. 789-800, Feb. 2014.   DOI
12 S. M. Chen, T. J. Liang, L. S. Yang, “A boost converter with capacitor multiplier and coupled Inductor for AC module applications,” IEEE Trans. Ind. Electron., Vol. 60, No. 4, pp. 1503-1511, Apr. 2013.   DOI
13 Y. Zhao, W. Li, Y. Deng, and X. He, "High step-up boost converter with passive lossless clamp circuit for non-isolated high step-up applications," IET Trans. Power Electron., Vol. 4, No. 8, pp. 851-859, Sep. 2011.   DOI
14 X. F. Hu and C. Y. Gong, “A high gain input-parallel output-series DC/DC converter with dual coupled inductors,” IEEE Trans. Power Electron., Vol. 30, No. 3, pp. 1306-1316, Mar. 2015.   DOI
15 S.-K. Changchien, T.-J. Liang, J.-F. Chen, and L.-S. Yang, “Novel high step-up DC-DC converter for fuel cell energy conversion system,” IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 2007-2017, Jun. 2010.   DOI
16 Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, “Novel high step-up DC-DC converter for distributed generation system,” IEEE Trans. Ind. Electron., Vol. 60, No. 4, pp. 1473-1482, Apr. 2013.   DOI
17 X. F. Hu, L. P. Li and Y. C. Li, and G. Wu, “Input-parallel output-series DC-DC converter for non-isolated high step-up applications,” Electron. Lett., Vol. 52, No. 20, pp. 1715-1717, 2016.   DOI
18 X. F. Hu, G. R. Dai, L. Wang, and C. Gong, “A three-state switching boost converter mixed with magnetic coupling and voltage multiplier techniques for high gain conversion,” IEEE Trans. Power Electron., Vol. 31, No. 4, pp. 2991-3001, Apr. 2016.   DOI
19 F. Yang and X. Ruan, "Discontinuous-current mode operation of a two-phase interleaved boost DC-DC converter with coupled inductor," IEEE Trans. Power Electron. Vol. 33, No. 1, pp. 188-198, Jan. 2018.   DOI
20 N. P. Papanikolaou and E. C. Tatakis, “Active voltage clamp in flyback converters operating in CCM mode under wide load variation,” IEE Trans. Ind. Electron., Vol. 51, No. 3, pp. 632-640, Jun. 2004.   DOI
21 S. Chen, T. Liang, L. Yang, and J. Chen, “A cascaded high step-up dc-dc converter with single switch for microsource applications,” IEEE Trans. Power Electron., Vol. 26, No. 4, pp. 1146-1153, Apr. 2011.   DOI
22 S. V., J. P. F., and Y. L., “Optimization and design of a cascaded DC/DC converter devoted to grid-connected photovoltaic systems,” IEEE Trans. Power Electron., Vol. 27, No. 4, pp. 2018-2027, Apr. 2012.   DOI
23 B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC-DC PWM converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 55, No. 2, pp. 687-696, Mar. 2008.   DOI
24 F. Zhang, L. Du, F. Z. Peng, and Z. Qian, “A new design method for high power high-efficiency switched-capacitor DC-DC converters,” IEEE Trans. Power Electron., Vol. 23, No. 2, pp. 832-840, Mar. 2008.   DOI
25 F. L. Luo and H. Ye, “Positive output multiple-lift push-pull switched capacitor Luo-converters,” IEEE Trans. Ind. Electron., Vol. 51, No. 3, pp. 594-602, Jun. 2004.   DOI
26 X. H. Yu, C. Cecati, T. Dillon, and M. G. Simoes, “The new frontier of smart grid,” IEEE Trans. Ind. Electron., Vol. 15, No. 3, pp. 49-63, Sep. 2011.
27 G. P. Chen, L. Chen, Y. Deng, X. He, Y. Wang, J. Zhang, “Single coupled-inductor dual output soft-switching DC-DC converters with improved cross-regulation and reduced components,” IET Power Electron., Vol. 10 , No. 13, pp. 1665-1678, Nov. 2017.   DOI
28 X. Zhang, W. Qian, and Z. Li, “Design and analysis of a novel ZVZCT boost converter with coupling effect,” IEEE Trans. Power Electron., Vol. 32, No. 12, pp. 8992-9000, Dec. 2017.   DOI
29 H. Kanchev, D. Lu, F. Colas, V. Lazarov, and B. Francois, “Energy management and operational planning of a micro grid with a PV-based active generator for smart grid applications,” IEEE Trans. Ind. Electron., Vol. 58, No. 10, pp. 4583-4592, Oct. 2011.   DOI
30 M. Zhu and F. L. Luo, “Voltage-lift-type cuk converters: Topology and analysis,” IET Power Electron., Vol. 2, No. 2, pp. 178-191, Mar. 2009.   DOI
31 M. Liserre, T. Sauter, and J. Y. Hung, "Future energy systems: Integrating renewable energy sources into the smart power grid through industrial electronics," IEEE Ind. Electron. Mag., Vol. 4, No. 1, pp. 18-37, 2010.   DOI
32 J. K. Kim and G. W. Moon, “Derivation, analysis, and comparison of nonisolated single-switch high step-up converters with low voltage stress,” IEEE Trans. Power Electron., Vol. 30, No. 3, pp. 1336-1344, Mar. 2015.   DOI
33 S. M. Chen, M. L. Lao, Y. H. Hsieh, T. J. Liang and K. H. Chen, "A novel switched-coupled-inductor DC-DC step-up converter and its derivatives," IEEE Trans. Ind. Appl., Vol. 51, No. 1, pp. 309-314, Jan.-Feb. 2015.   DOI
34 G. C. Silveira, F. L. Tofoli, L. D. S. Bezerra, and R. P. Torrico-Bascope, "A non isolated DC-DC boost converter with high voltage gain and balance output voltage," IEEE Trans. Ind. Electron., Vol. 61, No. 12, pp. 6739-6746, Dec. 2014.   DOI
35 Y. Zhao, X. Xiang, C. Li, Y. Gu, W. Li, and X. He, “Single-phase high step-up converter with improved multiplier cell suitable for half-bridge-based PV inverter system,” IEEE Trans. Power Electron., Vol. 29, No. 6, pp. 2807-2816, Jun. 2014.   DOI
36 M. H. Todorovic, L. Palma, and P. N. Enjeti, “Design of a wide input range dc-dc converter with a robust power control scheme suitable for fuel cell power conversion,” IEEE Trans. Ind. Electron., Vol. 55, No. 3, pp. 1247-1255, Mar. 2008.   DOI
37 L. S. Yang, T. J. Liang, and J. F. Chen, “Transformer-less dc-dc converter with high step-up voltage gain,” IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 3144-3152, Aug. 2009.   DOI