• 제목/요약/키워드: 3-dimensional Lie groups

검색결과 9건 처리시간 0.017초

LEFT INVARIANT LORENTZIAN METRICS AND CURVATURES ON NON-UNIMODULAR LIE GROUPS OF DIMENSION THREE

  • Ku Yong Ha;Jong Bum Lee
    • 대한수학회지
    • /
    • 제60권1호
    • /
    • pp.143-165
    • /
    • 2023
  • For each connected and simply connected three-dimensional non-unimodular Lie group, we classify the left invariant Lorentzian metrics up to automorphism, and study the extent to which curvature can be altered by a change of metric. Thereby we obtain the Ricci operator, the scalar curvature, and the sectional curvatures as functions of left invariant Lorentzian metrics on each of these groups. Our study is a continuation and extension of the previous studies done in [3] for Riemannian metrics and in [1] for Lorentzian metrics on unimodular Lie groups.

NILPOTENCY OF THE RICCI OPERATOR OF PSEUDO-RIEMANNIAN SOLVMANIFOLDS

  • Huihui An;Shaoqiang Deng;Zaili Yan
    • 대한수학회보
    • /
    • 제61권3호
    • /
    • pp.867-873
    • /
    • 2024
  • A pseudo-Riemannian solvmanifold is a solvable Lie group endowed with a left invariant pseudo-Riemannian metric. In this short note, we investigate the nilpotency of the Ricci operator of pseudo-Riemannian solvmanifolds. We focus on a special class of solvable Lie groups whose Lie algebras can be expressed as a one-dimensional extension of a nilpotent Lie algebra ℝD⋉n, where D is a derivation of n whose restriction to the center of n has at least one real eigenvalue. The main result asserts that every solvable Lie group belonging to this special class admits a left invariant pseudo-Riemannian metric with nilpotent Ricci operator. As an application, we obtain a complete classification of three-dimensional solvable Lie groups which admit a left invariant pseudo-Riemannian metric with nilpotent Ricci operator.

THE MODULI SPACES OF LORENTZIAN LEFT-INVARIANT METRICS ON THREE-DIMENSIONAL UNIMODULAR SIMPLY CONNECTED LIE GROUPS

  • Boucetta, Mohamed;Chakkar, Abdelmounaim
    • 대한수학회지
    • /
    • 제59권4호
    • /
    • pp.651-684
    • /
    • 2022
  • Let G be an arbitrary, connected, simply connected and unimodular Lie group of dimension 3. On the space 𝔐(G) of left-invariant Lorentzian metrics on G, there exists a natural action of the group Aut(G) of automorphisms of G, so it yields an equivalence relation ≃ on 𝔐(G), in the following way: h1 ≃ h2 ⇔ h2 = 𝜙*(h1) for some 𝜙 ∈ Aut(G). In this paper a procedure to compute the orbit space Aut(G)/𝔐(G) (so called moduli space of 𝔐(G)) is given.

LEFT-INVARIANT MINIMAL UNIT VECTOR FIELDS ON THE SEMI-DIRECT PRODUCT Rn

  • Yi, Seung-Hun
    • 대한수학회보
    • /
    • 제47권5호
    • /
    • pp.951-960
    • /
    • 2010
  • We provide the set of left-invariant minimal unit vector fields on the semi-direct product $\mathbb{R}^n\;{\rtimes}_p\mathbb{R}$, where P is a nonsingular diagonal matrix and on the 7 classes of 4-dimensional solvable Lie groups of the form $\mathbb{R}^3\;{\rtimes}_p\mathbb{R}$ which are unimodular and of type (R).

ISOMETRY GOUP SO(1,2)

  • Kim, Sung-Sook;Shin, Joon-Kook
    • 대한수학회논문집
    • /
    • 제11권4호
    • /
    • pp.1055-1059
    • /
    • 1996
  • We characterize the left invariant Riemannian metrics on SO(1,2) which give rise to 3- or 4-dimensional isometry groups.

  • PDF

UNIMODULAR GROUPS OF TYPE ℝ3 ⋊ ℝ

  • Lee, Jong-Bum;Lee, Kyung-Bai;Shin, Joon-Kook;Yi, Seung-Hun
    • 대한수학회지
    • /
    • 제44권5호
    • /
    • pp.1121-1137
    • /
    • 2007
  • There are 7 types of 4-dimensional solvable Lie groups of the form ${\mathbb{R}^3}\;{\times}_{\varphi}\;{\mathbb{R}}$ which are unimodular and of type (R). They will have left. invariant Riemannian metrics with maximal symmetries. Among them, three nilpotent groups $({\mathbb{R}^4},\;Nil^3\;{\times}\;{\mathbb{R}\;and\;Nil^4)$ are well known to have lattices. All the compact forms modeled on the remaining four solvable groups $Sol^3\;{\times}\;{\mathbb{R}},\;Sol_0^4,\;Sol_0^'4\;and\;Sol_{\lambda}^4$ are characterized: (1) $Sol^3\;{\times}\;{\mathbb{R}}$ has lattices. For each lattice, there are infra-solvmanifolds with holonomy groups 1, ${\mathbb{Z}}_2\;or\;{\mathbb{Z}}_4$. (2) Only some of $Sol_{\lambda}^4$, called $Sol_{m,n}^4$, have lattices with no non-trivial infra-solvmanifolds. (3) $Sol_0^{'4}$ does not have a lattice nor a compact form. (4) $Sol_0^4$ does not have a lattice, but has infinitely many compact forms. Thus the first Bieberbach theorem fails on $Sol_0^4$. This is the lowest dimensional such example. None of these compact forms has non-trivial infra-solvmanifolds.

INFRA-SOLVMANIFOLDS OF Sol14

  • LEE, KYUNG BAI;THUONG, SCOTT
    • 대한수학회지
    • /
    • 제52권6호
    • /
    • pp.1209-1251
    • /
    • 2015
  • The purpose of this paper is to classify all compact manifolds modeled on the 4-dimensional solvable Lie group $Sol_1^4$, and more generally, the crystallographic groups of $Sol_1^4$. The maximal compact subgroup of Isom($Sol_1^4$) is $D_4={\mathbb{Z}}_4{\rtimes}{\mathbb{Z}}_2$. We shall exhibit an infra-solvmanifold of $Sol_1^4$ whose holonomy is $D_4$. This implies that all possible holonomy groups do occur; the trivial group, ${\mathbb{Z}}_2$ (5 families), ${\mathbb{Z}}_4$, ${\mathbb{Z}}_2{\times}{\mathbb{Z}}_2$ (5 families), and ${\mathbb{Z}}_4{\rtimes}{\mathbb{Z}}_2$ (2 families).