• Title/Summary/Keyword: ADC12

Search Result 140, Processing Time 0.027 seconds

Effect of Alloying Element Addition on the Microstructure and Wear Properties of Die-casting ADC12 Alloy (ADC12 다이캐스팅 합금의 미세조직 및 기계적 특성에 미치는 개량 원소 첨가의 영향)

  • Kang, Y.J.;Yoon, S.I.;Kim, D.H.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.28 no.1
    • /
    • pp.34-42
    • /
    • 2019
  • In this study, various alloying elements (Cr, Sr, Ca, Cd) were added to improve the mechanical properties of ADC12 fabricated by a die casting process. The effect of alloying elements on the microstructure and mechanical properties were investigated. The phase analysis results of the modified ADC12 alloy with conventional ADC12 alloy, showed the similar characteristics of Al matrix, Si phase, $CuAl_2$ phase and the Fe intermetallic phase. As a result of the microstructure observation, the secondary dendrite arm spacing (SDAS) was shown to have decreased after the addition of the alloying elements. The eutectic Si phase, which existed as flake form in the conventional ADC12 alloy, was modified finely as a fiber form in the modified ADC12 alloy. It was observed that the $CuAl_2$ phase as the strengthening phase was relatively finely distributed in the modified ADC12 alloy. The Fe intermetallic appeared as a Chinese script shaped $Al_6$ (Mn,Fe) which is detrimental to mechanical properties in conventional ADC12 alloy. On the other hand, in the modified ADC12 alloy, polyhedral ${\alpha}-Al_{15}Si_2$ $(Fe,Mn,Cr)_3$ was observed. The tensile properties were improved in the modified ADC12 alloy. The yield strength and tensile strength increased by 12.4% and 10.0%, respectively, in the modified ADC12 alloy, and the elongation was also seen to have been increased. As a result of the pin on disk wear test, the wear resistance properties were also improved by up to about 7% in the modified ADC12 alloy. It is noted that the wear deformation microstructures were also observed, and it was found that the fine eutectic Si and strengthening phases greatly improved abrasion resistance.

A Low Power Current-Mode 12-bit ADC using 4-bit ADC in cascade structure (4비트 ADC 반복구조를 이용한 저전력 전류모드 12비트 ADC)

  • Park, So-Youn;Kim, Hyung-Min;Lee, Daniel-Juhun;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1145-1152
    • /
    • 2019
  • In this paper, a low power current mode 12-bit ADC(: Analog to Digital Converter) is proposed to mix digital circuits and analog circuits with the advantages of low power consumption and high speed operation. The proposed 12 bit ADC is implemented by using 4-bit ADC in a cascade structure, so its power consumption can be reduced, and the chip area can be reduced by using a conversion current mirror circuit. The proposed 12-bit ADC is SK Hynix 350nm process, and post-layout simulation is performed using Cadence MMSIM. It operates at a supply voltage of 3.3V and the area of the proposed circuit is 318㎛ x 514㎛. In addition, the ADC shows the possibility of operating with low power consumption of 3.4mW average power consumption in this paper.

Microstructure, Tensile Strength, and High Cycle Fatigue Properties of Mg+Al2Ca added ADC12 (Al-Si-Cu) Alloy (Mg+Al2Ca 첨가 ADC12 (Al-Si-Cu) 합금의 미세조직, 인장 및 고주기 피로 특성)

  • Kim, Y.K.;Kim, M.J.;Kim, Shae K.;Yoon, Y.O.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.306-313
    • /
    • 2017
  • This study investigated the microstructure, tensile strength, and high cycle fatigue properties of ADC12 aluminum alloys with different $Mg+Al_2Ca$ contents manufactured using die casting process. Microstructural observation identified the presence of ${\alpha}-Al$, eutectic Si, $Al_2Cu$, and Fe-intermetallic phases. The increase of $Mg+Al_2Ca$ content resulted in finer pore size and decreased pore distribution. Room temperature tensile strength tests were conducted at strain rate of $1{\times}10^{-3}/sec$. For 0.6%Mg ADC12, measured UTS, YS, and El were 305.2MPa, 157.0MPa, and 2.7%, respectively. For 0.8%Mg ADC12, measured UTS, YS, and El were 311.2 MPa, 159.4 MPa, and 2.4%, respectively. Therefore, 0.8% ADC12 alloy had higher strength and slightly decreased elongation compared to 0.6% Mg ADC12. High cycle fatigue tests revealed that 0.6% Mg ADC12 alloy had a fatigue limit of 150 MPa while 0.8% Mg ADC12 had a fatigue limit of 160MPa. It was confirmed that $Mg+Al_2Ca$ added ADC12 alloy achieved finer, spherical eutectic Si particles, and $Al_2Cu$ phases with greater mechanical and fatigue properties since size and distribution of pores and shrinkage cavities decreased as $Mg+Al_2Ca$ content increased.

A Mismatch-Insensitive 12b 60MS/s 0.18um CMOS Flash-SAR ADC (소자 부정합에 덜 민감한 12비트 60MS/s 0.18um CMOS Flash-SAR ADC)

  • Byun, Jae-Hyeok;Kim, Won-Kang;Park, Jun-Sang;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.17-26
    • /
    • 2016
  • This work proposes a 12b 60MS/s 0.18um CMOS Flash-SAR ADC for various systems such as wireless communications and portable video processing systems. The proposed Flash-SAR ADC alleviates the weakness of a conventional SAR ADC that the operation speed proportionally increases with a resolution by deciding upper 4bits first with a high-speed flash ADC before deciding lower 9bits with a low-power SAR ADC. The proposed ADC removes a sampling-time mismatch by using the C-R DAC in the SAR ADC as the combined sampling network instead of a T/H circuit which restricts a high speed operation. An interpolation technique implemented in the flash ADC halves the required number of pre-amplifiers, while a switched-bias power reduction scheme minimizes the power consumption of the flash ADC during the SAR operation. The TSPC based D-flip flop in the SAR logic for high-speed operation reduces the propagation delay by 55% and the required number of transistors by half compared to the conventional static D-flip flop. The prototype ADC in a 0.18um CMOS demonstrates a measured DNL and INL within 1.33LSB and 1.90LSB, with a maximum SNDR and SFDR of 58.27dB and 69.29dB at 60MS/s, respectively. The ADC occupies an active die area of $0.54mm^2$ and consumes 5.4mW at a 1.8V supply.

Digital Calibration Technique for Cyclic ADC based on Digital-Domain Averaging of A/D Transfer Functions (아날로그-디지털 전달함수 평균화기법 기반의 Cyclic ADC의 디지털 보정 기법)

  • Um, Ji-Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.30-39
    • /
    • 2017
  • A digital calibration technique based on digital-domain averaging for cyclic ADC is proposed. The proposed calibration compensates for nonlinearity of ADC due to capacitance mismatch of capacitors in 1.5-bit/stage MDAC. A 1.5-bit/stage MDAC with non-matched capacitors has symmetric residue plots with respect to the ideal residue plot. This intrinsic characteristic of residue plot of MDAC is reflected as symmetric A/D transfer functions. A corrected A/D transfer function can be acquired by averaging two transfer functions with non-linearity, which are symmetric with respect to the ideal analog-digital transfer function. In order to implement the aforementioned averaging operation of analog-digital transfer functions, a 12-bit cyclic ADC of this work defines two operational modes of 1.5-bit/stage MDAC. By operating MDAC as the first operational mode, the cyclic ADC acquires 12.5-bits output code with nonlinearity. For the same sampled input analog voltage, the cyclic ADC acquires another 12.5-bits output code with nonlinearity by operating MDAC as the second operational mode. Since analog-digital transfer functions from each of operational mode of 1.5-bits/stage MDAC are symmetric with respect to the ideal analog-digital transfer function, a corrected 12-bits output code can be acquired by averaging two non-ideal 12.5-bits codes. The proposed digital calibration and 12-bit cyclic ADC are implemented by using a $0.18-{\mu}m$ CMOS process in the form of full custom. The measured SNDR(ENOB) and SFDR are 65.3dB (10.6bits) and 71.7dB, respectively. INL and DNL are measured to be -0.30/-0.33LSB and -0.63/+0.56LSB, respectively.

12-bit 10-MS/s CMOS Pipeline Analog-to-Digital Converter (12-비트 10-MS/s CMOS 파이프라인 아날로그-디지털 변환기)

  • Cho, Se-Hyeon;Jung, Ho-yong;Do, Won-Kyu;Lee, Han-Yeol;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.302-308
    • /
    • 2021
  • A 12-bit 10-MS/s pipeline analog-to-digital converter (ADC) is proposed for image processing applications. The proposed pipeline ADC consists of a sample and hold amplifier, three stages, a 3-bit flash analog-to-digital converter, and a digital error corrector. Each stage is operated by using a 4-bit flash ADC (FADC) and a multiplying digital-to-analog converter (MDAC). The proposed sample and hold amplifier increases the voltage gain using gain boosting for the ADC with high resolution. The proposed pipelined ADC is designed using a 180-nm CMOS process with a supply voltage of 1.8 and it has an effective number of bit (ENOB) of 10.52 bits at sampling rate of 10MS/s for a 1-Vpp differential sinusoidal analog input with frequency of 1 MHz. The measured ENOB is 10.12 bits when the frequency of the sinusoidal analog input signal is a Nyquist frequency of approximately 5 MHz.

An Architecture Design of a Multi-Stage 12-bit High-Speed Pipelined A/D Converter (다단 12-비트 고속 파이프라인 A/D 변환기의 구조 설계)

  • 임신일;이승훈
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.220-228
    • /
    • 1995
  • An optimized 4-stage 12-bit pipelined CMOS analog-to-digital converter (ADC) architecture is proposed to obtain high linearity and high yield. The ADC based on a multiplying digital-to-analog converter (MDAC) selectively employs a binary-weighted-capacitor (BWC) array in the front-end stage and a unit-capacitor (UC) array in the back-end stages to improve integral nonlinearity (INL) and differential nonlinearity (DNL) simultaneously whil maintaining high yield. A digital-domain nonlinear error calibration technique is applied in the first stage of the ADC to improve its accuracy to 12-bit level. The largest DNL error in the mid-point code of the ADC is reduced by avoiding a code-error symmetry observed in a conventional digitally calibrated ADC is reduced by avoiding a code-error symmetry observed in a conventional digitally calibrated ADC is simulated to prove the effectiveness of the proposed ADC architecture.

  • PDF

A 0.16㎟ 12b 30MS/s 0.18um CMOS SAR ADC Based on Low-Power Composite Switching (저전력 복합 스위칭 기반의 0.16㎟ 12b 30MS/s 0.18um CMOS SAR ADC)

  • Shin, Hee-Wook;Jeong, Jong-Min;An, Tai-Ji;Park, Jun-Sang;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.27-38
    • /
    • 2016
  • This work proposes a 12b 30MS/s 0.18um CMOS SAR ADC based on low-power composite switching with an active die area of $0.16mm^2$. The proposed composite switching employs the conventional $V_{CM}$-based switching and monotonic switching sequences while minimizing the switching power consumption of a DAC and the dynamic offset to constrain a linearity of the SAR ADC. Two equally-divided capacitors topology and the reference scaling are employed to implement the $V_{CM}$-based switching effectively and match an input signal range with a reference voltage range in the proposed C-R hybrid DAC. The techniques also simplify the overall circuits and reduce the total number of unit capacitors up to 64 in the fully differential version of the prototype 12b ADC. Meanwhile, the SAR logic block of the proposed SAR ADC employs a simple latch-type register rather than a D flip-flop-based register not only to improve the speed and stability of the SAR operation but also to reduce the area and power consumption by driving reference switches in the DAC directly without any decoder. The measured DNL and INL of the prototype ADC in a 0.18um CMOS are within 0.85LSB and 2.53LSB, respectively. The ADC shows a maximum SNDR of a 59.33dB and a maximum SFDR of 69.83dB at 30MS/s. The ADC consumes 2.25mW at a 1.8V supply voltage.

A 12b 10MS/s CMOS Pipelined ADC Using a Reference Scaling Technique (기준 전압 스케일링을 이용한 12비트 10MS/s CMOS 파이프라인 ADC)

  • Ahn, Gil-Cho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.11
    • /
    • pp.16-23
    • /
    • 2009
  • A 12b 10MS/s pipelined ADC with low DC gain amplifiers is presented. The pipelined ADC using a reference scaling technique is proposed to compensate the gain error in MDACs due to a low DC gain amplifier. To minimize the performance degradation of the ADC due to amplifier offset, the proposed offset trimming circuit is employed m the first-stage MDAC amplifier. Additional reset switches are used in all MDACs to reduce the memory effect caused by the low DC gain amplifier. The measured differential and integral non-linearities of the prototype ADC with 45dB DC gain amplifiers are less than 0.7LSB and 3.1LSB, respectively. The prototype ADC is fabricated in a $0.35{\mu}m$ CMOS process and achieves 62dB SNDR and 72dB SFDR with 2.4V supply and 10MHz sampling frequency while consuming 19mW power.

A 12b 130MS/s 108mW $1.8mm^2$ 0.18um CMOS ADC for High-Quality Video Systems (고화질 영상 시스템 응용을 위한 12비트 130MS/s 108mW $1.8mm^2$ 0.18um CMOS A/D 변환기)

  • Han, Jae-Yeol;Kim, Young-Ju;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.3
    • /
    • pp.77-85
    • /
    • 2008
  • This work proposes a 12b 130MS/s 108mW $1.8mm^2$ 0.18um CMOS ADC for high-quality video systems such as TFT-LCD displays and digital TVs requiring simultaneously high resolution, low power, and small size at high speed. The proposed ADC optimizes power consumption and chip area at the target resolution and sampling rate based on a three-step pipeline architecture. The input SHA with gate-bootstrapped sampling switches and a properly controlled trans-conductance ratio of two amplifier stages achieves a high gain and phase margin for 12b input accuracy at the Nyquist frequency. A signal-insensitive 3D-fully symmetric layout reduces a capacitor and device mismatch of two MDACs. The proposed supply- and temperature- insensitive current and voltage references are implemented on chip with a small number of transistors. The prototype ADC in a 0.18um 1P6M CMOS technology demonstrates a measured DNL and INL within 0.69LSB and 2.12LSB, respectively. The ADC shows a maximum SNDR of 53dB and 51dB and a maximum SFDR of 68dB and 66dB at 120MS/s and 130MS/s, respectively. The ADC with an active die area of $1.8mm^2$ consumes 108mW at 130MS/s and 1.8V.