DOI QR코드

DOI QR Code

Microstructure, Tensile Strength, and High Cycle Fatigue Properties of Mg+Al2Ca added ADC12 (Al-Si-Cu) Alloy

Mg+Al2Ca 첨가 ADC12 (Al-Si-Cu) 합금의 미세조직, 인장 및 고주기 피로 특성

  • Received : 2017.08.21
  • Accepted : 2017.09.05
  • Published : 2017.10.01

Abstract

This study investigated the microstructure, tensile strength, and high cycle fatigue properties of ADC12 aluminum alloys with different $Mg+Al_2Ca$ contents manufactured using die casting process. Microstructural observation identified the presence of ${\alpha}-Al$, eutectic Si, $Al_2Cu$, and Fe-intermetallic phases. The increase of $Mg+Al_2Ca$ content resulted in finer pore size and decreased pore distribution. Room temperature tensile strength tests were conducted at strain rate of $1{\times}10^{-3}/sec$. For 0.6%Mg ADC12, measured UTS, YS, and El were 305.2MPa, 157.0MPa, and 2.7%, respectively. For 0.8%Mg ADC12, measured UTS, YS, and El were 311.2 MPa, 159.4 MPa, and 2.4%, respectively. Therefore, 0.8% ADC12 alloy had higher strength and slightly decreased elongation compared to 0.6% Mg ADC12. High cycle fatigue tests revealed that 0.6% Mg ADC12 alloy had a fatigue limit of 150 MPa while 0.8% Mg ADC12 had a fatigue limit of 160MPa. It was confirmed that $Mg+Al_2Ca$ added ADC12 alloy achieved finer, spherical eutectic Si particles, and $Al_2Cu$ phases with greater mechanical and fatigue properties since size and distribution of pores and shrinkage cavities decreased as $Mg+Al_2Ca$ content increased.

Keywords

References

  1. W. S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. DE Smet, A. Hazler, A. Vieregge, 2000, Recent Development in Aluminium Alloys for the Automotive Industry, Mater. Sci. Eng. A, Vol. 280, No. 1, pp. 37-49. https://doi.org/10.1016/S0921-5093(99)00653-X
  2. S. Ashley, 1997, Getting a Hold on Mechatronics, Mech. Eng., Vol. 119, No. 5, pp. 56-61.
  3. K.-T. Kim, 2011, High Strength Aluminum Alloy for Die Casting, J. Kor. Fou. Soc., Vol. 31, No. 3, pp. 101-105. https://doi.org/10.7777/jkfs.2011.31.3.101
  4. J. H. Seo, S. K. Kim, 2011, Mechanical Properties of 0.25-0.65wt% CaO Added AM60B Eco-Mg Die Castings at Room and Elevated Temperatures, J. Kor. Fou. Soc., Vol. 31, No. 1, pp. 11-17. https://doi.org/10.7777/jkfs.2011.31.1.011
  5. J. H. Seo, H. K. Lim, S. K. Kim, 2010, Microstructures and Mechanical Properties of Die Cast 0.7wt% CaO Added Eco-Mg Parts, J. Kor. Fou. Soc., Vol. 30, No. 6, pp. 224-230.
  6. S. J. Kim, S. K. Hyun, S. K. Kim, Y. O. Yoon, 2014, Modification Behavior of Eutectic Si with Varying Heat Treatment Conditions in A356 Alloy with $Al_2Ca$, J. Kor. Fou. Soc., Vol. 34, No. 5, pp. 156-161. https://doi.org/10.7777/jkfs.2014.34.5.156
  7. S. H. Kim, K. S. Kim, S. K. Kim, Y. O. Yoon, K. S. Cho, K. A. Lee, 2013, Microstructure and Mechanical Properties of Eco-2024 Aluminium Alloy, Adv. Mater. Res., Vol. 602-604, pp. 623-626.
  8. G. Y. Kim, K. S. Kim, J. C. Park, S. K, Kim, Y. K. Yoon, K. A. Lee, 2014, High Cycle Fatigue and Fatigue Crack Propagation Behaviors of Modified A7075-T73 Alloy, Korean J. Met. Mater., Vol. 52, No. 4, pp. 283-291. https://doi.org/10.3365/KJMM.2014.52.4.283
  9. C. H. Caceres, B. I. Selling, 1996, Casting defects and the tensile properties of an Al-Si-Mg alloy, Mater. Sci. Eng. A, Vol. 32, No. 1-2, pp. 109-166.
  10. K. Nakata, Y. G. Kim, H. Fujii, T. Tsumuram T. Komazaki, 2006, Improvement of Mechanical Properties of Aluminum Die Casting Alloy by Multi-Pass Friction Stir Processing, Mater. Sci. Eng. A, Vol. 437, No.2, pp. 274-280. https://doi.org/10.1016/j.msea.2006.07.150
  11. M. Q. Cong, Z. Q. Li, J. S. Liu, M. Y. Yan, K. Chen, Y. D. Sun, M. Huang, C. Wang, B. P. Ding, S. L. Wang, 2012, Effect of Ca on the Microstructure and Tensile Properties of Mg-Zn-Si Alloys at Ambient and Elevated Temperature, J. Alloys Comp., Vol. 539, pp. 168-173. https://doi.org/10.1016/j.jallcom.2012.05.047
  12. G. Y. Kim, K. S. Kim, J. C. Park, S. K. Kim, Y. O. Yoon, K. A. Lee, 2014, High Cycle Fatigue and Fatigue Crack Propagation Behaviors of Modified A7075-T73 Alloy, Korean J. Met. Mater., Vol. 52, No. 4, pp. 283-291. https://doi.org/10.3365/KJMM.2014.52.4.283
  13. Y. Zeng, B. Jiang, D. Huang, J. Dai, F. Pan, 2013, Effect of Ca Addition on Grain Refinement of Mg-9Ki-1Al Alloy, J. Magnesium Alloys, Vol. 1, No. 4, pp. 297-302. https://doi.org/10.1016/j.jma.2013.12.002
  14. M. Liu, Q. Wang, X. Zeng, G. Yuan, Y. Zhu, W. Ding, 2005, Mechanical Properties and Creep Behavior of Mg-Al-Ca Alloys, Mater. Sci. Forum, Vol. 488-489, pp. 763-766. https://doi.org/10.4028/www.scientific.net/MSF.488-489.763
  15. Http://www.matweb.com/search/DataSheet.aspx.
  16. C. H. Caceres, C. J. Davidson, J. R. Griffiths, 1995, The Deformation and Fracture Behaviour of an A1-Si-Mg Casting Alloy, Mater. Sci. Eng. A, Vol. 197, No. 2, pp. 171-179. https://doi.org/10.1016/0921-5093(94)09775-5
  17. J. Z. YI, Y. X. Gao, P. D. Lee, H. M. Flower, T. C. Lindley, 2003, Scatter in Fatigue Life due to Effects of Porosity in Cast A356-T6 Aluminum-silicon Alloys, Met. Mater. Trans., Vol. 34, No. 9, pp. 1879-1890. https://doi.org/10.1007/s11661-003-0153-6
  18. Q. G. Wang, C. J. Davidson, J. R. Griffiths, P. N. Crepeau, 2006, Oxide Films, Pores and the Fatigue Lives of Cast Aluminum Alloys, Met. Mater. Trans., Vol. 37, No. 6, pp. 887-895. https://doi.org/10.1007/BF02735010