INFRA-SOLVMANIFOLDS OF Sol $_{1}{ }^{4}$

Kyung Bai Lee and Scott Thuong

Abstract

The purpose of this paper is to classify all compact manifolds modeled on the 4-dimensional solvable Lie group Sol_{1}^{4}, and more generally, the crystallographic groups of $\mathrm{Sol}_{1}{ }^{4}$. The maximal compact subgroup of $\operatorname{Isom}\left(\operatorname{Sol}_{1}^{4}\right)$ is $D_{4}=\mathbb{Z}_{4} \rtimes \mathbb{Z}_{2}$. We shall exhibit an infra-solvmanifold of $\mathrm{Sol}_{1}{ }^{4}$ whose holonomy is D_{4}. This implies that all possible holonomy groups do occur; the trivial group, \mathbb{Z}_{2} (5 families), $\mathbb{Z}_{4}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ (5 families), and $\mathbb{Z}_{4} \rtimes \mathbb{Z}_{2}$ (2 families).

The 4 -dimensional Lie group $\mathrm{Sol}_{1}{ }^{4}$ is the subgroup of $\mathrm{GL}(3, \mathbb{R})$ defined as

$$
\mathrm{Sol}_{1}^{4}=\left\{\left.\left[\begin{array}{ccc}
1 & x & z \\
0 & e^{u} & y \\
0 & 0 & 1
\end{array}\right] \right\rvert\, x, y, z, u \in \mathbb{R}\right\}
$$

The nilradical of $\mathrm{Sol}_{1}{ }^{4}$ is the 3-dimensional Heisenberg group Nil (the elements of Sol_{1}^{4} with $u=0$). It has 1 -dimensional center (the elements of $\mathrm{Sol}_{1}{ }^{4}$ with $x=y=u=0$), and the quotient of $\mathrm{Sol}_{1}{ }^{4}$ by the center is isomorphic to Sol ${ }^{3}$. Recall that both Nil and Sol^{3} are model spaces for 3-dimensional geometry. Let C be a maximal compact subgroup of $\operatorname{Aut}\left(\mathrm{Sol}_{1}^{4}\right)$. A cocompact discrete subgroup

$$
\Pi \subset \operatorname{Sol}_{1}^{4} \rtimes C
$$

is a crystallographic group of $\mathrm{Sol}_{1}{ }^{4}$. The motivation for this arises from the crystallographic groups of Euclidean space \mathbb{R}^{n}, that is, the cocompact discrete subgroups of $\operatorname{Isom}\left(\mathbb{R}^{n}\right)=\mathbb{R}^{n} \rtimes \mathrm{O}(n, \mathbb{R})$. In general, the classification of crystallographic groups of nilpotent Lie groups, or certain well-behaved solvable Lie groups (such as Sol_{1}^{4}), is an important question. For example, crystallographic groups of \mathbb{R}^{n} are classified for $n \leq 4$. See [1] for a classification. Dekimpe provides a classification of crystallographic groups of 4-dimensional nilpotent Lie groups in [5]. A classification of crystallographic groups of Sol^{3} is given by K. Y. Ha and J. B. Lee in [7].

Since the Bieberbach theorems generalize to $\mathrm{Sol}_{1}^{4}[6]$, the translation subgroup of $\Pi, \Pi \cap \mathrm{Sol}_{1}^{4}$, is of finite index in Π, and is a cocompact discrete

[^0]subgroup (that is, a lattice) of $\mathrm{Sol}_{1}{ }^{4}$. Fortunately for us, the maximal compact subgroup C is very small. It is D_{4}, the dihedral group of 8 elements. Therefore, all crystallographic groups of Sol_{1}^{4} are extensions of a lattice by a subgroup Φ of the finite group D_{4}. On the other hand, there are many non-isomorphic lattices, which makes things quite complicated. We shall classify the crystallographic groups of Sol_{1}^{4} (this will include the classification of crystallographic groups of Sol^{3}).

A crystallographic group $\Pi \subset \mathrm{Sol}_{1}^{4} \rtimes C$ acts naturally on Sol_{1}^{4}; that is, for $(a, \alpha) \in \Pi, x \in \operatorname{Sol}_{1}^{4},(a, \alpha) \cdot x=a \alpha(x)$. The orbit space of Sol_{1}^{4} by the action of a torsion free crystallographic group $\Pi, \Pi \backslash \operatorname{Sol}_{1}{ }^{4}$, is an infra-solvmanifold of $\mathrm{Sol}_{1}{ }^{4}$. By the generalized Bieberbach theorems, two infra-solvmanifolds of $\mathrm{Sol}_{1}{ }^{4}$, say $\Pi \backslash \mathrm{Sol}_{1}^{4}$ and $\Pi^{\prime} \backslash \mathrm{Sol}_{1}{ }^{4}$, are (affinely) diffeomorphic precisely when Π and Π^{\prime} are isomorphic. We shall exhibit an infra-solvmanifold of $\mathrm{Sol}_{1}{ }^{4}$ with maximal holonomy D_{4}, the largest possible. This implies that all possible holonomy groups do occur; the trivial group, \mathbb{Z}_{2} (5 families), $\mathbb{Z}_{4}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ (5 families), and $\mathbb{Z}_{4} \rtimes \mathbb{Z}_{2}$ (2 families).

This paper is organized as follows. In Section 1, we determine Aut $\left(\mathrm{Sol}_{1}^{4}\right)$, and show the dihedral group D_{4} of order 8 is the maximal compact subgroup.

In Section 2, we recall the classification of lattices of Sol^{3} : all are isomorphic to $\mathbb{Z}^{2} \rtimes_{\mathcal{S}} \mathbb{Z}$, for some $\mathcal{S} \in \mathrm{SL}(2, \mathbb{Z}), \operatorname{tr}(\mathcal{S})>2$.

In Section 3, we recall the result of [7] that any crystallographic group Q of Sol^{3} can be viewed as an extension

$$
1 \rightarrow \mathbb{Z}^{2} \rightarrow Q \rightarrow \mathbb{Z}_{\Phi} \rightarrow 1
$$

where \mathbb{Z}_{Φ} itself is an extension $1 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}_{\Phi} \rightarrow \Phi \rightarrow 1$ for $\Phi \subset D_{4}$. Using the results of [7], Theorem 3.3 classifies all possible abstract kernels $\varphi: \mathbb{Z}_{\Phi} \rightarrow$ $\mathrm{GL}(2, \mathbb{Z})$.

In Section 4, we study the classification of Sol ${ }^{3}$-crystallographic groups, in a similar fashion to that in [7]. We show an isomorphism between $H_{\varphi}^{2}\left(\mathbb{Z}_{\Phi}, \mathbb{Z}^{2}\right)$ and $H^{1}(\Phi, \operatorname{Coker}(I-\mathcal{S}))$, which greatly simplifies the calculations in [7]. The list is deferred until Section 6.

In Section 5, the classification of Sol_{1}^{4}-lattices as lifts of Sol^{3}-lattices is given.
In Section 6, the main classification theorem of crystallographic groups of $\mathrm{Sol}_{1}{ }^{4}$, Theorem 6.13, is proved. We find 8 categories; some are never torsion free, some are always torsion free, and some contain mixed cases. We determine this by examining the action of a crystallographic group on $\mathrm{Sol}_{1}{ }^{4}$. This theorem also serves as a classification of Sol^{3}-crystallographic groups, by considering the groups modulo the center of $\mathrm{Sol}_{1}{ }^{4}$.

In Section 7, we first show that $\mathrm{Sol}_{1}{ }^{4}$ admits an affine structure. It is much easier to represent crystallographic groups using this affine structure. We exhibit two examples of infra- $\mathrm{Sol}_{1}{ }^{4}$ manifolds. The first one is where the lattice is "non-standard". The second one is a space with the maximal holonomy group D_{4}. Both yield non-orientable manifolds.

All calculations were done by the program Mathematica [17], and were handchecked.

1. The automorphism groups of Sol^{3} and Sol_{1}^{4}

The group Sol ${ }^{3}=\mathbb{R}^{2} \rtimes \mathbb{R}$ has group operation

$$
(\mathbf{x}, u)(\mathbf{y}, v)=\left(\mathbf{x}+E^{u} \mathbf{y}, u+v\right), \text { where } E^{u}=\left[\begin{array}{cc}
e^{-u} & 0 \\
0 & e^{u}
\end{array}\right]
$$

Let α be an automorphism of Sol ${ }^{3}$. Since \mathbb{R}^{2} is the nilradical (maximal normal nilpotent subgroup) of Sol^{3}, α induces an automorphism A of \mathbb{R}^{2}, and hence, also an automorphism \bar{A} of the quotient \mathbb{R}. Thus, there is a homomorphism

$$
\begin{aligned}
\operatorname{Aut}\left(\mathrm{Sol}^{3}\right) & \longrightarrow \operatorname{Aut}\left(\mathbb{R}^{2}\right) \times \operatorname{Aut}(\mathbb{R}) \\
\alpha & \longrightarrow(A, \bar{A})
\end{aligned}
$$

The following is known.
Proposition 1.1 ([7, p. 2]). We have $\operatorname{Aut}\left(\operatorname{Sol}^{3}\right) \cong \operatorname{Sol}^{3} \rtimes\left(\mathbb{R}^{+} \times D_{4}\right)$, where D_{4} is the dihedral group with 8 elements. Under this isomorphism, Sol^{3} acts as inner automorphisms, and $\left(\mathbb{R}^{+} \times D_{4}\right)$ is identified with the group of matrices $\mathbb{R}^{+} \times D_{4}=\left\langle k\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right], k\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\right\rangle, k>0,\left(k=1\right.$ yields $\left.D_{4}\right), A \in \mathbb{R}^{+} \times D_{4}$ acts on Sol^{3} as

$$
A:\left(\left[\begin{array}{l}
x \\
y
\end{array}\right], u\right) \longmapsto\left(A\left[\begin{array}{l}
x \\
y
\end{array}\right], \bar{A} u\right)
$$

($\bar{A}=+1$ if A is diagonal, $\bar{A}=-1$ otherwise.)
We now turn our attention to $\operatorname{Sol}_{1}^{4}$, embedded in $\operatorname{GL}(3, \mathbb{R})$ as

$$
\mathrm{Sol}_{1}^{4}=\left\{s(x, y, z, u): \left.=\left[\begin{array}{ccc}
1 & x & z \\
0 & e^{u} & y \\
0 & 0 & 1
\end{array}\right] \right\rvert\, x, y, z, u \in \mathbb{R}\right\}
$$

By writing every element as a product

$$
\left[\begin{array}{ccc}
1 & e^{u} x & z \\
0 & e^{u} & y \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{u} & 0 \\
0 & 0 & 1
\end{array}\right]:=\mathbf{x e}^{u}
$$

we see that $\mathrm{Sol}_{1}{ }^{4}$ is the semi-direct product $\mathrm{Nil} \rtimes \mathbb{R}$, where

$$
(\mathbf{x}, u) \cdot(\mathbf{y}, v)=\left(\mathbf{x} \cdot \mathbf{e}^{u} \mathbf{y} \mathbf{e}^{-u}, u+v\right)
$$

Nil is the nil-radical of $\mathrm{Sol}_{1}{ }^{4}$, and the center of Nil, $\mathbb{R}=\{s(0,0, z, 0) \mid z \in$ $\mathbb{R}\}$, is also the center of Sol_{1}^{4}. Evidently, $\mathrm{Sol}_{1}{ }^{4} / \mathbb{R} \cong \mathrm{Sol}^{3}$. Thus we have a
commuting diagram with exact rows and columns:

The rows split, but the columns do not.
An automorphism $\hat{\alpha}$ of Sol_{1}^{4} induces automorphisms of the center \mathbb{R} and the quotient Sol ${ }^{3}$:
$\operatorname{Aut}\left(\operatorname{Sol}_{1}^{4}\right) \longrightarrow \operatorname{Aut}\left(\mathcal{Z}\left(\mathrm{Sol}_{1}^{4}\right)\right) \times \operatorname{Aut}\left(\mathrm{Sol}^{3}\right) \longrightarrow \operatorname{Aut}(\mathbb{R}) \times \operatorname{Aut}\left(\mathbb{R}^{2}\right) \times \operatorname{Aut}(\mathbb{R})$

$$
\hat{\alpha} \longrightarrow(\hat{A}, \alpha) \quad \longrightarrow \quad(\hat{A}, A, \bar{A})
$$

Similar to the case of Nil, \hat{A} is multiplication by $\operatorname{det}(A)$. Conversely, every automorphism of Sol^{3} induces an automorphism of Sol_{1}^{4}, and $\operatorname{Aut}\left(\mathrm{Sol}^{3}\right)$ lifts to a subgroup of $\operatorname{Aut}\left(\mathrm{Sol}_{1}^{4}\right)$. More specifically, we have:

Proposition 1.2.

$$
\begin{aligned}
\operatorname{Aut}\left(\mathrm{Sol}_{1}^{4}\right) \cong \mathbb{R} \rtimes \operatorname{Aut}\left(\mathrm{Sol}^{3}\right) & \cong \mathbb{R} \rtimes\left(\mathrm{Sol}^{3} \rtimes\left(\mathbb{R}^{+} \times D_{4}\right)\right) \\
& \cong\left(\mathbb{R} \times \mathrm{Sol}^{3}\right) \rtimes\left(\mathbb{R}^{+} \times D_{4}\right)
\end{aligned}
$$

where $\operatorname{Sol}^{3} \cong \operatorname{Inn}\left(\operatorname{Sol}_{1}^{4}\right)$. The group \mathbb{R} is the kernel of the homomorphism

$$
\operatorname{Aut}\left(\operatorname{Sol}_{1}^{4}\right) \rightarrow \operatorname{Aut}\left(\mathrm{Sol}^{3}\right)
$$

The automorphism $\hat{k}, k \in \mathbb{R}$, is given by

$$
\hat{k}:\left[\begin{array}{ccc}
1 & e^{u} x & z \\
0 & e^{u} & y \\
0 & 0 & 1
\end{array}\right] \longmapsto\left[\begin{array}{ccc}
1 & e^{u} x & z+k u \\
0 & e^{u} & y \\
0 & 0 & 1
\end{array}\right] .
$$

This commutes with the inner automorphisms of Sol_{1}^{4}, and $A \in \mathbb{R}^{+} \times D_{4}$ acts on this \mathbb{R} by ${ }^{A} \hat{k}=(\hat{A} \cdot \bar{A}) \cdot \hat{k}$.
Proof. We have seen that the image of $\operatorname{Aut}\left(\operatorname{Sol}_{1}^{4}\right)$ under

$$
\operatorname{Aut}\left(\operatorname{Sol}_{1}^{4}\right) \rightarrow \operatorname{Aut}(\mathbb{R}) \times \operatorname{Aut}\left(\operatorname{Sol}^{3}\right) \rightarrow \operatorname{Aut}(\mathbb{R}) \times \operatorname{Aut}\left(\mathbb{R}^{2}\right) \times \operatorname{Aut}(\mathbb{R})
$$

is determined by its image in $\operatorname{Aut}\left(\mathbb{R}^{2}\right)$. On the other hand, $\operatorname{Aut}\left(\mathrm{Sol}^{3}\right)$ lifts back to $\operatorname{Aut}\left(\mathrm{Sol}_{1}^{4}\right)$. Recall the isomorphism $\operatorname{Aut}\left(\mathrm{Sol}^{3}\right) \cong \operatorname{Sol}^{3} \rtimes\left(\mathbb{R}^{+} \times D_{4}\right)$ given in

Proposition 1.1. First, $\mathrm{Sol}^{3} \subset \mathrm{Sol}^{3} \rtimes\left(\mathbb{R}^{+} \times D_{4}\right)$, corresponding to the inner automorphisms of Sol^{3} lifts to the inner automorphisms of $\mathrm{Aut}\left(\mathrm{Sol}_{1}^{4}\right)$. Note that $\operatorname{Inn}\left(\mathrm{Sol}_{1}^{4}\right)=\operatorname{Inn}\left(\mathrm{Sol}^{3}\right) \cong \mathrm{Sol}^{3}$.

For the subgroup $\mathbb{R}^{+} \times D_{4}$ of $\operatorname{Aut}\left(\operatorname{Sol}^{3}\right)$, we have that a diagonal or offdiagonal matrix $A \in \mathrm{GL}(2, \mathbb{R})$ can be lifted to an automorphism of $\mathrm{Sol}_{1}{ }^{4}$:
$A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]:\left[\begin{array}{ccc}1 & e^{u} x & z \\ 0 & e^{u} & y \\ 0 & 0 & 1\end{array}\right] \longmapsto\left[\begin{array}{ccc}1 & e^{\bar{A} u}(a x+b y) & \frac{1}{2}\left(a b x^{2}+2 b c x y+c d y^{2}+2(a d-b c) z\right) \\ 0 & e^{\bar{A} u} & (c x+d y) \\ 0 & 0 & 1\end{array}\right]$.
This formula is valid only for the cases when either $a=d=0(\bar{A}=-1)$ or $b=c=0(\bar{A}=+1)$.

The kernel of $\operatorname{Aut}\left(\mathrm{Sol}_{1}^{4}\right) \rightarrow \operatorname{Aut}\left(\mathrm{Sol}^{3}\right)$ is the group of crossed homomorphisms $Z^{1}\left(\mathrm{Sol}^{3}, \mathbb{R}\right)$. Since Sol^{3} acts trivially on the center \mathbb{R}, the crossed homomorphisms become genuine homomorphisms, and

$$
Z^{1}\left(\operatorname{Sol}^{3}, \mathbb{R}\right)=\operatorname{hom}\left(\operatorname{Sol}^{3}, \mathbb{R}\right)=\operatorname{hom}(\mathbb{R}, \mathbb{R})=\mathbb{R}
$$

Thus we have a splitting $\operatorname{Aut}\left(\operatorname{Sol}_{1}^{4}\right) \cong \mathbb{R} \rtimes \operatorname{Aut}\left(\mathrm{Sol}^{3}\right)$.
Proposition 1.3. The dihedral group $D_{4}=\left\langle\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\right\rangle$ is the maximal compact subgroup of both $\operatorname{Aut}\left(\mathrm{Sol}^{3}\right)$ and $\operatorname{Aut}\left(\mathrm{Sol}_{1}^{4}\right)$. Furthermore, it is unique up to conjugation.
Proof. The statement on uniqueness follows from [14, Theorem 3.1].
Remark 1.4. Up to the $\mathbb{R}=Z^{1}\left(\operatorname{Sol}^{3}, \mathbb{R}\right)$-factor, $\operatorname{Aut}\left(\operatorname{Sol}_{1}^{4}\right)=\operatorname{Aut}\left(\operatorname{Sol}^{3}\right)$, and we may denote an automorphism in $D_{4} \subset \operatorname{Aut}\left(\mathrm{Sol}_{1}^{4}\right)$ by a 2×2 matrix A only (suppressing even \bar{A} and \hat{A}) when there is no confusion likely.
Remark 1.5. Both Sol^{3} and $\mathrm{Sol}_{1}{ }^{4}$ admit a left-invariant metric so that

$$
\operatorname{Isom}\left(\operatorname{Sol}^{3}\right)=\operatorname{Sol}^{3} \rtimes D_{4} \text { and } \operatorname{Isom}\left(\mathrm{Sol}_{1}^{4}\right)=\operatorname{Sol}_{1}^{4} \rtimes D_{4}
$$

2. The Lattices of Sol

Let $\mathcal{S}=\left[\begin{array}{cc}\sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22}\end{array}\right] \in \mathrm{SL}(2, \mathbb{Z})$ with $\operatorname{tr}(\mathcal{S})>2$. Such a matrix has two positive eigenvalues satisfying $\lambda+\frac{1}{\lambda}>0$. Then we can find a diagonalizing matrix $P \in \mathrm{GL}(2, \mathbb{R})$, with $\operatorname{det}(P)=1$, diagonalizing $\mathcal{S}: P S P^{-1}=\Delta$.
Notation 2.1. For uniformity of statements, we always take

$$
\Delta=\left[\begin{array}{cc}
\frac{1}{\lambda} & 0 \\
0 & \lambda
\end{array}\right] \text { with } \frac{1}{\lambda}<1<\lambda
$$

With such P and Δ for \mathcal{S}, the relation $P S P^{-1}=\Delta$ allows us to embed the semidirect product $\mathbb{Z}^{2} \rtimes_{\mathcal{S}} \mathbb{Z}$ as a lattice of Sol^{3},

$$
\left.\begin{array}{rl}
\phi: \mathbb{Z}^{2} \rtimes_{\mathcal{S}} \mathbb{Z} & \longrightarrow
\end{array} \mathrm{Sol}^{3}{ }^{\longrightarrow}\left[\begin{array}{l}
 \tag{2.1}\\
\\
\left(\left[\begin{array}{l}
x \\
y
\end{array}\right], u\right)
\end{array}\right], u \ln (\lambda)\right) .
$$

It maps the generators as follows:

$$
\begin{align*}
& \mathbf{e}_{1}=\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right], 0\right) \longmapsto \mathbf{t}_{1}=P \mathbf{e}_{1} \\
& \mathbf{e}_{2}=\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right], 0\right) \longmapsto \mathbf{t}_{2}=P \mathbf{e}_{2} \tag{2.2}\\
& \mathbf{e}_{3}=\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right], 1\right) \longmapsto \mathbf{t}_{3}=(\mathbf{0}, \ln (\lambda)) .
\end{align*}
$$

We denote image of $\mathbb{Z}^{2} \rtimes_{\mathcal{S}} \mathbb{Z}$ by $\Gamma_{\mathcal{S}}=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}\right\rangle \subset$ Sol 3, which has relations

$$
\begin{equation*}
\left[\mathbf{t}_{1}, \mathbf{t}_{2}\right]=1, \quad \mathbf{t}_{3} \cdot \mathbf{t}_{1} \cdot \mathbf{t}_{3}^{-1}=\mathbf{t}_{1}^{\sigma_{11}} \cdot \mathbf{t}_{2}^{\sigma_{21}}, \quad \mathbf{t}_{3} \cdot \mathbf{t}_{2} \cdot \mathbf{t}_{3}^{-1}=\mathbf{t}_{1}^{\sigma_{12}} \cdot \mathbf{t}_{2}^{\sigma_{22}} \tag{2.3}
\end{equation*}
$$

Notation 2.2. We shall refer to a lattice of Sol 3 generated by $\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}$ of the form in assignment (2.2) as a standard lattice of Sol^{3}.

Conversely, any lattice of Sol^{3} is isomorphic to such a $\Gamma_{\mathcal{S}}$ as the following proposition shows. We say $\mathcal{S}, \mathcal{S}^{\prime} \in \mathrm{SL}(2, \mathbb{Z})$ are weakly conjugate if and only if \mathcal{S}^{\prime} is conjugate, via an element of $\mathrm{GL}(2, \mathbb{Z})$, to \mathcal{S} or \mathcal{S}^{-1}.
Proposition 2.3 ([7, Theorem 3.4]). There is a one-one correspondence between the isomorphism classes of Sol^{3}-lattices and the weak-conjugacy classes of $\mathcal{S} \in \mathrm{SL}(2, \mathbb{Z})$ with $\operatorname{tr}(\mathcal{S})>2$. Therefore, any lattice of Sol^{3} is conjugate to $\Gamma_{\mathcal{S}}$, for some \mathcal{S}, by an element of $\mathrm{Aff}\left(\mathrm{Sol}^{3}\right)=\mathrm{Sol}^{3} \rtimes \operatorname{Aut}\left(\mathrm{Sol}^{3}\right)$.

Proof. The isomorphism statement follows from Theorem 3.4 in [7]. The conjugacy statement follows from Theorem 3.1 below. This can also be seen by direct computation, as we do for $\mathrm{Sol}_{1}{ }^{4}$ lattices in Proposition 6.1.

3. Compatibility of \mathcal{S} with automorphisms

Both Sol^{3} and $\mathrm{Sol}_{1}{ }^{4}$ are type (R) Lie groups that admit generalizations of Bieberbach's theorems for crystallographic groups of $\mathbb{R}^{n}[6,11]$.

Theorem 3.1 ([11, Theorem 8.3.4 and Theorem 8.4.3]). Let G denote either Sol^{3} or Sol_{1}^{4}, and C denote a maximal compact subgroup of $\operatorname{Aut}(G)$.
(1) For a crystallographic group $\Pi \subset G \rtimes C$ of G, the translation subgroup $\Pi \cap G$ is a lattice of G, with $\Phi:=\Pi /(\Pi \cap G) \subset C$ finite, the holonomy group.
(2) Any isomorphism between two crystallographic groups of G is conjugation by an element of $\operatorname{Aff}(G)=G \rtimes \operatorname{Aut}(G)$.

When G is either Sol^{3} or Sol_{1}^{4}, C is conjugate in $\operatorname{Aut}(G)$ to D_{4} (Proposition 1.3). Therefore, we can assume that $C=D_{4}$ in either case. We will see that every $\mathrm{Sol}_{1}{ }^{4}$-crystallographic group $\Pi \subset \mathrm{Sol}_{1}^{4} \rtimes D_{4}$ projects to some Sol^{3} crystallographic group $Q \subset \mathrm{Sol}^{3} \rtimes D_{4}$ under the natural projection $\mathrm{Sol}_{1}^{4} \rtimes D_{4} \rightarrow$ $\operatorname{Sol}^{3} \rtimes D_{4}$. Therefore, we first recall the classification of Sol^{3}-crystallographic groups in [7]. We use different notation that is more amenable to lifting to the $\mathrm{Sol}_{1}{ }^{4}$ case.

Proposition 3.2. Any crystallographic group Q^{\prime} of Sol^{3} can be conjugated in Aff $\left(\mathrm{Sol}^{3}\right)$ to $Q \subset \mathrm{Sol}^{3} \rtimes D_{4}$ so that $Q \cap \mathrm{Sol}^{3}=\Gamma_{\mathcal{S}}$. That is, the translation subgroup of Q is a standard lattice of Sol^{3}, generated by $\mathbf{t}_{1}, \mathbf{t}_{2}$, and \mathbf{t}_{3} as in (2.2). Thus, Q is generated by $\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}\right\rangle$, and at most two isometries of the form $\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{a_{3}}, A\right) \in \mathrm{Sol}^{3} \rtimes D_{4}$, where a_{i} are rational numbers.

Proof. This follows from Theorem 3.1. and Proposition 2.3.
We will assume our Sol^{3}-crystallographic group Q is embedded in $\operatorname{Sol}^{3} \rtimes D_{4}$ as in Proposition 3.2. Note that $Q \cap \mathbb{R}^{2}=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}\right\rangle \cong \mathbb{Z}^{2}$ is a lattice of \mathbb{R}^{2}. Denote $Q /\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}\right\rangle$ by \mathbb{Z}_{Φ} so that we have the commuting diagram:

To classify Q as extensions of \mathbb{Z}^{2} by \mathbb{Z}_{Φ} as in (3.1), we need all possible abstract kernels

$$
\varphi: \mathbb{Z}_{\Phi} \longrightarrow \mathrm{GL}(2, \mathbb{Z})
$$

Now \mathbb{Z}_{Φ} is generated by \mathbf{t}_{3} together with $\bar{\alpha}=\left(\mathbf{t}_{3}^{a_{3}}, A\right)$ (with possibly an additional generator $\left.\bar{\beta}=\left(\mathbf{t}_{3}^{b_{3}}, B\right)\right)$:

$$
\mathbb{Z}_{\Phi}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{a_{3}}, A\right), \bar{\beta}=\left(\mathbf{t}_{3}^{b_{3}}, B\right)\right\rangle
$$

Note we only need to consider $\Phi \subset D_{4}$ up to conjugacy. By definition, $\varphi\left(\mathbf{t}_{3}\right)=\mathcal{S}$. Since $\Gamma_{\mathcal{S}}=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}\right\rangle$ is embedded in Sol ${ }^{3}$ as in (2.1), as an automorphism of $\mathbb{Z}^{2}=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}\right\rangle, \bar{\alpha}=\left(\mathbf{t}_{3}^{a_{3}}, A\right)$ should map by φ to $\varphi(\bar{\alpha})=\mathcal{S}^{a_{3}} \widetilde{A}$, where

$$
\begin{aligned}
\mathcal{S}^{a_{3}} & =P^{-1} \Delta^{a_{3}} P \\
\widetilde{A} & =P^{-1} A P
\end{aligned}
$$

The action of $A \in D_{4}$ on $\mathbb{Z}=\left\langle\mathbf{t}_{3}\right\rangle$ in \mathbb{Z}_{Φ} is the induced action of A, \bar{A}, on the quotient $\mathbb{R}=\operatorname{Sol}^{3} / \mathbb{R}^{2}$. Thus, if $A \in D_{4}$ is a diagonal matrix, then $\bar{A}=+1$. Otherwise $\bar{A}=-1$, see Proposition 1.1. So, if $\bar{A}=+1, \varphi(\bar{\alpha})$ must commute with \mathcal{S}. Otherwise, $\varphi(\bar{\alpha})$ conjugates \mathcal{S} to its inverse.

Theorem 3.3 below follows from Theorem 8.2 of [7]. In the proof we explain differences in notation.

Theorem 3.3 ([7, cf. Theorem 8.2]). The following is a complete list of \mathbb{Z}_{Φ} and homomorphisms $\varphi: \mathbb{Z}_{\Phi} \rightarrow \mathrm{GL}(2, \mathbb{Z})$ with $\varphi\left(\mathbf{t}_{3}\right)=\mathcal{S}$ and

$$
\begin{aligned}
\varphi\left(\mathbf{t}_{3}^{a_{3}}, A\right) & =\mathcal{S}^{a_{3}} \widetilde{A}, \\
\varphi\left(\mathbf{t}_{3}^{b_{3}}, B\right) & =\mathcal{S}^{b_{3}} \widetilde{B}
\end{aligned}
$$

up to conjugation in $\mathrm{GL}(2, \mathbb{Z})$, that is, change of generators for $\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}\right\rangle \cong \mathbb{Z}^{2}$.
(0) Φ is trivial,
$\mathbb{Z}_{\Phi}=\mathbb{Z}=\left\langle\mathbf{t}_{3}\right\rangle$.
(1) $\Phi=\mathbb{Z}_{2}: A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\mathbb{Z}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{\frac{1}{2}}, A\right)\right\rangle$.

- $\varphi(\bar{\alpha})=-K$ with $\operatorname{det}(K)=-1, \operatorname{tr}(K)=n>0$, and $\mathcal{S}=n K+I$.
(2a) $\Phi=\mathbb{Z}_{2}: A=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\mathbb{Z} \times \mathbb{Z}_{2}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{0}, A\right)\right\rangle$.
- $\varphi(\bar{\alpha})=A, \mathcal{S} \in \mathrm{SL}(2, \mathbb{Z})$ with $\operatorname{tr}(\mathcal{S})>2$.
(2b) $\Phi=\mathbb{Z}_{2}: A=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\mathbb{Z}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{\frac{1}{2}}, A\right)\right\rangle$.
- $\varphi(\bar{\alpha})=-K$ with $\operatorname{det}(K)=+1, \operatorname{tr}(K)=n>2$, and $\mathcal{S}=n K-I$.
(3) $\Phi=\mathbb{Z}_{2}: A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\mathbb{Z} \rtimes \mathbb{Z}_{2}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{0}, A\right)\right\rangle$.
- $\varphi(\bar{\alpha})=A, \mathcal{S} \in \operatorname{SL}(2, \mathbb{Z})$ with $\operatorname{tr}(\mathcal{S})>2$ and $\sigma_{12}=-\sigma_{21}$.
(3i) $\Phi=\mathbb{Z}_{2}: A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\mathbb{Z} \rtimes \mathbb{Z}_{2}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{0}, A\right)\right\rangle$.
- $\varphi(\bar{\alpha})=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \mathcal{S} \in \mathrm{SL}(2, \mathbb{Z})$ with $\operatorname{tr}(\mathcal{S})>2$ and $\sigma_{11}=\sigma_{22}$.
(4) $\Phi=\mathbb{Z}_{4}: A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\mathbb{Z} \rtimes \mathbb{Z}_{4}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{0}, A\right)\right\rangle$.
- $\varphi(\bar{\alpha})=A, \mathcal{S} \in \mathrm{SL}(2, \mathbb{Z})$ with $\operatorname{tr}(\mathcal{S})>2$ and symmetric.
(5) $\Phi=\mathbb{Z}_{2} \times \mathbb{Z}_{2}: A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\mathbb{Z} \times \mathbb{Z}_{2}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{\frac{1}{2}}, A\right), \bar{\beta}=\left(\mathbf{t}_{3}^{0}, B\right)\right\rangle$.
- $\varphi(\bar{\alpha})=-K, \varphi(\bar{\beta})=B \quad$ (1) $+(2 \mathrm{a})$
- $\mathcal{S}=n K+I, K \in \mathrm{GL}(2, \mathbb{Z})$, $\operatorname{det}(K)=-1$, and $\operatorname{tr}(K)=n>0$.
(6a) $\Phi=\mathbb{Z}_{2} \times \mathbb{Z}_{2}: A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\left(\mathbb{Z} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{0}, A\right), \bar{\beta}=\left(\mathbf{t}_{3}^{0}, B\right)\right\rangle$.
- $\varphi(\bar{\alpha})=A, \varphi(\bar{\beta})=B$
- $\mathcal{S} \in \operatorname{SL}(2, \mathbb{Z})$ with $\operatorname{tr}(\mathcal{S})>2$ and $\sigma_{12}=-\sigma_{21}$.
(6ai) $\Phi=\mathbb{Z}_{2} \times \mathbb{Z}_{2}: A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\left(\mathbb{Z} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{0}, A\right), \bar{\beta}=\left(\mathbf{t}_{3}^{0}, B\right)\right\rangle$.
- $\varphi(\bar{\alpha})=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \varphi(\bar{\beta})=B$
$(3 i)+(2 a)$
- $\mathcal{S} \in \mathrm{SL}(2, \mathbb{Z})$ with $\operatorname{tr}(\mathcal{S})>2$ and $\sigma_{11}=\sigma_{22}$.
(6b) $\Phi=\mathbb{Z}_{2} \times \mathbb{Z}_{2}: A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\mathbb{Z} \rtimes \mathbb{Z}_{2}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{0}, A\right), \bar{\beta}=\left(\mathbf{t}_{3}^{\frac{1}{2}}, B\right)\right\rangle$.
- $\varphi(\bar{\alpha})=A, \varphi(\bar{\beta})=-K$
- $\mathcal{S}=n K-I$, where $K \in \operatorname{SL}(2, \mathbb{Z})$ with $\operatorname{tr}(K)=n>2 ; k_{12}=-k_{21}$.
(6bi) $\Phi=\mathbb{Z}_{2} \times \mathbb{Z}_{2}: A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\mathbb{Z} \rtimes \mathbb{Z}_{2}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{0}, A\right), \bar{\beta}=\left(\mathbf{t}_{3}^{\frac{1}{2}}, B\right)\right\rangle$.
- $\varphi(\bar{\alpha})=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \varphi(\bar{\beta})=-K$
- $\mathcal{S}=n K-I$, where $K \in \operatorname{SL}(2, \mathbb{Z})$ with $\operatorname{tr}(K)=n>2 ; k_{11}=k_{22}$.
(7) $\Phi=\mathbb{Z}_{4} \rtimes \mathbb{Z}_{2}: A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\left(\mathbb{Z} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{0}, A\right), \bar{\beta}=\left(\mathbf{t}_{3}^{\frac{1}{2}}, B\right)\right\rangle$.
- $\varphi(\bar{\alpha})=A, \varphi(\bar{\beta})=-K \quad$ (includes (6a)) (3) + (1)
- $\mathcal{S}=n K+I, K \in \mathrm{GL}(2, \mathbb{Z}), \operatorname{det}(K)=-1, \operatorname{tr}(K)>0 ; k_{12}=-k_{21}$.
(7i) $\Phi=\mathbb{Z}_{4} \rtimes \mathbb{Z}_{2}: A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\left(\mathbb{Z} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{0}, A\right), \bar{\beta}=\left(\mathbf{t}_{3}^{\frac{1}{2}}, B\right)\right\rangle$.
- $\varphi(\bar{\alpha})=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \varphi(\bar{\beta})=-K \quad$ (includes (6ai)) (3i) $+(1)$
- $\mathcal{S}=n K+I, K \in \operatorname{GL}(2, \mathbb{Z}), \operatorname{det}(K)=-1, \operatorname{tr}(K)=n>0, k_{11}=k_{22}$.

Proof. The 9 families of Sol^{3}-crystallographic groups in Theorem 8.2 of [7] are labeled $E_{0}, E_{1}, E_{2}^{ \pm}, E_{3}, E_{5}, E_{8}, E_{9}, E_{10}$, and E_{11}. The table below shows our notation convention:

E_{0}	E_{1}	E_{2}^{+}	E_{2}^{-}	E_{3}	E_{5}	E_{8}	E_{9}	E_{10}	E_{11}
(0)	$(2 \mathrm{a})$	$(2 \mathrm{~b})$	(1)	(3), $(3 i)$	(5)	$(6 \mathrm{a})$, $(6 \mathrm{a} i)$	$(6 \mathrm{~b})$, $(6 \mathrm{~b} i)$	(4)	(7),
$(7 i)$									

From Theorem 8.2 of $[7], \varphi(\bar{\alpha})=\varphi\left(\mathbf{t}_{3}^{0}, A\right)$ where $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \in D_{4}$ can act on $\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}\right\rangle \cong \mathbb{Z}^{2}$ in two different ways: either $P^{-1} A P=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ or $P^{-1} A P=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.

In Theorem 8.2 of [7], cases E_{3}, E_{8}, E_{9}, and E_{11} contain such a holonomy element, and therefore we split each into two cases, depending on how $\varphi(\bar{\alpha})$ acts on $\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}\right\rangle \cong \mathbb{Z}^{2}$. We will see that one case always lifts to crystallographic groups of $\mathrm{Sol}_{1}{ }^{4}$ with torsion, whereas the other can lift to torsion free crystallographic groups.

When $\bar{\alpha}=\left(\mathbf{t}_{3}^{\frac{1}{2}}, A\right), A$ is necessarily diagonal of order 2 , and

$$
\varphi(\bar{\alpha})=P^{-1} \Delta^{\frac{1}{2}} A P=-K
$$

where $(-K)^{2}=K^{2}=\mathcal{S}$. Letting $n=\operatorname{tr}(K)$, it follows that $\mathcal{S}=n K+I$ when $\operatorname{det}(K)=-1$, and $\mathcal{S}=n K-I$ when $\operatorname{det}(K)=1$. This applies to the cyclic holonomy cases (1), (2b).

When $\bar{\alpha}=\left(\mathbf{t}_{3}^{0}, A\right), \varphi(\bar{\alpha})=P^{-1} A P$. If $A=-I, \varphi(\bar{\alpha})=P(-I) P^{-1}=-I$ (regardless of \mathcal{S} and P). For other choices of A, we have:
(1) $P^{-1}\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] P=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ if and only if $P= \pm\left[\begin{array}{rr}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right]$.
\mathcal{S} is diagonalized by such a P if and only if $\sigma_{12}=\sigma_{21}$.
(2) $P^{-1}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] P=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ if and only if $P= \pm\left[\begin{array}{ll}\cosh t & \sinh t \\ \sinh t & \cosh t\end{array}\right]$. \mathcal{S} is diagonalized by such a P if and only if $\sigma_{12}=-\sigma_{21}$.
(3) $P^{-1}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] P=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ if and only if $P= \pm \frac{1}{\sqrt{2}}\left[\begin{array}{cc}t & \frac{1}{t} \\ t & \frac{1}{t}\end{array}\right], t \neq 0$. \mathcal{S} is diagonalized by such a P if and only if $\sigma_{11}=\sigma_{22}$.

This applies to the cyclic holonomy cases (3), (3i), and (4), and forces the stated conditions on \mathcal{S}. The two generator cases follow from the cyclic cases.

4. Crystallographic groups of Sol^{3}

With a fixed abstract kernel $\varphi: \mathbb{Z}_{\Phi} \rightarrow \mathrm{GL}(2, \mathbb{Z})$ from Theorem 3.1, the set of all equivalence classes of extensions Q in (3.1) is in one-one correspondence with the group $H_{\varphi}^{2}\left(\mathbb{Z}_{\Phi}, \mathbb{Z}^{2}\right)$. The following theorem greatly simplifies the computations in [7].

Theorem 4.1. For each homomorphism $\varphi: \mathbb{Z}_{\Phi} \rightarrow \operatorname{GL}(2, \mathbb{Z})$, in Theorem 3.3, we have an isomorphism

$$
H_{\varphi}^{2}\left(\mathbb{Z}_{\Phi} ; \mathbb{Z}^{2}\right) \cong H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))
$$

where $\operatorname{Coker}(I-\mathcal{S}) \cong(I-\mathcal{S})^{-1} \mathbb{Z}^{2} / \mathbb{Z}^{2} \subset T^{2}$ is a finite abelian group. So, the set of equivalence classes of extensions Q,

$$
1 \longrightarrow \mathbb{Z}^{2} \longrightarrow Q \longrightarrow \mathbb{Z}_{\Phi} \longrightarrow 1
$$

is in one-one correspondence with $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))$.
Proof. Since $\operatorname{det}(I-\mathcal{S}) \neq 0, H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))$ is finite, as $\operatorname{Coker}(I-\mathcal{S})$ is finite. First, we verify that $\varphi\left(\mathbb{Z}_{\Phi}\right) \subset G L(2, \mathbb{Z})=\operatorname{Aut}\left(\mathbb{Z}^{2}\right)$ leaves the group $(I-\mathcal{S})^{-1} \mathbb{Z}^{2} \subset \mathbb{R}^{2}$ containing \mathbb{Z}^{2} invariant. Suppose there exists $\mathbf{a} \in \mathbb{R}^{2}$ such that $(I-\mathcal{S}) \mathbf{a}=\mathbf{z} \in \mathbb{Z}^{2}$. Then,

$$
(I-\mathcal{S})\left(\varphi\left(\mathbf{t}_{3}\right) \mathbf{a}\right)=(I-\mathcal{S})(\mathcal{S} \mathbf{a})=\mathcal{S}((I-\mathcal{S})(\mathbf{a}))=\mathcal{S}(\mathbf{z}) \in \mathbb{Z}^{2}
$$

Now for $\varphi(\bar{\alpha})$, if $\bar{A}=+1$,

$$
(I-\mathcal{S})(\varphi(\bar{\alpha}) \mathbf{a})=\varphi(\bar{\alpha})(I-\mathcal{S}) \mathbf{a}=\varphi(\bar{\alpha}) \mathbf{z} \in \mathbb{Z}^{2}
$$

and if $\bar{A}=-1$, then $\varphi(\alpha)$ conjugates \mathcal{S} to \mathcal{S}^{-1}, and so,

$$
(I-\mathcal{S})(\varphi(\bar{\alpha}) \mathbf{a})=\varphi(\bar{\alpha})\left(-\mathcal{S}^{-1}\right)(I-\mathcal{S}) \mathbf{a}=\varphi(\bar{\alpha})\left(-\mathcal{S}^{-1}\right) \mathbf{z} \in \mathbb{Z}^{2}
$$

This shows that, if $\mathbf{a} \in(I-\mathcal{S})^{-1} \mathbb{Z}^{2}$, then so are $\varphi\left(\mathbf{t}_{3}\right) \mathbf{a}$ and $\varphi(\bar{\alpha}) \mathbf{a}$. Consequently, $(I-\mathcal{S})^{-1} \mathbb{Z}^{2}$ is $\varphi\left(\mathbb{Z}_{\Phi}\right)$-invariant. Since $\mathbf{a}-\varphi\left(\mathbf{t}_{3}\right) \mathbf{a}=(I-\mathcal{S}) \mathbf{a} \in \mathbb{Z}^{2}$, \mathbf{t}_{3} acts as the identity on $\operatorname{Coker}(I-\mathcal{S})$. We obtain an induced action of $\mathbb{Z}_{\Phi} /\left\langle\mathbf{t}_{3}\right\rangle \cong \Phi$ on $\operatorname{Coker}(I-\mathcal{S})$, and so $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))$ is defined.

Suppose we have a class in $H^{2}\left(\mathbb{Z}_{\Phi} ; \mathbb{Z}^{2}\right)$ defining an extension Q. Since $\mathbb{Z}^{2} \subset$ \mathbb{R}^{2} has the unique automorphism extension property, there exists a push-out $\widetilde{Q}[11,(5.3 .4)]$ fitting the commuting diagram:

Note that $H^{2}\left(\mathbb{Z}_{\Phi} ; \mathbb{R}^{2}\right)$ is annihilated by the (finite) index of $\mathbb{Z}=\left\langle\mathbf{t}_{3}\right\rangle$ in $\mathbb{Z}_{\Phi}[2$, Proposition 10.1]. Therefore, $H^{2}\left(\mathbb{Z}_{\Phi} ; \mathbb{R}^{2}\right)$ vanishes, and \widetilde{Q} is the split extension $\mathbb{R}^{2} \rtimes \mathbb{Z}_{\Phi}$. Since $\mathbb{Z} \subset \mathbb{Z}_{\Phi}$ lifts back to $\Gamma_{\mathcal{S}}$, it lifts back to \widetilde{Q} so that \widetilde{Q} contains $\left(\mathbf{0}, \mathbf{t}_{3}\right) \in \mathbb{R}^{2} \rtimes \mathbb{Z}_{\Phi}$. For each element $\mathbf{t}_{3}^{n} \bar{\alpha} \in \mathbb{Z}_{\Phi}$, pick a preimage $\alpha=\left(a, \mathbf{t}_{3}^{n} \bar{\alpha}\right) \in$ $\mathbb{R}^{2} \rtimes \mathbb{Z}_{\Phi}$, taking care that $a=\mathbf{0}$ if $\bar{\alpha}=\mathrm{id}$. Then $\mathbf{t}_{3}^{n} \bar{\alpha} \mapsto a$ defines a map $\eta: \mathbb{Z}_{\Phi} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}=T^{2}$, and in fact, η maps into $\operatorname{Coker}(I-\mathcal{S}) \subset T^{2}$. Thus we have

$$
\eta: \Phi \rightarrow \operatorname{Coker}(I-\mathcal{S})
$$

We claim that η is a crossed homomorphism. Let $\bar{\alpha}, \bar{\beta} \in \Phi$, and $\eta(\bar{\alpha})=$ $\mathbf{a}, \eta(\bar{\beta})=\mathbf{b}$. For preimages $\left(\mathbf{a}, \mathbf{t}_{3}^{m} \bar{\alpha}\right)$ and $\left(\mathbf{b}, \mathbf{t}_{3}^{n} \bar{\beta}\right)$ in \widetilde{Q},

$$
\begin{aligned}
\left(\mathbf{a}, \mathbf{t}_{3}^{m} \bar{\alpha}\right)\left(\mathbf{b}, \mathbf{t}_{3}^{n} \bar{\beta}\right) & =\left(\mathbf{a}+\varphi\left(\mathbf{t}_{3}^{m} \bar{\alpha}\right)(\mathbf{b}), \mathbf{t}_{3}^{m} \bar{\alpha} \mathbf{t}_{3}^{n} \bar{\beta}\right) \\
& =\left(\mathbf{a}+\varphi\left(\mathbf{t}_{3}^{m}\right)(\varphi(\bar{\alpha})(\mathbf{b})), \mathbf{t}_{3}^{m}\left(\bar{\alpha} \mathbf{t}_{3}^{n} \bar{\alpha}^{-1}\right) \bar{\alpha} \bar{\beta}\right) .
\end{aligned}
$$

Since $\bar{\alpha} \mathbf{t}_{3}^{n} \bar{\alpha}^{-1}=\mathbf{t}_{3}^{\ell}$ for some $\ell \in \mathbb{Z}$,

$$
\begin{aligned}
\eta(\bar{\alpha} \bar{\beta}) & =\mathbf{a}+\varphi\left(\mathbf{t}_{3}^{m}\right)(\varphi(\bar{\alpha})(\mathbf{b})) \\
& =\eta(\bar{\alpha})+\mathcal{S}^{m}(\varphi(\bar{\alpha})(\eta(\bar{\beta}))) \\
& =\eta(\bar{\alpha})+\varphi(\bar{\alpha})(\eta(\bar{\beta}))
\end{aligned}
$$

where the last equality holds because $\varphi(\bar{\alpha})(\eta(\bar{\beta})) \in \operatorname{Coker}(I-\mathcal{S})$, and the action of \mathcal{S} on $\operatorname{Coker}(I-\mathcal{S})$ is trivial (if $\mathbf{a} \in \operatorname{Coker}(I-\mathcal{S})$, then $(I-\mathcal{S}) \mathbf{a} \in \mathbb{Z}^{2}$, and hence $\mathbf{a}=\mathcal{S} \mathbf{a}$ modulo \mathbb{Z}^{2}). Thus η is a crossed homomorphism. Conversely, such a crossed homomorphism η clearly gives rise to an extension Q. Thus, we obtain a surjective map

$$
Z^{1}(\Phi ; \operatorname{Coker}(I-S)) \rightarrow H^{2}\left(\mathbb{Z}_{\Phi} ; \mathbb{Z}^{2}\right)
$$

which we claim is a homomorphism. To see this, given

$$
\eta: \Phi \rightarrow \operatorname{Coker}(I-\mathcal{S})
$$

we find a 2-cocycle $f: \mathbb{Z}_{\Phi} \times \mathbb{Z}_{\Phi} \rightarrow \mathbb{Z}^{2}$ representing the extension Q corresponding to η. Fix a lift $\widetilde{\eta}: \Phi \rightarrow(I-S)^{-1}\left(\mathbb{Z}^{2}\right)$ (not a homomorphism in general) of η. Then we can write any element of Q as

$$
\left(\mathbf{n}+\widetilde{\eta}(\bar{\alpha}), \mathbf{t}_{3}^{m} \bar{\alpha}\right)
$$

where $\mathbf{n} \in \mathbb{Z}^{2}, m \in \mathbb{Z}$. Now, for $\left(\mathbf{n}_{1}+\widetilde{\eta}(\bar{\alpha}), \mathbf{t}_{3}^{m_{1}} \bar{\alpha}\right)$ and $\left(\mathbf{n}_{2}+\widetilde{\eta}(\bar{\beta}), \mathbf{t}_{3}^{m_{2}} \bar{\beta}\right) \in Q$,

$$
\begin{aligned}
& \left(\mathbf{n}_{1}+\widetilde{\eta}(\bar{\alpha}), \mathbf{t}_{3}^{m_{1}} \bar{\alpha}\right)\left(\mathbf{n}_{2}+\widetilde{\eta}(\bar{\beta}), \mathbf{t}_{3}^{m_{2}} \bar{\beta}\right)= \\
& \left(\mathbf{n}_{1}+\mathcal{S}^{m_{1}} \varphi(\bar{\alpha})\left(\mathbf{n}_{2}\right)+\widetilde{\eta}(\bar{\alpha})+\mathcal{S}^{m_{1}} \varphi(\bar{\alpha})(\widetilde{\eta}(\bar{\beta})), \mathbf{t}_{3}^{m_{1}} \bar{\alpha} \mathbf{t}_{3}^{m_{2}} \bar{\beta}\right)
\end{aligned}
$$

Therefore, Q is represented by the 2-cocycle $f: \mathbb{Z}_{\Phi} \times \mathbb{Z}_{\Phi} \rightarrow \mathbb{Z}^{2}$ defined by

$$
f\left(\mathbf{t}_{3}^{m_{1}} \bar{\alpha}, \mathbf{t}_{3}^{m_{2}} \bar{\beta}\right)=\widetilde{\eta}(\bar{\alpha})+\mathcal{S}^{m_{1}} \varphi(\bar{\alpha})(\widetilde{\eta}(\bar{\beta}))-\widetilde{\eta}(\bar{\alpha} \bar{\beta})
$$

It is now clear that addition of crossed homomorphisms in $Z^{1}(\Phi ; \operatorname{Coker}(I-S))$ corresponds to addition of 2-cocycles in $Z^{2}\left(\mathbb{Z}_{\Phi} ; \mathbb{Z}^{2}\right)$.

We shall prove that Q splits if and only if the corresponding η is a coboundary, i.e., $\eta \in B^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))$. Note that this will imply that $Z^{1}(\Phi ; \operatorname{Coker}(I$ $-S)) \rightarrow H^{2}\left(\mathbb{Z}_{\Phi} ; \mathbb{Z}^{2}\right)$ induces an isomorphism

$$
H^{1}(\Phi ; \operatorname{Coker}(I-S)) \cong H^{2}\left(\mathbb{Z}_{\Phi} ; \mathbb{Z}^{2}\right)
$$

A splitting $\mathbb{Z}_{\Phi} \rightarrow Q$ induces a homomorphism

$$
s: \mathbb{Z}_{\Phi} \rightarrow \widetilde{Q}
$$

Suppose $s\left(\mathbf{t}_{3}\right)=\left(z, \mathbf{t}_{3}\right)$ with $z \in \mathbb{Z}^{2}$. Even in this case, our definition of η shows that, we will pick $\left(\mathbf{0}, \mathbf{t}_{3}\right)$ as our preimage of \mathbf{t}_{3} so that $\eta\left(\mathbf{t}_{3}\right)=\mathbf{0}$, and $\eta(\bar{\alpha})=\mathbf{a}$ if $s(\bar{\alpha})=(\mathbf{a}, \bar{\alpha})$ for others.

Let $y=-(I-\mathcal{S})^{-1} z$. Then

$$
\begin{aligned}
(y, I)\left(z, \mathbf{t}_{3}\right)(-y, I) & =\left(y+z-\varphi\left(\mathbf{t}_{3}\right)(y), \mathbf{t}_{3}\right)=\left(z+(I-\mathcal{S})(y), \mathbf{t}_{3}\right) \\
& =\left(\mathbf{0}, \mathbf{t}_{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
(y, I)(\mathbf{a}, \bar{\alpha})(-y, I) & =(y+\mathbf{a}-\varphi(\bar{\alpha}) y, \bar{\alpha})=(\mathbf{a}+(I-\varphi(\bar{\alpha})) y, \bar{\alpha}) \\
& =(\mathbf{v}, \bar{\alpha}), \text { by setting } \mathbf{a}+(I-\varphi(\bar{\alpha})) y=\mathbf{v} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
(\mathbf{v}, \bar{\alpha})\left(\mathbf{0}, \mathbf{t}_{3}\right)(\mathbf{v}, \bar{\alpha})^{-1} & =\left(\mathbf{v}-\left(\bar{\alpha} \mathbf{t}_{3} \bar{\alpha}^{-1}\right) \mathbf{v}, \bar{\alpha} \mathbf{t}_{3} \bar{\alpha}^{-1}\right)=\left(\mathbf{v}-\mathbf{t}_{3}^{\bar{A}} \mathbf{v}, \mathbf{t}_{3}^{\bar{A}}\right) \\
& =\left(\left(I-\mathcal{S}^{\bar{A}}\right) \mathbf{v}, \mathbf{t}_{3}^{\bar{A}}\right)
\end{aligned}
$$

Since \mathbb{Z} is normal in \mathbb{Z}_{Φ}, for s to be a homomorphism, we must have $\left(I-\mathcal{S}^{\bar{A}}\right) \mathbf{v}=$ $\mathbf{0}$. This happens if and only if $\mathbf{v}=0$ since $\left(I-\mathcal{S}^{\bar{A}}\right)$ is invertible, which holds if and only if

$$
\eta(\bar{\alpha})=\mathbf{a}=(\varphi(\bar{\alpha})-I)(-y)=(\delta y)(\bar{\alpha})
$$

so that η is a coboundary.
An alternate argument for Theorem 4.1 is provided by the long exact sequence

$$
\cdots \rightarrow H_{\varphi}^{1}\left(\mathbb{Z}_{\Phi} ; \mathbb{R}^{2}\right) \rightarrow H_{\varphi}^{1}\left(\mathbb{Z}_{\Phi} ; T^{2}\right) \rightarrow H_{\varphi}^{2}\left(\mathbb{Z}_{\Phi} ; \mathbb{Z}^{2}\right) \rightarrow H_{\varphi}^{2}\left(\mathbb{Z}_{\Phi} ; \mathbb{R}^{2}\right) \rightarrow \cdots
$$

induced by the short exact sequence of coefficients $0 \rightarrow \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} \rightarrow T^{2} \rightarrow 0$.
Since both $H_{\varphi}^{1}\left(\mathbb{Z}_{\Phi} ; \mathbb{R}^{2}\right)$ and $H_{\varphi}^{2}\left(\mathbb{Z}_{\Phi} ; \mathbb{R}^{2}\right)$ vanish, we obtain an isomorphism

$$
H_{\varphi}^{1}\left(\mathbb{Z}_{\Phi} ; T^{2}\right) \cong H_{\varphi}^{2}\left(\mathbb{Z}_{\Phi} ; \mathbb{Z}^{2}\right)
$$

To establish that $H_{\varphi}^{1}\left(\mathbb{Z}_{\Phi} ; T^{2}\right) \cong H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))$, note that any class in $H_{\varphi}^{1}\left(\mathbb{Z}_{\Phi} ; T^{2}\right)$ is represented by a crossed homomorphism, mapping \mathbf{t}_{3} to the identity of T^{2}, and such a crossed homomorphism $\widetilde{\eta}: \mathbb{Z}_{\Phi} \rightarrow T^{2}$ induces η : $\Phi \rightarrow T^{2}$. The image of η must lie in $(I-S)^{-1} \mathbb{Z}^{2} / \mathbb{Z}^{2}$, and so η defines an element of $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))$. It is straightforward to check that this is an isomorphism.

On the other hand, our proof of Theorem 4.1 establishes the precise oneone correspondence between $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))$ and the set of all equivalence classes of extensions Q,

$$
1 \longrightarrow \mathbb{Z}^{2} \longrightarrow Q \longrightarrow \mathbb{Z}_{\Phi} \longrightarrow 1
$$

Remark 4.2. For each subgroup Φ of D_{4}, we describe both $Z^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))$ and $B^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))$, where the action of Φ on $\operatorname{Coker}(I-\mathcal{S})$ is induced from a $\varphi: \mathbb{Z}_{\Phi} \rightarrow \operatorname{GL}(2, \mathbb{Z})$ in Theorem 3.3. For $\Phi \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, we need to check that the commutator of $(\mathbf{a}, \bar{\alpha})$ and $(\mathbf{b}, \bar{\beta})$ is in \mathbb{Z}^{2}. For \mathbb{Z}_{4}, there is no cocycle condition to check (since $\left.I+\varphi(\bar{\alpha})+\varphi(\bar{\alpha})^{2}+\varphi(\bar{\alpha})^{3}=0\right)$. Likewise for $\mathbb{Z}_{4} \rtimes \mathbb{Z}_{2}$, there is no cocycle condition for the order 4 element.
(1) $\Phi=\mathbb{Z}_{2}=\langle\bar{\alpha}\rangle$,

$$
\begin{aligned}
& Z^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))=\{\mathbf{a} \in \operatorname{Coker}(I-\mathcal{S}) \mid(I+\varphi(\bar{\alpha})) \mathbf{a} \equiv \mathbf{0}\} \\
& B^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))=\{(I-\varphi(\bar{\alpha})) \mathbf{v} \mid \mathbf{v} \in \operatorname{Coker}(I-\mathcal{S})\}
\end{aligned}
$$

(2) $\Phi=\mathbb{Z}_{4}=\langle\bar{\alpha}\rangle$,

$$
\begin{aligned}
& Z^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))=\{\mathbf{a} \in \operatorname{Coker}(I-\mathcal{S})\} \\
& B^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))=\{(I-\varphi(\bar{\alpha})) \mathbf{v} \mid \mathbf{v} \in \operatorname{Coker}(I-\mathcal{S})\}
\end{aligned}
$$

(3) $\Phi=\mathbb{Z}_{2} \times \mathbb{Z}_{2}=\langle\bar{\alpha}, \bar{\beta}\rangle$,

$$
\begin{aligned}
& Z^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))=\{ (\mathbf{a}, \mathbf{b}) \mid \mathbf{a}, \mathbf{b} \in \operatorname{Coker}(I-\mathcal{S}) \\
&(I+\varphi(\bar{\alpha})) \mathbf{a} \equiv(I+\varphi(\bar{\beta})) \mathbf{b} \equiv \mathbf{0} \\
&(I-\varphi(\bar{\alpha})) \mathbf{b} \equiv(I-\varphi(\bar{\beta})) \mathbf{a}\} \\
& B^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))=\{((I-\varphi(\bar{\alpha})) \mathbf{v},(I-\varphi(\bar{\beta})) \mathbf{v}) \mid \mathbf{v} \in \operatorname{Coker}(I-\mathcal{S})\}
\end{aligned}
$$

(4) $\Phi=\mathbb{Z}_{4} \rtimes \mathbb{Z}_{2}=\left\langle\bar{\alpha}, \bar{\beta} \mid \bar{\alpha}^{2}, \bar{\beta}^{2},(\bar{\beta} \bar{\alpha})^{4}\right\rangle$,

$$
Z^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))=\{(\mathbf{a}, \mathbf{b}) \mid \mathbf{a}, \mathbf{b} \in \operatorname{Coker}(I-\mathcal{S})
$$

$$
(I+\varphi(\bar{\alpha})) \mathbf{a} \equiv(I+\varphi(\bar{\beta})) \mathbf{b} \equiv \mathbf{0}\}
$$

$$
B^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))=\{((I-\varphi(\bar{\alpha})) \mathbf{v},(I-\varphi(\bar{\beta})) \mathbf{v}) \mid \mathbf{v} \in \operatorname{Coker}(I-\mathcal{S})\}
$$

Suppose we have an extension Q; that is, $\eta \in H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))$ with $\eta(\bar{\alpha})=\mathbf{a}=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$. Then

$$
Q=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{a_{3}}, A\right)\right\rangle \subset \operatorname{Sol}^{3} \rtimes D_{4}
$$

has the following presentation

$$
\begin{aligned}
& \mathbf{t}_{3}\left(\mathbf{t}_{1}^{n_{1}} \mathbf{t}_{2}^{n_{2}}\right) \mathbf{t}_{3}^{-1}=\mathbf{t}_{1}^{m_{1}} \mathbf{t}_{2}^{m_{2}} \text {, where }\left[\begin{array}{l}
m_{1} \\
m_{2}
\end{array}\right]=\mathcal{S}\left[\begin{array}{l}
n_{1} \\
n_{2}
\end{array}\right], \\
& \alpha\left(\mathbf{t}_{1}^{n_{1}} \mathbf{t}_{2}^{n_{2}}\right) \alpha^{-1}=m_{1}^{\prime} m_{2}^{\prime} \text {, where }\left[\begin{array}{l}
m_{1}^{\prime} \\
m_{2}^{\prime}
\end{array}\right]=\varphi(\bar{\alpha})\left[\begin{array}{l}
n_{1} \\
n_{2}
\end{array}\right], \\
& \alpha \mathbf{t}_{3} \alpha^{-1}=\mathbf{t}_{1}^{w_{1}} \mathbf{t}_{2}^{w_{2}} \mathbf{t}_{3}^{\bar{A}} \text {, where }\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left(I-\mathcal{S}^{\bar{A}}\right)\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right],
\end{aligned}
$$

$$
\begin{aligned}
& \alpha^{2}=\mathbf{t}_{1}^{v_{1}} \mathbf{t}_{2}^{v_{2}} \mathbf{t}_{3}^{(1+\bar{A}) a_{3}}, \text { where }\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=(I+\varphi(\bar{\alpha}))\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right], \text { if } A^{2}=I, \\
& \alpha^{4}=\text { id, if } \operatorname{ord}(A)=4
\end{aligned}
$$

Corollary 4.3. Let $Q=\left\langle\Gamma_{\mathcal{S}},\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{a_{3}}, A\right)\right\rangle$ be a Sol^{3}-crystallographic group with standard lattice $\Gamma_{\mathcal{S}}=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}\right\rangle$. Suppose $\varphi(\bar{\alpha})=-K$ and $\mathcal{S}=n K \pm I$. Recall that by Theorem 3.3, A has order $2, \bar{A}=1$, and $a_{3}=\frac{1}{2}$. Then

$$
H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))=0
$$

In fact, there exists $\mathbf{t}_{1}^{v_{1}} \mathbf{t}_{2}^{v_{2}}$ which conjugates $\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{\frac{1}{2}}, A\right)$ to $\left(\mathbf{t}_{3}^{\frac{1}{2}}, A\right)$ and leaves $\Gamma_{\mathcal{S}}$ invariant.
Proof. We have $\operatorname{det}(I-\varphi(\bar{\alpha}))=\operatorname{det}(I+K)=1+\operatorname{det}(K)+\operatorname{tr}(K)$. By Theorem 3.3, when $\operatorname{det}(K)=-1, \operatorname{tr}(K)>0$; and when $\operatorname{det}(K)=1, \operatorname{tr}(K)>2$.

Consequently, $I-\varphi(\bar{\alpha})$ is always non-singular and we may take $\mathbf{v}=(I-$ $\varphi(\bar{\alpha}))^{-1} \mathbf{a}$. Then $\left(\mathbf{t}_{1}^{v_{1}} \mathbf{t}_{2}^{v_{2}}, I\right) \in \operatorname{Sol}^{3} \rtimes D_{4}$ conjugates $\left(\mathbf{t}_{3}^{\frac{1}{2}}, A\right)$ to $\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{\frac{1}{2}}, A\right)$. It remains to show $\mathbf{v} \in(I-\mathcal{S})^{-1} \mathbb{Z}^{2}$. This condition guarantees conjugation by $\left(\mathbf{t}_{1}^{v_{1}} \mathbf{t}_{2}^{v_{2}}, I\right)$ leaves $\Gamma_{\mathcal{S}}$ invariant. Since $\varphi(\bar{\alpha})=-K$ is a square root of \mathcal{S} and $\mathbf{v}=(I-\varphi(\bar{\alpha}))^{-1} \mathbf{a}$,

$$
(I-\mathcal{S}) \mathbf{v}=(I+\varphi(\bar{\alpha}))(I-\varphi(\bar{\alpha})) \mathbf{v}=(I+\varphi(\bar{\alpha})) \mathbf{a} \in \mathbb{Z}^{2}
$$

where the last inclusion holds by the cocycle conditions in Remark 4.2. Therefore $\Phi \ni A \mapsto \mathbf{a} \in \operatorname{Coker}(I-\mathcal{S})$ is a coboundary, and $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))$ vanishes.

Corollary 4.3 greatly simplifies the computation of $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))$. For example, in cases (1), (2b), and (5) of Theorem 3.3, we can take $\mathbf{a}=\mathbf{0}$, whereas in cases (6b), (6bi), (7), and (7i), we can take $\mathbf{b}=\mathbf{0}$.

The complete list of crystallographic groups for Sol^{3} will follow from our classification of crystallographic groups of $\mathrm{Sol}_{1}{ }^{4}$. However, we will need to analyze how a type (3i) or (6i) crystallographic group of Sol ${ }^{3}$ acts on Sol^{3}. This will be critical to determining when a crystallographic group of $\mathrm{Sol}_{1}{ }^{4}$ has torsion.

Lemma 4.4. Let Q be a crystallographic group of Sol^{3} of type (3i) or ($6 \mathrm{~b} i$).
When Q is of type (3i),

$$
Q=\left\langle\Gamma_{\mathcal{S}}, \alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{0},\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right)\right\rangle, \text { and }
$$

$Q \backslash \mathrm{Sol}^{3}$ can be described as $T^{2} \times I$ with $T^{2} \times\{0\}$ identified to itself by the affine involution $\left(\left[\begin{array}{c}a_{1} \\ a_{2}\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\right)$, and $T^{2} \times\{1\}$ identified to itself by the affine involution $\left(\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right],\left[\begin{array}{cc}\sigma_{11} & -\sigma_{12} \\ \sigma_{21} & -\sigma_{11}\end{array}\right]\right)$. Here T^{2} is the 2-dimensional torus.

If $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$ is used instead of $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$, then $Q \backslash \operatorname{Sol}^{3}$ can be described as $T^{2} \times I$ with $T^{2} \times\{0\}$ identified to itself by the affine involution $\left(\left[\begin{array}{cc}a_{1} \\ a_{2}\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]\right)$, and $T^{2} \times\{1\}$ identified to itself by the affine involution $\left(\left[\begin{array}{lll}a_{1} \\ a_{2}\end{array}\right],\left[\begin{array}{ccc}-a_{12} & \sigma_{12} \\ -\sigma_{21} & \sigma_{11}\end{array}\right]\right)$.

When Q is of type (6bi),

$$
Q=\left\langle\Gamma_{\mathcal{S}}, \alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{0},\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right), \beta=\left(\mathbf{t}_{3}^{\frac{1}{2}},\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right)\right\rangle, \text { and }
$$

$Q \backslash \mathrm{Sol}^{3}$ can be described as $T^{2} \times I$ with $T^{2} \times\{0\}$ identified to itself by the affine involution $\left(\left[\begin{array}{c}a_{1} \\ a_{2}\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\right)$, and $T^{2} \times\{1\}$ identified to itself by the affine involution $\left(\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right],\left[\begin{array}{ccc}-k_{11} & k_{12} \\ -k_{21} & k_{11}\end{array}\right]\right)$.
Proof. The action of $\Gamma_{\mathcal{S}}$ on Sol^{3} is equivalent to the action of $\mathbb{Z}^{2} \rtimes_{\mathcal{S}} \mathbb{Z}$ on $\mathbb{R}^{2} \rtimes_{\mathcal{S}} \mathbb{R}$. A fundamental domain for this action is given by the unit cube I^{3}, and evidently $Q \backslash \mathrm{Sol}^{3}$ is given by $T^{2} \times I$ with $T^{2} \times\{0\}$ identified to $T^{2} \times\{1\}$ via \mathcal{S}, which we view as a self-diffeomorphism of T^{2}. Note that $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \rtimes_{\mathcal{S}} \mathbb{R} \rightarrow \mathbb{R}$ induces the fiber bundle with infinite cyclic structure group generated by \mathcal{S} :

$$
T^{2} \rightarrow \Gamma_{\mathcal{S}} \backslash \mathrm{Sol}^{3} \rightarrow S^{1}
$$

Now suppose Q is of type (3i). Then $Q \backslash \operatorname{Sol}^{3}$ is the quotient of $\Gamma_{\mathcal{S}} \backslash \operatorname{Sol}^{3}$ by the involution defined by $\alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}},\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right)$. Here α acts as a reflection on the base S^{1}. A fundamental domain for this action is given by $T^{2} \times\left[0, \frac{1}{2}\right]$. Now α identifies $T^{2} \times\{0\}$ to itself and $T^{2} \times\left\{\frac{1}{2}\right\}$ to itself.

Indeed, $\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}, A\right) \cdot \mathbf{t}_{1}^{x_{1}} \mathbf{t}_{2}^{x_{2}}=\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} A\left(\mathbf{t}_{1}^{x_{1}} \mathbf{t}_{2}^{x_{2}}\right)$ shows that α acts on $T^{2} \times\{0\}$ as the affine transformation (a, $\varphi(\bar{\alpha}))$. For $\mathbf{t}_{1}^{x_{1}} \mathbf{t}_{2}^{x_{2}} \mathbf{t}_{3}^{\frac{1}{2}} \in T^{2} \times\left\{\frac{1}{2}\right\}$,

$$
\begin{aligned}
\mathbf{t}_{3}\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}, A\right) \cdot \mathbf{t}_{1}^{x_{1}} \mathbf{t}_{2}^{x_{2}} \mathbf{t}_{3}^{\frac{1}{2}} & =\mathbf{t}_{3} \mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} A\left(\mathbf{t}_{1}^{x_{1}} \mathbf{t}_{2}^{x_{2}}\right) A\left(\mathbf{t}_{3}^{\frac{1}{2}}\right)=\mathbf{t}_{3} \mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} A\left(\mathbf{t}_{1}^{x_{1}} \mathbf{t}_{2}^{x_{2}}\right) \mathbf{t}_{3}^{-\frac{1}{2}} \\
& =\left(\mathbf{t}_{3} \mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{-1}\right)\left(\mathbf{t}_{3} A\left(\mathbf{t}_{1}^{x_{1}} \mathbf{t}_{2}^{x_{2}}\right) \mathbf{t}_{3}^{-1}\right) \mathbf{t}_{3}^{\frac{1}{2}} \in T^{2} \times\left\{\frac{1}{2}\right\} .
\end{aligned}
$$

Since conjugation by \mathbf{t}_{3} is the action of \mathcal{S}, we see that α acts on T^{2} as the affine transformation $(\mathcal{S} \mathbf{a}, \mathcal{S} \varphi(\bar{\alpha}))$. But since $\mathbf{a} \in \operatorname{Coker}(I-\mathcal{S})$, this simplifies to $(\mathbf{a}, \mathcal{S} \varphi(\bar{\alpha}))$. Note that the condition that $\sigma_{11}=\sigma_{22}$ ensures that $\mathcal{S} \varphi(\bar{\alpha})$ has order 2.

The argument in case (6bi) is nearly identical. In this case, note that Q contains a group of type (2b), say Q^{\prime}, as an index 2 subgroup,

$$
Q^{\prime}=\left\langle\Gamma_{\mathcal{S}}, \beta=\left(\mathbf{t}_{3}^{\frac{1}{2}},\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right)\right\rangle .
$$

Therefore, $Q \backslash \operatorname{Sol}^{3}$ is the quotient of $Q^{\prime} \backslash \operatorname{Sol}^{3}$ by $\alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}},\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right)$. Now $Q^{\prime} \backslash \mathrm{Sol}^{3}$ is the quotient of $\Gamma_{\mathcal{S}} \backslash \mathrm{Sol}^{3}$ by the involution defined by β. On the base of $T^{2} \rightarrow \Gamma_{\mathcal{S}} \backslash$ Sol $^{3} \rightarrow S^{1}, \beta$ acts as a translation. Thus a fundamental domain for the action of β is given by $T^{2} \times\left[0, \frac{1}{2}\right]$. Note that β identifies $T^{2} \times\{0\}$ with $T^{2} \times\left\{\frac{1}{2}\right\}$ via $\varphi(\bar{\beta})=-K$, which is a square root of \mathcal{S}, and $Q^{\prime} \backslash \mathrm{Sol}^{3}$ is the mapping torus of $\varphi(\bar{\beta})$. Now because $Q^{\prime} \backslash \mathrm{Sol}^{3}$ admits the structure of a T^{2} bundle over S^{1}, the construction in (3i) applies. A fundamental domain for the action of α on $Q^{\prime} \backslash \mathrm{Sol}^{3}$ is given by $T^{2} \times\left\{\frac{1}{4}\right\}$. As in case (3i), α acts on $T^{2} \times\{0\}$ affinely as $(\mathbf{a}, \varphi(\bar{\alpha}))$. For $\mathbf{t}_{1}^{x_{1}} \mathbf{t}_{2}^{x_{2}} \mathbf{t}_{3}^{\frac{1}{4}} \in T^{2} \times\left\{\frac{1}{4}\right\}$,

$$
\left(\mathbf{t}_{3}^{\frac{1}{2}}, B\right)\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}, A\right) \cdot \mathbf{t}_{1}^{x_{1}} \mathbf{t}_{2}^{x_{2}} \mathbf{t}_{3}^{\frac{1}{4}}=\mathbf{t}_{3}^{\frac{1}{2}} B\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}\right) B A\left(\mathbf{t}_{1}^{x_{1}} \mathbf{t}_{2}^{x_{2}}\right) B A\left(\mathbf{t}_{3}^{\frac{1}{4}}\right)
$$

$$
\begin{aligned}
& =\mathbf{t}_{3}^{\frac{1}{2}} B\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}\right) \mathbf{t}_{3}^{-\frac{1}{2}} \mathbf{t}_{3}^{\frac{1}{2}} B A\left(\mathbf{t}_{1}^{x_{1}} \mathbf{t}_{2}^{x_{2}}\right) \mathbf{t}_{3}^{-\frac{1}{4}} \\
& =\left(\mathbf{t}_{3}^{\frac{1}{2}} B\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}\right) \mathbf{t}_{3}^{-\frac{1}{2}}\right)\left(\mathbf{t}_{3}^{\frac{1}{2}} B A\left(\mathbf{t}_{1}^{x_{1}} \mathbf{t}_{2}^{x_{2}}\right) \mathbf{t}_{3}^{-\frac{1}{2}}\right) \mathbf{t}_{3}^{\frac{1}{4}} \\
& \in T^{2} \times\left\{\frac{1}{4}\right\}
\end{aligned}
$$

Now conjugation by $\left(\mathbf{t}_{3}^{\frac{1}{2}}, B\right)$ is the action of $\varphi(\bar{\beta})=-K$ on T^{2}. Hence α acts affinely on $T^{2} \times\left\{\frac{1}{4}\right\}$ as $(\varphi(\bar{\beta}) \mathbf{a}, \varphi(\bar{\beta}) \varphi(\bar{\alpha}))$. The commutator cocycle conditions for $\Phi=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ in Remark 4.2 , with $\mathbf{b}=\mathbf{0}$ implies $(I-\varphi(\bar{\beta})) \mathbf{a}=(I+K) \mathbf{a} \in \mathbb{Z}^{2}$, so this simplifies to $(\mathbf{a}, \varphi(\bar{\beta}) \varphi(\bar{\alpha}))=(\mathbf{a},(-K) \varphi(\bar{\alpha}))$.

5. Lattices of Sol_{1}^{4}

In this section we classify the lattices of $\operatorname{Sol}_{1}{ }^{4}$. Given a lattice $\widetilde{\Gamma}_{\mathcal{S}}$ of $\operatorname{Sol}_{1}{ }^{4}$, $\widetilde{\Gamma}_{\mathcal{S}} \cap \mathcal{Z}\left(\mathrm{Sol}_{1}^{4}\right) \cong \mathbb{Z}$ is a lattice of $\mathcal{Z}\left(\mathrm{Sol}_{1}^{4}\right) \cong \mathbb{R}$, and the projection map,

$$
G \rightarrow G / \mathcal{Z}(G) \cong \operatorname{Sol}^{3},
$$

carries $\widetilde{\Gamma}_{\mathcal{S}}$ to a lattice of Sol^{3}, isomorphic to $\Gamma_{\mathcal{S}}$, for some $\mathcal{S} \in \mathrm{SL}(2, \mathbb{Z})$ with $\operatorname{trace}(\mathcal{S})>2$. Thus, $\widetilde{\Gamma}_{\mathcal{S}}$ is the central extension

$$
1 \longrightarrow \mathbb{Z} \longrightarrow \widetilde{\Gamma}_{\mathcal{S}} \longrightarrow \Gamma_{\mathcal{S}} \longrightarrow 1
$$

As is well known, such central extensions of \mathbb{Z} by $\Gamma_{\mathcal{S}}$ are classified by the second cohomology group $H^{2}\left(\Gamma_{\mathcal{S}} ; \mathbb{Z}\right)$.

Theorem 5.1. Let $\mathcal{S} \in \operatorname{SL}(2, \mathbb{Z})$ with $\operatorname{trace}(\mathcal{S})>2$. There is a one-one correspondence between the equivalence classes of all central extensions

$$
1 \longrightarrow \mathbb{Z} \longrightarrow \widetilde{\Gamma} \longrightarrow \Gamma_{\mathcal{S}} \longrightarrow 1
$$

and the group $\mathbb{Z} \oplus \operatorname{Coker}(\mathcal{S}-I)$. Note $\operatorname{Coker}(\mathcal{S}-I)$ is finite.
Proof. Recall $\Gamma_{\mathcal{S}}=\mathbb{Z}^{2} \rtimes_{\mathcal{S}} \mathbb{Z}$. Then

$$
\begin{aligned}
H^{2}\left(\mathbb{Z}^{2} \rtimes_{\mathcal{S}} \mathbb{Z} ; \mathbb{Z}\right) & =\text { Free }\left(H_{2}\left(\mathbb{Z}^{2} \rtimes_{\mathcal{S}} \mathbb{Z} ; \mathbb{Z}\right)\right) \oplus \operatorname{Torsion}\left(H_{1}\left(\mathbb{Z}^{2} \rtimes_{\mathcal{S}} \mathbb{Z} ; \mathbb{Z}\right)\right) \\
& =\mathbb{Z} \oplus\left(\mathbb{Z}^{2} /(\mathcal{S}-I) \mathbb{Z}^{2}\right)=\mathbb{Z} \oplus \operatorname{Coker}(\mathcal{S}-I)
\end{aligned}
$$

For $\left\{q,\left(m_{1}, m_{2}\right)\right\} \in \mathbb{Z} \oplus \operatorname{Coker}(\mathcal{S}-I)$, denote the corresponding extension $\widetilde{\Gamma}$ by $\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}$ whose presentation is given in Lemma 5.2. We show that $\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}$ with $q \neq 0$ embeds as a lattice in $\operatorname{Sol}_{1}^{4}\left(\right.$ when $q=0, \widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}$ embeds into Sol $\left.^{3} \times \mathbb{R}\right)$. An $\mathcal{S} \in \mathrm{SL}(2, \mathbb{Z})$ with $\operatorname{tr}(\mathcal{S})>2$ produces P and Δ, where $P \in \mathrm{SL}(2, \mathbb{R})$ diagonalizes $\mathcal{S}, P \mathcal{S} P^{-1}=\left[\begin{array}{cc}\frac{1}{\lambda} & 0 \\ 0 & \lambda\end{array}\right], \frac{1}{\lambda}<1<\lambda$. We had the embedding of $\mathbb{Z}^{2} \rtimes_{\mathcal{S}} \mathbb{Z}$ into Sol 3 in (2.1):

$$
\left(\left[\begin{array}{l}
x \\
y
\end{array}\right], u\right) \longmapsto\left(P\left[\begin{array}{l}
x \\
y
\end{array}\right], u \ln (\lambda)\right) .
$$

The quotient of Sol_{1}^{4} by its center is isomorphic to Sol^{3} by the projection

$$
\left[\begin{array}{ccc}
1 & e^{u} x & z \\
0 & e^{u} & y \\
0 & 0 & 1
\end{array}\right] \longmapsto\left(\left[\begin{array}{c}
x \\
y
\end{array}\right], u\right)
$$

Under this projection, we will find all lattices of $\operatorname{Sol}_{1}{ }^{4}$ projecting to $\Gamma_{\mathcal{S}}$. Let

$$
\begin{gather*}
\mathbf{e}_{1}=\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right], 0\right) \longmapsto\left(P \mathbf{e}_{1}, 0\right) \longmapsto \mathbf{t}_{1}=\left[\begin{array}{ccc}
1 & p_{11} & c_{1} \\
0 & 1 & p_{21} \\
0 & 0 & 1
\end{array}\right], \\
\mathbf{e}_{2}=\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right], 0\right) \longmapsto\left(P \mathbf{e}_{2}, 0\right) \longmapsto \mathbf{t}_{2}=\left[\begin{array}{ccc}
1 & p_{12} & c_{2} \\
0 & 1 & p_{22} \\
0 & 0 & 1
\end{array}\right], \\
\mathbf{e}_{3}=\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right], 1\right) \longmapsto(0, \ln (\lambda)) \longmapsto \mathbf{t}_{3}=\left[\begin{array}{ccc}
1 & 0 & c_{3} \\
0 & \lambda & 0 \\
0 & 0 & 1
\end{array}\right], \tag{5.1}\\
\mathbf{t}_{4}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],
\end{gather*}
$$

where c_{i} 's are to be determined. Then $\left[\mathbf{t}_{1}, \mathbf{t}_{2}\right]=\mathbf{t}_{4}$ (regardless of the c_{i} 's).
Lemma 5.2. For any integers q, m_{1}, m_{2}, there exist unique c_{1}, c_{2} for which $\left\{\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}\right\}$ forms a group $\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}$ with the presentation

$$
\begin{aligned}
\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}\right|\left[\mathbf{t}_{1}, \mathbf{t}_{2}\right] & =\mathbf{t}_{4}, \mathbf{t}_{4} \text { is central, } \\
\mathbf{t}_{3} \mathbf{t}_{1} \mathbf{t}_{3}^{-1} & =\mathbf{t}_{1}^{\sigma_{11}} \mathbf{t}_{2}^{\sigma_{21}} \mathbf{t}_{4}^{\frac{m_{1}}{q}} \\
\mathbf{t}_{3} \mathbf{t}_{2} \mathbf{t}_{3}^{-1} & \left.=\mathbf{t}_{1}^{\sigma_{12}} \mathbf{t}_{2}^{\sigma_{22}} \mathbf{t}_{4}^{\frac{m_{2}}{q}}\right\rangle
\end{aligned}
$$

Consequently, $\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}$ is solvable and contains $\Gamma_{q}=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{4}^{\frac{1}{q}}\right\rangle$ as its discrete nil-radical, where Γ_{q} is a lattice of Nil.

Proof. We only need to verify the last two equalities. But they become a system of equations on c_{i} 's

$$
\begin{align*}
\left(1-\sigma_{11}\right) c_{1}-\sigma_{21} c_{2} & =\frac{m_{1}}{q}-\frac{\sigma_{21}\left(\sigma_{12}+1-\sigma_{11}+\sigma_{11} \sqrt{T^{2}-4}\right)}{2 \sqrt{T^{2}-4}} \\
-\sigma_{12} c_{1}+\left(1-\sigma_{22}\right) c_{2} & =\frac{m_{2}}{q}+\frac{\sigma_{12}\left(\sigma_{21}+1-\sigma_{22}-\sigma_{22} \sqrt{T^{2}-4}\right)}{2 \sqrt{T^{2}-4}} \tag{5.2}
\end{align*}
$$

where $T=\sigma_{11}+\sigma_{22}$. Since $I-\mathcal{S}$ is non-singular, there exists a unique solution for c_{1}, c_{2}.

Equation (5.2) also shows the cohomology classification. Suppose $\left\{c_{1}, c_{2}\right\}$ and $\left\{c_{1}^{\prime}, c_{2}^{\prime}\right\}$ are solutions for the equations with $\left\{m_{1}, m_{2}\right\}$ and $\left\{m_{1}^{\prime}, m_{2}^{\prime}\right\}$, respectively. Then $\left(c_{1}^{\prime}-c_{1}, c_{2}^{\prime}-c_{2}\right) \in\left(\frac{1}{q} \mathbb{Z}\right)^{2}$ if and only if $\left(m_{1}^{\prime}-m_{1}, m_{2}^{\prime}-m_{2}\right) \in$ $\operatorname{Coker}\left(\mathcal{S}^{T}-I\right) \cong \operatorname{Coker}(\mathcal{S}-I)$. This happens if and only if $\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}=$ $\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}^{\prime}, m_{2}^{\prime}\right)}$.
Remark 5.3. (1) Note that any lattice $\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}$ of $\mathrm{Sol}_{1}{ }^{4}$ projects to the standard lattice $\Gamma_{\mathcal{S}}$ of Sol^{3}.
(2) In Lemma 5.2, the c_{i} 's are independent of choice of P because equation (5.2) has coefficients only from the matrix \mathcal{S}.
(3) Notice that c_{3} does not show up in the presentation of the lattice $\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}$, so c_{3} can be changed without affecting the isomorphism type of the lattice.

Notation 5.4 (Standard lattice). The lattice generated by
$\mathbf{t}_{1}=\left[\begin{array}{ccc}1 & p_{11} & c_{1} \\ 0 & 1 & p_{21} \\ 0 & 0 & 1\end{array}\right], \mathbf{t}_{2}=\left[\begin{array}{ccc}1 & p_{12} & c_{2} \\ 0 & 1 & p_{22} \\ 0 & 0 & 1\end{array}\right], \mathbf{t}_{3}=\left[\begin{array}{ccc}1 & 0 & c_{3} \\ 0 & \lambda & 0 \\ 0 & 0 & 1\end{array}\right], \mathbf{t}_{4}^{\frac{1}{q}}=\left[\begin{array}{ccc}1 & 0 & \frac{1}{q} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
with $c_{3}=0$, is called a standard lattice of $\mathrm{Sol}_{1}{ }^{4}$.
Therefore, any lattice of $\mathrm{Sol}_{1}{ }^{4}$ is isomorphic to a standard lattice. However, a non-standard lattice (i.e., $c_{3} \neq 0$) will be needed when we consider finite extensions of $\widetilde{\Gamma}_{\mathcal{S}}$, specifically, in the holonomy \mathbb{Z}_{4} case.
The following lemma on lattices of $\mathrm{Sol}_{1}{ }^{4}$ will be needed in the next section.
Lemma 5.5. Let $\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}$ be a lattice of $\operatorname{Sol}_{1}{ }^{4}$, embedded as in assignment (5.1).
(a) Let $r_{1}, r_{2} \in \mathbb{Q}$. Then

$$
\mathbf{t}_{1}^{r_{1}} \mathbf{t}_{2}^{r_{2}}=\mathbf{t}_{2}^{r_{2}} \mathbf{t}_{1}^{r_{1}} \mathbf{t}_{4}^{r_{1} r_{2}} .
$$

(b) Let $a_{1}, a_{2} \in \mathbb{Q}$. Then, for $\bar{A}= \pm 1$,

$$
\mathbf{t}_{3}^{\bar{A}} \mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{-\bar{A}}=\mathbf{t}_{1}^{l_{1}} \mathbf{t}_{2}^{l_{2}} \mathbf{t}_{4}^{v} \text {, where }\left[\begin{array}{l}
l_{1} \tag{5.3}\\
l_{2}
\end{array}\right]=\mathcal{S}^{\bar{A}}\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \text {, and } v \in \mathbb{Q} \text {. }
$$

Proof. For part (a), we compute that $\left[\mathbf{t}_{1}^{r_{1}}, \mathbf{t}_{2}^{r_{2}}\right]=\mathbf{t}_{4}^{r_{1} r_{2} \operatorname{det}(P)}=\mathbf{t}_{4}^{r_{1} r_{2}}$.
For part (b), the definition of $\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}$ shows that $\left[\begin{array}{l}l_{1} \\ l_{2}\end{array}\right]=\mathcal{S}^{\bar{A}}\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$. We must show that v in (5.3) is rational.

Because a_{1} and a_{2} are rational, there is a positive integer n so that $n a_{1}, n a_{2} \in$ \mathbb{Z}. By part (a),

$$
\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}\right)^{n}=\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \cdots \mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}(n \text { times })=\mathbf{t}_{1}^{n a_{1}} \mathbf{t}_{2}^{n a_{2}} \mathbf{t}_{4}^{u^{\prime}}, \text { for some } u^{\prime} \in \mathbb{Q} .
$$

Therefore,

$$
\mathbf{t}_{3}^{\bar{A}}\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}\right)^{n} \mathbf{t}_{3}^{-\bar{A}}=\mathbf{t}_{3}^{\bar{A}} \mathbf{t}_{1}^{n a_{1}} \mathbf{t}_{2}^{n a_{2}} \mathbf{t}_{4}^{u^{\prime}} \mathbf{t}_{3}^{-\bar{A}}
$$

$$
\begin{aligned}
& =\mathbf{t}_{3}^{\bar{A}} \mathbf{t}_{1}^{n a_{1}} \mathbf{t}_{2}^{n a_{2}} \mathbf{t}_{3}^{-\bar{A}} \mathbf{t}_{4}^{u^{\prime}} \\
& =\mathbf{t}_{1}^{n_{1}} \mathbf{t}_{2}^{n_{2}} \mathbf{t}_{4}^{u} \text { for some } n_{1}, n_{2} \in \mathbb{Z}, \text { and some } u \in \mathbb{Q}
\end{aligned}
$$

where the last equality follows from that $n a_{1}$ and $n a_{2}$ are integers, together with the relations in Lemma 5.2.

On the other hand, we have that

$$
\begin{aligned}
\mathbf{t}_{3}^{\bar{A}}\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}\right)^{n} \mathbf{t}_{3}^{-\bar{A}} & =\mathbf{t}_{3}^{\bar{A}} \mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{-\bar{A}} \cdots \mathbf{t}_{3}^{\bar{A}} \mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{-\bar{A}}(n \text { times }) \\
& =\mathbf{t}_{1}^{l_{1}} \mathbf{t}_{2}^{l_{2}} \mathbf{t}_{4}^{v} \cdots \mathbf{t}_{1}^{l_{1}} \mathbf{t}_{2}^{l_{2}} \mathbf{t}_{4}^{v}(n \text { times }) \\
& =\mathbf{t}_{1}^{n l_{1}} \mathbf{t}_{2}^{n l_{2}} \mathbf{t}_{4}^{n v+w} \text { for some } w \in \mathbb{Q}
\end{aligned}
$$

where v is from (5.3) and the last equality follows from part (a).
Consequently, we have

$$
\mathbf{t}_{1}^{n_{1}} \mathbf{t}_{2}^{n_{2}} \mathbf{t}_{4}^{u}=\mathbf{t}_{1}^{n l_{1}} \mathbf{t}_{2}^{n l_{2}} \mathbf{t}_{4}^{n v+w}
$$

This forces $n_{1}=n l_{1}$ and $n_{2}=n l_{2}$. Therefore, $n v+w=u$. Since $n \in \mathbb{Z}$, $u, w \in \mathbb{Q}$, it follows that $v \in \mathbb{Q}$.

6. Crystallographic groups of Sol_{1}^{4}

Let $\Pi \subset \operatorname{Sol}_{1}^{4} \rtimes C$ be a crystallographic group of Sol_{1}^{4}, where C is a maximal compact subgroup of $\operatorname{Aut}\left(\mathrm{Sol}_{1}{ }^{4}\right)$. As all maximal compact subgroups of $\mathrm{Sol}_{1}{ }^{4}$ are conjugate, we can assume that C is the maximal compact subgroup

$$
D_{4}=\left\langle\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\right\rangle
$$

of $\operatorname{Aut}\left(\mathrm{Sol}_{1}^{4}\right)$ (Proposition 3.1), the action of which on $\mathrm{Sol}_{1}{ }^{4}$ is described in Proposition 1.2. As noted in Proposition 3.1, $\mathrm{Sol}_{1}{ }^{4}$ satisfies generalization of Bieberbach's Theorems. Furthermore, as shown below, we can conjugate Π in $\operatorname{Aff}\left(\operatorname{Sol}_{1}{ }^{4}\right)$ so that the lattice inside Π is some $\widetilde{\Gamma}\left(\mathcal{S} ; q, m_{1}, m_{2}\right)$, embedded in $\operatorname{Sol}_{1}{ }^{4}$ as in assignment (5.1).

Proposition 6.1. (1) Any crystallographic group Π^{\prime} of Sol_{1}^{4} can be conjugated in $\operatorname{Aff}\left(\mathrm{Sol}_{1}^{4}\right)$ to $\Pi \subset \mathrm{Sol}_{1}^{4} \rtimes D_{4}$ so that

$$
\Pi \cap \operatorname{Sol}_{1}^{4}=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}\right\rangle
$$

where
$\mathbf{t}_{1}=\left[\begin{array}{ccc}1 & p_{11} & c_{1} \\ 0 & 1 & p_{21} \\ 0 & 0 & 1\end{array}\right], \mathbf{t}_{2}=\left[\begin{array}{ccc}1 & p_{12} & c_{2} \\ 0 & 1 & p_{22} \\ 0 & 0 & 1\end{array}\right], \mathbf{t}_{3}=\left[\begin{array}{ccc}1 & 0 & c_{3} \\ 0 & \lambda & 0 \\ 0 & 0 & 1\end{array}\right], \mathbf{t}_{4}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
(2) The holonomy group Φ is generated by at most two elements of D_{4}, and thus Π is generated by $\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}\right\rangle$ and at most two isometries of the form $\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{a_{3}} \mathbf{t}_{4}^{a_{4}}, A\right)$, for $A \in D_{4}$ and real numbers a_{i}.

Proof. Let $\widetilde{\Gamma}=\Pi \cap \operatorname{Sol}_{1}{ }^{4}$. This lattice must meet the center of $\mathrm{Sol}_{1}{ }^{4}$ in a lattice: $\widetilde{\Gamma} \cap \mathcal{Z}\left(\operatorname{Sol}_{1}^{4}\right)$ is a lattice of $\mathcal{Z}\left(\operatorname{Sol}_{1}^{4}\right)$, say generated by $\mathbf{t}_{4}^{\frac{1}{q}}$. Also $\widetilde{\Gamma} \cap$ Nil is a lattice of the nilradical Nil, so we can find generators $\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{4}^{\frac{1}{q}}\right\rangle$ of this lattice as given in the statement. The remaining one generator for the lattice $\widetilde{\Gamma}$ must project down to a generator of the quotient $\widetilde{\Gamma} /\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{4}^{\frac{1}{q}}\right\rangle \cong \mathbb{Z}$. It must be of the form

$$
\mathbf{t}_{3}^{\prime \prime}=\left[\begin{array}{ccc}
1 & a & c_{3} \\
0 & \lambda & b \\
0 & 0 & 1
\end{array}\right] .
$$

Conjugation by $\left[\begin{array}{ccc}1 & \frac{a}{1-\lambda} & 0 \\ 0 & \lambda & -\frac{b \lambda}{1-\lambda} \\ 0 & 0 & 1\end{array}\right]$ maps $\mathbf{t}_{3}^{\prime \prime}$ to the form of \mathbf{t}_{3}. Note $\widetilde{\Gamma} / \mathcal{Z}(\widetilde{\Gamma})$ is a lattice of Sol^{3}, isomorphic to $\mathbb{Z}^{2} \rtimes_{\mathcal{S}} \mathbb{Z}$, for $\mathcal{S} \in \mathrm{SL}(2, \mathbb{Z}), \operatorname{tr}(\mathcal{S})>2$, where $P=\left(p_{i j}\right)$ diagonalizes \mathcal{S}. As in the case of Sol^{3} (Proposition 2.3), we can assume $\operatorname{det}(P)=1$, so that $\left[\mathbf{t}_{1}, \mathbf{t}_{2}\right]=\mathbf{t}_{4}$. Therefore, any lattice is conjugate to a lattice $\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}\right\rangle$ of the desired form.

Henceforth we will assume all $\mathrm{Sol}_{1}{ }^{4}$-crystallographic groups are embedded in $\mathrm{Sol}_{1}^{4} \rtimes D_{4}$ as in Proposition 6.1. However, we will see that we can always take $c_{3}=0$, except possibly when the holonomy of Π, Φ, is \mathbb{Z}_{4}. Because lattices of Sol_{1}^{4} project to lattices of Sol^{3}, the projections $\mathrm{Sol}_{1}^{4} \rightarrow \mathrm{Sol}^{3}$ and $\operatorname{Aut}\left(\mathrm{Sol}_{1}^{4}\right) \rightarrow \operatorname{Aut}\left(\mathrm{Sol}^{3}\right)$ induce a projection $\mathrm{Sol}_{1}^{4} \rtimes D_{4} \rightarrow \mathrm{Sol}^{3} \rtimes D_{4}$ which carries a $\operatorname{Sol}_{1}{ }^{4}$-crystallographic group Π to a Sol 3-crystallographic group Q. Furthermore, when Π is embedded in $\mathrm{Sol}_{1}{ }^{4} \rtimes D_{4}$ as in Proposition 6.1, the lattice $\widetilde{\Gamma}_{\mathcal{S}}=\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}$ projects to a standard lattice $\Gamma_{\mathcal{S}}$ of Sol^{3}. That is, we have the following commuting diagram:

Our goal is finding all crystallographic groups Π of $\mathrm{Sol}_{1}{ }^{4}$ which project down to Q. In general, it is not true that there exists Π fitting the above commutative
diagram of exact sequences without making the kernel $\left\langle\mathbf{t}_{4}\right\rangle$ finer to $\left\langle\mathbf{t}_{4}^{1 / q}\right\rangle$. That is, even though $\widetilde{\Gamma}_{\mathcal{S}}$ always exists, for Π to exist, sometimes the kernel $\mathbb{Z}=\left\langle\mathbf{t}_{4}\right\rangle$ needs to be "inflated" to $\frac{1}{q} \mathbb{Z}=\left\langle\mathbf{t}_{4}^{1 / q}\right\rangle$. It turns out that, after appropriate inflation, an extension Π always exists.

The abstract kernel of $\Phi \rightarrow \operatorname{Out}\left(\Gamma_{\mathcal{S}}\right)$ is given by, for $A \in \Phi$,

$$
\mu(\alpha): \Gamma_{\mathcal{S}} \rightarrow \Gamma_{\mathcal{S}}, \text { where } \alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{a_{3}}, A\right) \in Q
$$

Here $\mu(\alpha)$ denotes conjugation in $\mathrm{Sol}^{3} \rtimes D_{4}$. Suppose in Proposition 6.1, we have fixed the c_{i}, as well as set $q=1$, thus fixing the lattice

$$
\widetilde{\Gamma}_{\left(\mathcal{S} ; 1, n_{1}, n_{2}\right)}=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}\right\rangle \hookrightarrow \mathrm{Sol}_{1}{ }^{4}
$$

For any generator $A \in \Phi$, let

$$
\alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{a_{3}} \mathbf{t}_{4}^{a_{4}}, A\right)=(a, A)
$$

We consider the effect that conjugation by α has on $\widetilde{\Gamma}_{\left(\mathcal{S} ; 1, n_{1}, n_{2}\right)}$. Note that conjugation by α is independent of a_{4}. We have the relations:

$$
\begin{aligned}
& \alpha \mathbf{t}_{1} \alpha^{-1}=\mathbf{t}_{1}^{m_{1}} \mathbf{t}_{2}^{m_{2}} \mathbf{t}_{4}^{v_{1}}, \text { where }\left[\begin{array}{l}
m_{1} \\
m_{2}
\end{array}\right]=\varphi(\bar{\alpha})\left[\begin{array}{l}
1 \\
0
\end{array}\right], \\
& \alpha \mathbf{t}_{2} \alpha^{-1}=\mathbf{t}_{1}^{n_{1}} \mathbf{t}_{2}^{n_{2}} \mathbf{t}_{4}^{v_{2}}, \text { where }\left[\begin{array}{l}
n_{1} \\
n_{2}
\end{array}\right]=\varphi(\bar{\alpha})\left[\begin{array}{l}
0 \\
1
\end{array}\right], \\
& \alpha \mathbf{t}_{3} \alpha^{-1}=\mathbf{t}_{1}^{w_{1}} \mathbf{t}_{2}^{w_{2}} \mathbf{t}_{3}^{\bar{A}} \mathbf{t}_{4}^{v_{3}} \text {, where }\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left(I-\mathcal{S}^{\bar{A}}\right)\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right], \\
& \alpha \mathbf{t}_{4} \alpha^{-1}=\mathbf{t}_{4}^{\hat{A}} .
\end{aligned}
$$

We will need the following lemma on the v_{i}.
Lemma 6.2. The numbers v_{1} and v_{2} are rational. Furthermore, we can adjust c_{3} so that v_{3} is rational.
Proof. Note that the image of $\widetilde{\Gamma}_{\left(\mathcal{S} ; 1, n_{1}, n_{2}\right)}$ under conjugation by α,

$$
\mu(\alpha)\left(\widetilde{\Gamma}_{\left(\mathcal{S} ; 1, n_{1}, n_{2}\right)}\right)=\alpha \widetilde{\Gamma}_{\left(\mathcal{S} ; 1, n_{1}, n_{2}\right)} \alpha^{-1}
$$

is a lattice of Sol_{1}^{4} lifting the standard lattice $\Gamma_{\mathcal{S}}$ of Sol^{3}.
All such lifts are given in Lemma 5.2. In equation (5.2), we see that for any two solutions c_{1}, c_{2} and $c_{1}^{\prime}, c_{2}^{\prime}$, both $c_{1}^{\prime}-c_{1}$ and $c_{2}^{\prime}-c_{2}$ must be rational. Thus v_{1} and v_{2} are rational numbers.

From Proposition 1.2, $A \in \Phi \subseteq D_{4}$ can be viewed as an element of $\mathrm{GL}(2, \mathbb{Z})$. The induced action of A on $\mathcal{Z}\left(\mathrm{Sol}_{1}^{4}\right)$ is multiplication by $\hat{A}=\operatorname{det}(A)$, and the induced action of A on $\mathrm{Sol}_{1}^{4} / \mathrm{Nil} \cong \mathbb{R}$ is multiplication by \bar{A}. We need to understand the action of A on the generator \mathbf{t}_{3} of $\widetilde{\Gamma}_{\left(\mathcal{S} ; 1, n_{1}, n_{2}\right)}$. Let $\hat{\mathbf{t}}_{3}$ denote \mathbf{t}_{3} with the $(1,3)$-slot set to be zero, so that $\mathbf{t}_{3}=\hat{\mathbf{t}}_{3} \mathbf{t}_{4}^{c_{3}}$:

$$
A\left(\mathbf{t}_{3}\right)=A\left(\hat{\mathbf{t}}_{3} \mathbf{t}_{4}^{c_{3}}\right)=A\left(\hat{\mathbf{t}}_{3}\right) A\left(\mathbf{t}_{4}^{c_{3}}\right)=\hat{\mathbf{t}}_{3}^{\bar{A}} \mathbf{t}_{4}^{\hat{A} c_{3}}=\left(\hat{\mathbf{t}}_{3}^{\bar{A}} \mathbf{t}_{4}^{\bar{A} c_{3}}\right)\left(\mathbf{t}_{4}^{-\bar{A} c_{3}} \mathbf{t}_{4}^{\hat{A} c_{3}}\right)
$$

$$
=\mathbf{t}_{3}^{\bar{A}} \mathbf{t}_{4}^{(\hat{A}-\bar{A}) c_{3}} .
$$

In order to show

$$
\alpha \mathbf{t}_{3} \alpha^{-1}=\mathbf{t}_{1}^{w_{1}} \mathbf{t}_{2}^{w_{2}} \mathbf{t}_{3}^{\bar{A}} \mathbf{t}_{4}^{v_{3}}, \text { where }\left[\begin{array}{l}
w_{1} \tag{6.1}\\
w_{2}
\end{array}\right]=\left(I-\mathcal{S}^{\bar{A}}\right)\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]
$$

we need only consider two cases, either $a_{3}=\frac{1}{2}$ or $a_{3}=0$.
First, consider the case when $a_{3}=\frac{1}{2}$. Then A must be diagonal, so that $\bar{A}=+1$. By Corollary 4.3, we can take $a_{1}=a_{2}=0$ so that $\alpha=\left(\mathbf{t}_{3}^{\frac{1}{2}} \mathbf{t}_{4}^{a_{4}}, A\right)$, so

$$
\alpha \mathbf{t}_{3} \alpha^{-1}=\mathbf{t}_{3}^{\frac{1}{2}} A\left(\mathbf{t}_{3}\right) \mathbf{t}_{3}^{-\frac{1}{2}}=\mathbf{t}_{3}^{\frac{1}{2}} \mathbf{t}_{3}^{\bar{A}} \mathbf{t}_{4}^{(\hat{A}-\bar{A}) c_{3}} \mathbf{t}_{3}^{-\frac{1}{2}}=\mathbf{t}_{3} \mathbf{t}_{4}^{(\hat{A}-1) c_{3}} .
$$

Since $\hat{A}= \pm 1$, there is a choice of c_{3} which makes $(\hat{A}-1) c_{3} \in \mathbb{Q}$.
Now consider the case $a_{3}=0$, so that $\alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{4}^{a_{4}}, A\right)$. We compute:

$$
\begin{aligned}
\alpha \mathbf{t}_{3} \alpha^{-1} & =\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} A\left(\mathbf{t}_{3}\right) \mathbf{t}_{2}^{-a_{2}} \mathbf{t}_{1}^{-a_{1}}=\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}\left(\mathbf{t}_{3}^{\bar{A}} \mathbf{t}_{4}^{(\hat{A}-\bar{A}) c_{3}}\right) \mathbf{t}_{2}^{-a_{2}} \mathbf{t}_{1}^{-a_{1}} \\
& =\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{\bar{A}} \mathbf{t}_{2}^{-a_{2}} \mathbf{t}_{1}^{-a_{1}} \mathbf{t}_{3}^{-\bar{A}}\right) \mathbf{t}_{3}^{\bar{A}} \mathbf{t}_{4}^{(\hat{A}-\bar{A}) c_{3}} .
\end{aligned}
$$

Now by Lemma 5.5, and using that a_{1}, a_{2} are rational, we have

$$
\begin{aligned}
\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{\bar{A}} \mathbf{t}_{2}^{-a_{2}} \mathbf{t}_{1}^{-a_{1}} \mathbf{t}_{3}^{-\bar{A}}\right) \mathbf{t}_{3}^{\bar{A}} \mathbf{t}_{4}^{(\hat{A}-\bar{A}) c_{3}} & =\left(\mathbf{t}_{1}^{b_{1}} \mathbf{t}_{2}^{b_{2}} \mathbf{t}_{4}^{u}\right) \mathbf{t}_{3}^{\bar{A}} \mathbf{t}_{4}^{(\hat{A}-\bar{A}) c_{3}} \\
& =\mathbf{t}_{1}^{b_{1}} \mathbf{t}_{2}^{b_{2}} \mathbf{t}_{3}^{\bar{A}} \mathbf{t}_{4}^{u+(\hat{A}-\bar{A}) c_{3}}
\end{aligned}
$$

for a rational number u. Equating this with equation (6.1), we obtain

$$
\mathbf{t}_{1}^{w_{1}} \mathbf{t}_{2}^{w_{2}} \mathbf{t}_{3}^{\bar{A}} \mathbf{t}_{4}^{v_{3}}=\mathbf{t}_{1}^{b_{1}} \mathbf{t}_{2}^{b_{2}} \mathbf{t}_{3}^{\bar{A}} \mathbf{t}_{4}^{u+(\hat{A}-\bar{A}) c_{3}}
$$

Now $w_{1}=b_{1}$ and $w_{2}=b_{2}$ is forced. Therefore, $v_{3}=u+(\hat{A}-\bar{A}) c_{3}$. Because $\hat{A}= \pm 1, \bar{A}= \pm 1$, and u is rational, c_{3} can always be chosen so that v_{3} is rational.

Proposition 6.3. Let $Q \hookrightarrow \mathrm{Sol}^{3} \rtimes D_{4}$ be a crystallographic group of Sol^{3} with lattice $\Gamma_{\mathcal{S}}$. Then there exists a lattice $\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}\right\rangle$ of $\mathrm{Sol}_{1}{ }^{4}$, projecting to $\Gamma_{\mathcal{S}}$, for which the abstract kernel $\Phi \rightarrow \operatorname{Out}\left(\Gamma_{\mathcal{S}}\right)$ induces $\Phi \rightarrow \operatorname{Out}\left(\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}\right)$.

Proof. For any integer $q>0$, we add a finer generator of the central direction to the group $\widetilde{\Gamma}_{\left(\mathcal{S} ; 1, n_{1}, n_{2}\right)}$ to obtain $\left\langle\widetilde{\Gamma}_{\left(\mathcal{S} ; 1, n_{1}, n_{2}\right)}, \mathbf{t}_{4}^{\frac{1}{q}}\right\rangle=\widetilde{\Gamma}_{\left(\mathcal{S} ; q, q n_{1}, q n_{2}\right)}$.

Now, for each generator $A \in \Phi$, the v_{i} in Proposition 6.2 are rational. Therefore, for q large enough, $\widetilde{\Gamma}_{\left(\mathcal{S} ; q, q n_{1}, q n_{2}\right)}$ is invariant under conjugation by $\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{a_{3}} \mathbf{t}_{4}^{a_{4}}, A\right)$, for each $A \in \Phi$. As this conjugation is independent of lift of $\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{a_{3}}, A\right) \in \operatorname{Sol}^{3} \rtimes D_{4}$ to $\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{a_{3}} \mathbf{t}_{4}^{a_{4}}, A\right) \in \mathrm{Sol}_{1}^{4} \rtimes D_{4}$, with $m_{1}=q n_{1}$ and $m_{2}=q n_{2}$, we obtain an abstract kernel $\Phi \rightarrow \operatorname{Out}\left(\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}\right)$.

Proposition 6.4. Let $Q \hookrightarrow \mathrm{Sol}^{3} \rtimes D_{4}$ be a crystallographic group of Sol^{3} containing lattice $\Gamma_{\mathcal{S}}$. Assume that the abstract kernel $\Phi \rightarrow \operatorname{Out}\left(\Gamma_{\mathcal{S}}\right)$ induces $\Phi \rightarrow \operatorname{Out}\left(\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}\right)$. Then for some $p>0$, there exists Π which fits the following commuting diagram:

Proof. Since the center of $\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}$ is $\frac{1}{q} \mathbb{Z}$ and Φ is finite, $H^{3}\left(\Phi ; \frac{1}{q} \mathbb{Z}\right)$ is finite. This means the obstruction class to the existence of the extension vanishes if we use $\frac{1}{p q} \mathbb{Z}$ for the coefficients, for some $p>0$. That is, it vanishes inside $H^{3}\left(\Phi ; \frac{1}{p q} \mathbb{Z}\right)$. Thus, with such $p q$, the center of $\widetilde{\Gamma}_{\left(\mathcal{S} ; p q, p m_{1}, p m_{2}\right)}$ is $\frac{1}{p q} \mathbb{Z}$, and an extension Π exists.

So we can assume that after appropriate inflation, there exists an extension Π with lattice $\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}$ for some $q>0$. The Seifert Construction will show that such an abstract extension actually embeds in $\operatorname{Sol}_{1}^{4} \rtimes D_{4}$ as a crystallographic group. By taking $p q$ as a new q, we have:
Theorem 6.5. Let $\widetilde{\Gamma}_{\mathcal{S}}=\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}$ be a lattice of Sol_{1}^{4}, and

$$
1 \longrightarrow \widetilde{\Gamma}_{\mathcal{S}} \longrightarrow \Pi \longrightarrow \Phi \longrightarrow 1
$$

be an extension of $\widetilde{\Gamma}_{\mathcal{S}}$ by a finite group Φ from Proposition 6.4. Then there exists an injective homomorphism

$$
\theta: \Pi \rightarrow \operatorname{Sol}_{1}^{4} \rtimes D_{4} \subset \operatorname{Sol}_{1}^{4} \rtimes \operatorname{Aut}\left(\operatorname{Sol}_{1}^{4}\right)
$$

carrying $\widetilde{\Gamma}_{\mathcal{S}}$ onto a standard lattice. Such θ is unique up to conjugation by an element of $\mathrm{Sol}_{1}^{4} \rtimes \operatorname{Aut}\left(\mathrm{Sol}_{1}^{4}\right)$.
Proof. This is a consequence of the Seifert construction, since $\mathrm{Sol}_{1}{ }^{4}$ is completely solvable. We can apply [11, Theorem 7.3.2] with $G=\mathrm{Sol}_{1}^{4}$ and $W=$ \{point\}. Since Φ is finite, the homomorphism $\Pi \rightarrow \operatorname{Out}(\widetilde{\Gamma}) \rightarrow \operatorname{Out}\left(\operatorname{Sol}_{1}^{4}\right)$ has finite image in $\operatorname{Out}\left(\mathrm{Sol}_{1}^{4}\right)$, and it lifts back to a finite subgroup C of $\operatorname{Aut}\left(\mathrm{Sol}_{1}^{4}\right)$.

But this C can be conjugated into $D_{4} \subset \operatorname{Aut}\left(\mathrm{Sol}_{1}^{4}\right)$, a maximal compact subgroup. Consequently, we have a commuting diagram:

The homomorphism $\Pi \rightarrow \operatorname{Sol}_{1}^{4} \rtimes D_{4}$ is injective since the abstract kernel $\Phi \rightarrow \operatorname{Out}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)$ from Proposition 6.4 is injective. The essence of the argument is showing that the cohomology set $H^{2}\left(\Phi ; \mathrm{Sol}_{1}^{4}\right)$ is trivial for any finite group Φ. The uniqueness is a result of [11, Corollary 7.7.4]. It also comes from $H^{1}\left(\Phi ; \operatorname{Sol}_{1}^{4}\right)=0$.

After inflation, the Seifert Construction produces a crystallographic group of $\mathrm{Sol}_{1}{ }^{4}$. Often we can assume that $c_{3}=0$, that is, $\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}$ is a standard lattice of $\mathrm{Sol}_{1}{ }_{1}^{4}$. Recall that $\operatorname{Aut}\left(\operatorname{Sol}_{1}^{4}\right)=\mathbb{R} \rtimes \operatorname{Aut}\left(\mathrm{Sol}^{3}\right)$ (Proposition 1.2), where $\hat{k} \in \mathbb{R}$ acts by

$$
\left[\begin{array}{ccc}
1 & e^{u} x & z \\
0 & e^{u} & y \\
0 & 0 & 1
\end{array}\right] \longmapsto\left[\begin{array}{ccc}
1 & e^{u} x & z+k u \\
0 & e^{u} & y \\
0 & 0 & 1
\end{array}\right]
$$

We have the following:
Theorem 6.6. For all holonomy groups, except \mathbb{Z}_{4}, a crystallographic group Π of Sol_{1}^{4} embeds into $\mathrm{Sol}_{1}^{4} \rtimes D_{4}$ in such a way that $\Pi \cap \mathrm{Sol}_{1}^{4}$ is a standard lattice $\left(c_{3}=0\right)$.
Proof. Let e denote the identity element of $\operatorname{Sol}_{1}{ }^{4}$. For the statement concerning c_{3}, conjugation by (e, \hat{k}) with $k=-\frac{c_{3}}{\ln \lambda}$ sets $c_{3}=0$ in \mathbf{t}_{3}. However, this conjugation moves D_{4} to $\hat{k} D_{4} \hat{k}^{-1}$.

Suppose every $A \in \Phi$ satisfies $\bar{A} \hat{A}=+1$. Since such A commute with \hat{k}, conjugation by (e, \hat{k}) leaves the holonomy group Φ inside D_{4} while setting $c_{3}=0$ in \mathbf{t}_{3}. This applies to, from the list of Theorem 3.3, all the groups lifting Sol^{3}-crystallographic groups of type (2a), (2b), (3), (3i), (6a), (6ai), (6b), and (6bi).

Suppose Φ contains $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. Then Corollary 4.3 and Lemma 6.7 below show that a generator α of Π projecting to $A \in \Phi$ can be conjugated to $\alpha=\left(\mathbf{t}_{3}^{\frac{1}{2}}, A\right)$ (so that $a_{1}=a_{2}=a_{4}=0$). Then, we shall show that $\mathbf{t}_{3}=\hat{\mathbf{t}}_{3} \mathbf{t}_{4}^{c_{3}}$ can be replaced by $\hat{\mathbf{t}}_{3}$ (where $\hat{\mathbf{t}}_{3}$ is \mathbf{t}_{3} with $c_{3}=0$).

$$
\begin{aligned}
\alpha^{2} & =\left(\mathbf{t}_{3}^{\frac{1}{2}}, A\right)^{2}=\left(\left(\hat{\mathbf{t}}_{3} \mathbf{t}_{4}^{c_{3}}\right)^{\frac{1}{2}}, A\right)^{2}=\left(\hat{\mathbf{t}}_{3} \mathbf{t}_{4}^{c_{3}}\right)^{\frac{1}{2}} A\left(\left(\hat{\mathbf{t}}_{3} \mathbf{t}_{4}^{c_{3}}\right)^{\frac{1}{2}}\right) \\
& =\hat{\mathbf{t}}_{3}^{\frac{1}{2}} \mathbf{t}_{4}^{\frac{c_{3}}{2}} \cdot \hat{\mathbf{t}}_{3}^{\frac{1}{2}} \mathbf{t}_{4}^{-\frac{c_{3}}{2}}=\hat{\mathbf{t}}_{3} .
\end{aligned}
$$

Thus $\hat{\mathbf{t}}_{3}=\alpha^{2} \in \Pi$, and we can take $\hat{\mathbf{t}}_{3}$ instead of \mathbf{t}_{3} as a generator for the same group (which is apparently redundant since α is in the group already). This
shows that $\mathbf{t}_{4}^{c_{3}}=\alpha^{-2} \mathbf{t}_{3} \in \Pi$ must be a multiple of $\frac{1}{q}$, and we can take $c_{3}=0$. From the list in Theorem 3.3, the groups (1), (5), (7) and (7i) contain such an A in the holonomy.

The only case that is not covered by these two cases is when $\Phi=\mathbb{Z}_{4}$ (type (4) in the list), which is discussed below in our main classification (Theorem 6.13).

Lemma 6.7. If $\operatorname{det}(A)=-1$, by conjugation, a_{4} can be made 0 .
Proof. Suppose $\operatorname{det}(A)=-1$. Conjugation by $\mathbf{t}_{4}^{-\frac{a_{4}}{2}}$ fixes the lattice $\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}$, and moves $\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{a_{3}} \mathbf{t}_{4}^{a_{4}}, A\right)$ to $\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{a_{3}}, A\right)$.
Proposition 6.8 (Fixing a_{4}, b_{4}). Consider the commuting diagram in Proposition 6.4. Given Q and integers q, m_{1}, m_{2}, we had $\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}$. The only thing that remains for the construction of Π is fixing a_{4}, b_{4}. As is known, all the extensions Π in the short exact sequence

$$
1 \rightarrow \widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)} \rightarrow \Pi \rightarrow \Phi \rightarrow 1
$$

are classified by $H^{2}\left(\Phi ; \mathcal{Z}\left(\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}\right)\right)=H^{2}(\Phi ; \mathbb{Z})$. When $\Phi=\langle A\rangle$,

$$
H^{2}\left(\mathbb{Z}_{p} ; \mathbb{Z}\right)= \begin{cases}0, & \text { if } \hat{A}=-1 \\ \mathbb{Z}_{p}, & \text { if } \hat{A}=1\end{cases}
$$

see [12, Theorem 7.1, p. 122].
In actual calculation, this becomes an equation

$$
\alpha^{p}=\mathbf{t}_{1}^{n_{1}} \mathbf{t}_{2}^{n_{2}} \mathbf{t}_{3}^{n_{3}} \mathbf{t}_{4}^{k_{4}}
$$

for integers n_{i} and $k_{4}=\frac{i}{q}, i=0,1, \ldots, p-1$.
Remark 6.9. When $\Phi=\langle A, B\rangle$ is not cyclic, $\hat{A}=\hat{B}=+1$ never happens, so we can set one of a_{4}, b_{4} to zero. Thus, $H^{2}\left(\Phi ; \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)$ is cyclic for all Φ.
6.10 (Detecting Torsion in Sol $_{1}^{4}$-Crystallographic Groups). Given a lattice $\widetilde{\Gamma}_{\mathcal{S}}$ of Sol_{1}^{4} (which projects to a lattice $\Gamma_{\mathcal{S}}$ of Sol^{3}), the short exact sequence

$$
1 \rightarrow \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right) \rightarrow \widetilde{\Gamma}_{\mathcal{S}} \rightarrow \Gamma_{\mathcal{S}} \rightarrow 1
$$

induces an S^{1}-bundle over the solvmanifold $\Gamma_{\mathcal{S}} \backslash \operatorname{Sol}^{3}$,

$$
S^{1} \rightarrow \widetilde{\Gamma}_{\mathcal{S}} \backslash\left(\operatorname{Sol}_{1}^{4}\right) \rightarrow \Gamma_{\mathcal{S}} \backslash \mathrm{Sol}^{3}
$$

The following two lemmas will be useful for determining when a Sol $_{1}{ }^{4}$-crystallographic group is torsion free.
Lemma 6.11. Let $\widetilde{\Gamma}_{\mathcal{S}}$ be a lattice of Sol_{1}^{4}, projecting to a standard lattice $\Gamma_{\mathcal{S}}$ of Sol^{3}, and suppose that for $\alpha \in \operatorname{Sol}_{1}^{4} \rtimes D_{4}$, the group $\Pi=\left\langle\widetilde{\Gamma}_{\mathcal{S}}, \alpha\right\rangle$ is crystallographic. Let $\bar{\alpha}$ denote the projection of α to $\operatorname{Sol}^{3} \rtimes D_{4}$. When the automorphism part of α acts as a reflection on the center of Sol_{1}^{4}, Π is torsion free if and only if $\left\langle\Gamma_{\mathcal{S}}, \bar{\alpha}\right\rangle \subset \operatorname{Sol}^{3} \rtimes D_{4}$ is torsion free.

Proof. Evidently, if $\left\langle\Gamma_{\mathcal{S}}, \bar{\alpha}\right\rangle$ is torsion free, then Π must be torsion free. For the converse, suppose that $\left\langle\Gamma_{\mathcal{S}}, \bar{\alpha}\right\rangle$ has torsion. In this case, the action of $\bar{\alpha}$ on the solvmanifold $\Gamma_{\mathcal{S}} \backslash \operatorname{Sol}^{3}$ must fix a point. Observe that the action of α on the solvmanifold $\widetilde{\Gamma}_{\mathcal{S}} \backslash \operatorname{Sol}_{1}^{4}$ is S^{1} fiber preserving. Therefore, a circle fiber is left invariant under the action of α. Since α acts as reflection on the fiber, α must fix a point. Since the action of α fixes a point on $\widetilde{\Gamma}_{\mathcal{S}} \backslash \operatorname{Sol}_{1}{ }^{4}$, the action of Π fixes a point on $\mathrm{Sol}_{1}{ }^{4}$. Thus, Π has torsion.

Lemma 6.12. Let Π be a crystallographic group of $\operatorname{Sol}_{1}{ }^{4}$ with lattice $\widetilde{\Gamma}_{\mathcal{S}}$. If $\alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{a_{3}} \mathbf{t}_{4}^{a_{4}}, A\right) \in \Pi$ satisfies $a_{3}=\frac{1}{2}$ and $\bar{A}=1$, then $\gamma \alpha$ is infinite order for any $\gamma \in \widetilde{\Gamma}_{\mathcal{S}}$.

Proof. Note that A is necessarily of order 2. Let $\mathrm{pr}: \mathrm{Sol}_{1}^{4} \rightarrow \mathbb{R}$ denote the quotient homomorphism of Sol $_{1}{ }^{4}$ by its nil-radical Nil. Write $\gamma \in \widetilde{\Gamma}_{\mathcal{S}}$ as $\mathbf{t}_{1}^{n_{1}} \mathbf{t}_{2}^{n_{2}} \mathbf{t}_{3}^{n_{3}} \mathbf{t}_{4}^{n_{4}}$. Application of pr to $(\gamma \alpha)^{2}$ yields

$$
\operatorname{pr}(\gamma \alpha)^{2}=2 n_{3}+1
$$

from which we infer $\gamma \alpha$ is of infinite order.
We are now ready to give our main classification of $\mathrm{Sol}_{1}{ }^{4}$-crystallographic groups. Following Proposition 6.1, a crystallographic group

$$
\Pi \subset \mathrm{Sol}_{1}^{4} \rtimes D_{4}
$$

of $\operatorname{Sol}_{1}{ }^{4}$ is generated by a lattice $\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}\right\rangle$ of $\operatorname{Sol}_{1}{ }^{4}$, together with at most two generators of the form

$$
\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{a_{3}} \mathbf{t}_{4}^{a_{4}}, A\right),\left(\mathbf{t}_{1}^{b_{1}} \mathbf{t}_{2}^{b_{2}} \mathbf{t}_{3}^{b_{3}} \mathbf{t}_{4}^{b_{4}}, B\right)
$$

where A, B generate the holonomy group $\Phi \subset D_{4}$. The Sol_{1}^{4}-crystallographic group Π projects to a Sol ${ }^{3}$-crystallographic group Q. We view Q as an extension

$$
1 \rightarrow \mathbb{Z}^{2} \rightarrow Q \rightarrow \mathbb{Z}_{\Phi} \rightarrow 1
$$

and Theorem 6.6 classifies all possible \mathbb{Z}_{Φ} and abstract kernels $\varphi: \mathbb{Z}_{\Phi} \rightarrow$ $\mathrm{GL}(2, \mathbb{Z})$. We organize the Sol_{1}^{4}-crystallographic groups according to which \mathbb{Z}_{Φ} and $\varphi: \mathbb{Z}_{\Phi} \rightarrow \mathrm{GL}(2, \mathbb{Z})$ in Theorem 6.6 they project to. Theorem 6.13 also classifies Sol ${ }^{3}$-crystallographic groups, by projecting from $\mathrm{Sol}_{1}^{4} \rtimes D_{4}$ to $\mathrm{Sol}^{3} \rtimes D_{4}$.

Theorem 6.13 (Classification of $\mathrm{Sol}_{1}{ }^{4}$-Crystallographic Groups). The following is a complete list of crystallographic groups Π of $\mathrm{Sol}_{1}{ }^{4}$, generated by a lattice $\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}$ of $\mathrm{Sol}_{1}{ }^{4}$, together with at most two generators of the form

$$
\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{3}^{a_{3}} \mathbf{t}_{4}^{a_{4}}, A\right),\left(\mathbf{t}_{1}^{b_{1}} \mathbf{t}_{2}^{b_{2}} \mathbf{t}_{3}^{b_{3}} \mathbf{t}_{4}^{b_{4}}, B\right)
$$

They are organized according to which \mathbb{Z}_{Φ} and $\varphi: \mathbb{Z}_{\Phi} \rightarrow \mathrm{GL}(2, \mathbb{Z})$ they project to (see Theorem 6.6). This determines the exponents a_{3}, b_{3}.

We find equations describing $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))$, and thus classifying $\mathbf{a}=$ $\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right], \mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$. In general, $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))$ depends on \mathcal{S}.

By Proposition 6.4 and Theorem 6.5, for sufficiently large q, an abstract kernel $\Phi \rightarrow \operatorname{Out}\left(\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}\right)$ is induced, with vanishing obstruction to the existence of Π in $H^{3}\left(\Phi ; \mathcal{Z}\left(\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}\right)\right)$. The exponents on \mathbf{t}_{4}, a_{4} and b_{4}, are classified by the group $H^{2}\left(\Phi ; \mathcal{Z}\left(\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}\right)\right)$.

In all cases, except, $\Phi=\mathbb{Z}_{4}$, we can take $c_{3}=0$ in the lattice $\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}$ of Π (Theorem 6.6). In the \mathbb{Z}_{4} holonomy case, we have two different (up to isomorphism) choices for c_{3}.

Whenever the holonomy group contains an automorphism of Sol_{1}^{4} which is represented by an off-diagonal matrix, the orbifold $\Pi \backslash \mathrm{Sol}_{1}{ }^{4}$ is non-orientable. We give precise criterion for Π to be torsion free. When Π is torsion free, $\Pi \backslash \mathrm{Sol}_{1}{ }^{4}$ is an infra-solvmanifold of $\mathrm{Sol}_{1}{ }^{4}$.

By projecting each $\mathrm{Sol}_{1}{ }^{4}$-crystallographic group Π to a crystallographic group $Q \subset \mathrm{Sol}^{3} \rtimes D_{4}$, we also obtain a classification of Sol^{3}-crystallographic groups.
(0) $\Phi=$ trivial

$$
\Pi=\widetilde{\Gamma}_{\left(\mathcal{S} ; q, m_{1}, m_{2}\right)}
$$

- Torsion free.
(1) $\Phi=\mathbb{Z}_{2}: A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\mathbb{Z}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{\frac{1}{2}}, A\right)\right\rangle$.
$\varphi(\bar{\alpha})=-K$ with $\operatorname{det}(K)=-1, \operatorname{tr}(K)=n>0$, and $\mathcal{S}=n K+I$.

$$
\Pi=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}, \alpha=\left(\mathbf{t}_{3}^{\frac{1}{2}}, A\right)\right\rangle
$$

- $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))$ is trivial so that $\mathbf{a}=\mathbf{0}$.
- $H^{2}\left(\Phi ; \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)$ is trivial.
- Both Q and Π are torsion free.
(2a) $\Phi=\mathbb{Z}_{2}: A=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\mathbb{Z} \times \mathbb{Z}_{2}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{0}, A\right)\right\rangle$.
$\varphi(\bar{\alpha})=A, \mathcal{S} \in \mathrm{SL}(2, \mathbb{Z})$ with $\operatorname{tr}(\mathcal{S})>2$.

$$
\Pi=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}, \alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{4}^{a_{4}}, A\right)\right\rangle
$$

- $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))=\{\mathbf{a} \mid \mathbf{a} \in \operatorname{Coker}(I-\mathcal{S})\} /\{2 \mathbf{a} \mid \mathbf{a} \in \operatorname{Coker}(I-$ $\mathcal{S})\} \subseteq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
- $H^{2}\left(\Phi ; \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)=\mathbb{Z}_{2}$. There are two choices for a_{4}, the solutions of $\alpha^{2}=\mathbf{t}_{4}^{\frac{i}{q}}(i=0,1)$.
- Q has torsion, Π is torsion free when $i=1$ and q is even.
(2b) $\Phi=\mathbb{Z}_{2}: A=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\mathbb{Z}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{\frac{1}{2}}, A\right)\right\rangle$.
$\varphi(\bar{\alpha})=-K$ with $\operatorname{det}(K)=+1, \operatorname{tr}(K)=n>2$, and $\mathcal{S}=n K-I$.

$$
\Pi=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}, \alpha=\left(\mathbf{t}_{3}^{\frac{1}{2}} \mathbf{t}_{4}^{a_{4}}, A\right)\right\rangle
$$

- $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))$ is trivial so that $\mathbf{a}=\mathbf{0}$.
- $H^{2}\left(\Phi ; \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)=\mathbb{Z}_{2}, a_{4}=0$ or $\frac{1}{2 q}$.
- Both Q and Π are torsion free.
(3) $\Phi=\mathbb{Z}_{2}: A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\mathbb{Z} \rtimes \mathbb{Z}_{2}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{0}, A\right)\right\rangle$.
$\varphi(\bar{\alpha})=A, \mathcal{S} \in \mathrm{SL}(2, \mathbb{Z})$ with $\operatorname{tr}(\mathcal{S})>2$ and $\sigma_{12}=-\sigma_{21}$.

$$
\Pi=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}, \alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}, A\right)\right\rangle .
$$

- $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))=\left\{\mathbf{a} \mid \mathbf{a} \in \operatorname{Coker}(I-\mathcal{S}), a_{2} \equiv-a_{1}\right\} /$
$\left\{\left.\left[\begin{array}{l}v_{1}-v_{2} \\ v_{2}-v_{1}\end{array}\right] \right\rvert\, \mathbf{v} \in \operatorname{Coker}(I-\mathcal{S})\right\} \subseteq \mathbb{Z}_{2}$.
- $H^{2}\left(\Phi ; \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)$ is trivial.
- Both Q and Π have torsion.
(3i) $\Phi=\mathbb{Z}_{2}: A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\mathbb{Z} \rtimes \mathbb{Z}_{2}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{0}, A\right)\right\rangle$.
$\varphi(\bar{\alpha})=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \mathcal{S} \in \mathrm{SL}(2, \mathbb{Z})$ with $\operatorname{tr}(\mathcal{S})>2$ and $\sigma_{11}=\sigma_{22}$.

$$
\Pi=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}, \alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}, A\right)\right\rangle
$$

- $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))=\left\{\mathbf{a} \mid \mathbf{a} \in \operatorname{Coker}(I-\mathcal{S}), 2 a_{1} \equiv 0\right\} /$
$\left\{\left.\left[\begin{array}{c}0 \\ 2 v_{2}\end{array}\right] \right\rvert\, \mathbf{v} \in \operatorname{Coker}(I-\mathcal{S})\right\} \subseteq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
- $H^{2}\left(\Phi ; \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)$ is trivial.
- Both Q and Π are torsion free if and only if $a_{1} \equiv \frac{1}{2}$ and $a_{2} \not \equiv$ $\frac{\left(\sigma_{11}+1\right)(2 n+1)}{2 \sigma_{12}}$ for any $n \in \mathbb{Z}$.
(4) $\Phi=\mathbb{Z}_{4}: A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\mathbb{Z} \rtimes \mathbb{Z}_{4}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{0}, A\right)\right\rangle$.
$\varphi(\bar{\alpha})=A, \mathcal{S} \in \mathrm{SL}(2, \mathbb{Z})$ with $\operatorname{tr}(\mathcal{S})>2$ and symmetric.

$$
\Pi=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}, \alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{4}^{a_{4}}, A\right)\right\rangle
$$

- There are two choices for c_{3} in \mathbf{t}_{3}. They are solutions of $d=0$ or $d=\frac{1}{q}$ for c_{3}, where $\alpha \mathbf{t}_{3} \alpha^{-1}=\mathbf{t}_{1}^{\left(1-\sigma_{22}\right) a_{1}+\sigma_{12} a_{2}} \mathbf{t}_{2}^{\sigma_{21} a_{1}+\left(1-\sigma_{11}\right) a_{2}} \mathbf{t}_{3}^{-1} \mathbf{t}_{4}^{d}$.
Each corresponds to a distinct abstract kernel $\Phi \rightarrow \operatorname{Out}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)$.
- $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))=\{\mathbf{a} \mid \mathbf{a} \in \operatorname{Coker}(I-\mathcal{S})\} /\{(I-A) \mathbf{a} \mid \mathbf{a} \in$
$\operatorname{Coker}(I-\mathcal{S})\} \subseteq \mathbb{Z}_{2}$.
- $H^{2}\left(\Phi ; \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)=\mathbb{Z}_{4}$. There are 4 choices for a_{4}, the solutions of $\alpha^{4}=\mathbf{t}_{4}^{\frac{2}{q}}(i=0,1,2,3)$.
- Q has torsion, Π is torsion free precisely when $i=1,3$ and q is even.
(5) $\Phi=\mathbb{Z}_{2} \times \mathbb{Z}_{2}: A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\mathbb{Z} \times \mathbb{Z}_{2}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{\frac{1}{2}}, A\right), \bar{\beta}=\left(\mathbf{t}_{3}^{0}, B\right)\right\rangle$.
$\varphi(\bar{\alpha})=-K, \varphi(\bar{\beta})=B \quad$ (1) $+(2 \mathrm{a})$
$\mathcal{S}=n K+I, K \in \mathrm{GL}(2, \mathbb{Z}), \operatorname{det}(K)=-1$, and $\operatorname{tr}(K)=n>0$.

$$
\Pi=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}, \alpha=\left(\mathbf{t}_{3}^{\frac{1}{2}}, A\right), \beta=\left(\mathbf{t}_{1}^{b_{1}} \mathbf{t}_{2}^{b_{2}} \mathbf{t}_{4}^{b_{4}}, B\right)\right\rangle
$$

- $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))=\{\mathbf{b} \mid \mathbf{b} \in \operatorname{Coker}(I+K)\} /\{2 \mathbf{b} \mid \mathbf{b} \in \operatorname{Coker}(I+$
$K)\} \subseteq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
- $H^{2}\left(\Phi ; \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)=\mathbb{Z}_{2}$. There are two choices for b_{4}, the solutions of $\beta^{2}=\mathbf{t}_{4}^{\frac{i}{q}}(i=0,1)$.
- Q has torsion, Π is torsion free precisely when $i=1$ and q is even.
(6a) $\Phi=\mathbb{Z}_{2} \times \mathbb{Z}_{2}: A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\left(\mathbb{Z} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{0}, A\right), \bar{\beta}=\left(\mathbf{t}_{3}^{0}, B\right)\right\rangle$.
$\varphi(\bar{\alpha})=A, \varphi(\bar{\beta})=B$
$(3)+(2 a)$
$\mathcal{S} \in \mathrm{SL}(2, \mathbb{Z})$ with $\operatorname{tr}(\mathcal{S})>2$ and $\sigma_{12}=-\sigma_{21}$.

$$
\Pi=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}, \alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}, A\right), \beta=\left(\mathbf{t}_{1}^{b_{1}} \mathbf{t}_{2}^{b_{2}} \mathbf{t}_{4}^{b_{4}}, B\right)\right\rangle
$$

- $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))=\left\{(\mathbf{a}, \mathbf{b}) \mid \mathbf{a}, \mathbf{b} \in \operatorname{Coker}(I-\mathcal{S}), a_{2} \equiv-a_{1}, b_{1}-\right.$ $\left.b_{2}-2 a_{1} \equiv 0\right\} /\left\{\left.\left(\left[\begin{array}{l}v_{1}-v_{2} \\ v_{2}-v_{1}\end{array}\right], 2 \mathbf{v}\right) \right\rvert\, \mathbf{v} \in \operatorname{Coker}(I-\mathcal{S})\right\}$.
- $H^{2}\left(\Phi ; \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)=\mathbb{Z}_{2}$. There are two choices for b_{4}, the solutions of $\beta^{2}=\mathbf{t}_{4}^{\frac{i}{q}}(i=0,1)$.
- Both Q and Π have torsion.
(6ai) $\Phi=\mathbb{Z}_{2} \times \mathbb{Z}_{2}: A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\left(\mathbb{Z} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{0}, A\right), \bar{\beta}=\left(\mathbf{t}_{3}^{0}, B\right)\right\rangle$.
$\varphi(\bar{\alpha})=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \varphi(\bar{\beta})=B$
$\mathcal{S} \in \mathrm{SL}(2, \mathbb{Z})$ with $\operatorname{tr}(\mathcal{S})>2$ and $\sigma_{11}=\sigma_{22}$.

$$
\Pi=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}, \alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}, A\right), \beta=\left(\mathbf{t}_{1}^{b_{1}} \mathbf{t}_{2}^{b_{2}} \mathbf{t}_{4}^{b_{4}}, B\right)\right\rangle
$$

- $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))=\left\{(\mathbf{a}, \mathbf{b}) \mid \mathbf{a}, \mathbf{b} \in \operatorname{Coker}(I-\mathcal{S}), 2 a_{1} \equiv 0,2 b_{2}-\right.$ $\left.2 a_{2} \equiv 0\right\} /\left\{\left.\left(\left[\begin{array}{c}0 \\ 2 v_{2}\end{array}\right], 2 \mathbf{v}\right) \right\rvert\, \mathbf{v} \in \operatorname{Coker}(I-\mathcal{S})\right\}$.
- $H^{2}\left(\Phi ; \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)=\mathbb{Z}_{2}$. There are two choices for b_{4}, the solutions of $\beta^{2}=\mathbf{t}_{4}^{\frac{i}{q}}(i=0,1)$.
- Q has torsion, Π is torsion free if and only if $i=1, q$ is even, and $a_{1} \equiv \frac{1}{2}, a_{2} \equiv b_{2}+\frac{1}{2}, b_{1} \not \equiv \frac{\sigma_{12}(2 n+1)}{2\left(\sigma_{11}-1\right)}+\frac{1}{2}, b_{2} \not \equiv \frac{\left(\sigma_{11}+1\right)(2 m+1)}{2 \sigma_{12}}+\frac{1}{2}$ for any $m, n \in \mathbb{Z}$.
(6b) $\Phi=\mathbb{Z}_{2} \times \mathbb{Z}_{2}: A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\mathbb{Z} \rtimes \mathbb{Z}_{2}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{0}, A\right), \bar{\beta}=\left(\mathbf{t}_{3}^{\frac{1}{2}}, B\right)\right\rangle$.
$\varphi(\bar{\alpha})=A, \varphi(\bar{\beta})=-K$
$\mathcal{S}=n K-I$, where $K \in \mathrm{SL}(2, \mathbb{Z})$ with $\operatorname{tr}(K)=n>2$; $k_{12}=-k_{21}$.

$$
\Pi=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}, \alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}, A\right), \beta=\left(\mathbf{t}_{3}^{\frac{1}{2}} \mathbf{t}_{4}^{b_{4}}, B\right)\right\rangle
$$

- $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))=\left\{\mathbf{a} \mid \mathbf{a} \in \operatorname{Coker}(I+K), a_{2} \equiv-a_{1}\right\} /$

$$
\left\{\left.\left[\begin{array}{l}
v_{1}-v_{2} \\
v_{2}-v_{1}
\end{array}\right] \right\rvert\, \mathbf{v} \in \operatorname{Coker}(I+K)\right\} \subseteq \mathbb{Z}_{2}
$$

- $H^{2}\left(\Phi ; \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)=\mathbb{Z}_{2}$. There are two choices for b_{4}, the solutions of $\beta^{2}=\mathbf{t}_{3} \mathbf{t}_{4}^{\frac{i}{q}}(i=0,1)$.
- Both Q and Π have torsion.
(6bi) $\Phi=\mathbb{Z}_{2} \times \mathbb{Z}_{2}: A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\mathbb{Z} \rtimes \mathbb{Z}_{2}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{0}, A\right), \bar{\beta}=\left(\mathbf{t}_{3}^{\frac{1}{2}}, B\right)\right\rangle$.
$\varphi(\bar{\alpha})=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \varphi(\bar{\beta})=-K \quad$ (3i) $+(2 \mathrm{~b})$
$\mathcal{S}=n K-I$, where $K \in \operatorname{SL}(2, \mathbb{Z})$ with $\operatorname{tr}(K)=n>2 ; k_{11}=k_{22}$.

$$
\Pi=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}, \alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}, A\right), \beta=\left(\mathbf{t}_{3}^{\frac{1}{2}} \mathbf{t}_{4}^{b_{4}}, B\right)\right\rangle
$$

- $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))=\left\{\mathbf{a} \mid \mathbf{a} \in \operatorname{Coker}(I+K), 2 a_{1} \equiv 0\right\} /$
$\left\{\left.\left[\begin{array}{c}0 \\ 2 v_{2}\end{array}\right] \right\rvert\, \mathbf{v} \in \operatorname{Coker}(I+K)\right\} \subseteq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
- $H^{2}\left(\Phi ; \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)=\mathbb{Z}_{2}$. There are two choices for b_{4}, the solutions of $\beta^{2}=\mathbf{t}_{3} \mathbf{t}_{4}^{\frac{i}{q}}(i=0,1)$.
- Both Q and Π are torsion free if and only if $a_{1}=\frac{1}{2}$ and $a_{2} \not \equiv$ $\frac{\left(k_{11}-1\right)(2 n+1)}{2 k_{12}}$ for any $n \in \mathbb{Z}$.
(7) $\Phi=\mathbb{Z}_{4} \rtimes \mathbb{Z}_{2}: A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$,

$$
\mathbb{Z}_{\Phi}=\left(\mathbb{Z} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{0}, A\right), \bar{\beta}=\left(\mathbf{t}_{3}^{\frac{1}{2}}, B\right)\right\rangle
$$

$$
\varphi(\bar{\alpha})=A, \varphi(\bar{\beta})=-K
$$

$$
\mathcal{S}=n K+I, K \in \mathrm{GL}(2, \mathbb{Z}), \operatorname{det}(K)=-1, \operatorname{tr}(K)>0 ; k_{12}=-k_{21}
$$

$$
\Pi=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}, \alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}, A\right), \beta=\left(\mathbf{t}_{3}^{\frac{1}{2}} \mathbf{t}_{4}^{b_{4}}, B\right)\right\rangle
$$

- $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))=\left\{\mathbf{a} \mid \mathbf{a} \in \operatorname{Coker}(I-\mathcal{S}), a_{2} \equiv-a_{1}\right\} /$
$\left\{\left.\left[\begin{array}{l}v_{1}-v_{2} \\ v_{2}-v_{1}\end{array}\right] \right\rvert\, \mathbf{v} \in \operatorname{Coker}(I+K)\right\}$.
- $H^{2}\left(\Phi ; \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)=\mathbb{Z}_{4}$. There are 4 choices for b_{4}, the solutions of $(\beta \alpha)^{4}=\mathbf{t}_{4}^{\frac{j}{q}} \quad(j=0,1,2,3)$.
- Both Q and Π have torsion.
(7i) $\Phi=\mathbb{Z}_{4} \rtimes \mathbb{Z}_{2}: A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$,
$\mathbb{Z}_{\Phi}=\left(\mathbb{Z} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}=\left\langle\mathbf{t}_{3}, \bar{\alpha}=\left(\mathbf{t}_{3}^{0}, A\right), \bar{\beta}=\left(\mathbf{t}_{3}^{\frac{1}{2}}, B\right)\right\rangle$.
$\varphi(\bar{\alpha})=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \varphi(\bar{\beta})=-K \quad$ (includes (6ai)) (3i) $+(1)$
$\mathcal{S}=n K+I, K \in \mathrm{GL}(2, \mathbb{Z}), \operatorname{det}(K)=-1, \operatorname{tr}(K)=n>0, k_{11}=k_{22}$.

$$
\Pi=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}, \alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}, A\right), \beta=\left(\mathbf{t}_{3}^{\frac{1}{2}} \mathbf{t}_{4}^{b_{4}}, B\right)\right\rangle
$$

- $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))=\left\{\mathbf{a} \mid \mathbf{a} \in \operatorname{Coker}(I-\mathcal{S}), 2 a_{1} \equiv 0\right\} /$
$\left\{\left.\left[\begin{array}{c}0 \\ 2 v_{2}\end{array}\right] \right\rvert\, \mathbf{v} \in \operatorname{Coker}(I+K)\right\}$.
- $H^{2}\left(\Phi ; \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)=\mathbb{Z}_{4}$. There are 4 choices for b_{4}, the solutions of $(\beta \alpha)^{4}=\mathbf{t}_{4}^{\frac{j}{q}}(j=0,1,2,3)$.
- Q has torsion, Π is torsion free if and only if $j=1,3, q$ is even, and $a_{1}=\frac{1}{2}$ and $a_{2}=-\frac{k_{21}+1}{2 k_{11}}+\frac{i}{k_{11}}$ for $i=0, \ldots, k_{11}-1$.

Proof. Consider the descriptions of

$$
H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S})) \cong Z^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S})) / B^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))
$$

in Remark 4.2. In our computations below, we use that the condition

$$
\mathbf{a}=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \in \operatorname{Coker}(I-S)=(I-S)^{-1} \mathbb{Z}^{2} / \mathbb{Z}^{2}
$$

is equivalent to $(I-\mathcal{S}) \mathbf{a} \equiv \mathbf{0} \bmod \mathbb{Z}^{2}$.
In cases (2a), (2b) and (4), $\Phi=\mathbb{Z}_{p}, p=2$ or 4 . Since $\operatorname{det}(A)=+1, \alpha^{p}$ has \mathbf{t}_{4} component $\mathbf{t}_{4}{ }^{p \cdot a_{4}+\ell}$, where ℓ is independent of a_{4}. We then have p choices for a_{4} (modulo $\frac{1}{q} \mathbb{Z}$). Namely, the solutions of

$$
p \cdot a_{4}+\ell=\frac{1}{q}, \ldots, \frac{p-1}{q}
$$

each corresponding to a different class in $H^{2}\left(\Phi ; \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)$. In fact, the number ℓ is always a rational number, and hence so is a_{4} (or b_{4}). The remaining cases when $\Phi=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or D_{4} are similar. We set one of exponents on \mathbf{t}_{4} by Lemma 6.7, and apply the above technique to find the remaining exponent on \mathbf{t}_{4}.
(0) See Theorem 5.1.
(1) Corollary 4.3 shows $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))$ is trivial, and thus we can take $a_{1}=a_{2}=0$. Since $\hat{A}=\operatorname{det}(A)=-1$, Lemma 6.7 implies a_{4} can be conjugated to zero. So, $\Pi=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}, \alpha=\left(\mathbf{t}_{3}^{\frac{1}{2}}, A\right)\right\rangle$. By Lemma 6.12, both Π and Q are torsion free.
(2a) In this case $\varphi(\bar{\alpha})=-I$. Now a must satisfy $(I-\mathcal{S}) \mathbf{a} \equiv \mathbf{0}$ taken modulo $(I-\varphi(\bar{\alpha})) \mathbf{a}=2 \mathbf{a}$, since the cocycle condition in Remark 4.2, $(I+$ $\varphi(\bar{\alpha})) \mathbf{a}=\mathbf{0} \in \mathbb{Z}^{2}$, is satisfied independently of \mathbf{a}. Note that all elements of $H^{1}(\Phi ; \operatorname{Coker}(I-S))$ are of order 2 , and is generated by at most 2 elements. Therefore, $H^{1}(\Phi ; \operatorname{Coker}(I-S))$ is isomorphic to a subgroup of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

There are two choices for a_{4}, the solutions of $\alpha^{2}=\mathbf{t}_{4}^{\frac{i}{q}}(i=0,1)$. Indeed, α^{2} projects to the identity on Sol^{3}. Therefore, Π is torsion free only when $i=1$ and q is even (see classification of crystallographic groups of Nil, case 2, p. 160, [5]), and Q always has torsion.
(2b) By Corollary 4.3, we can take $a_{1}=a_{2}=0$ so that $\alpha=\left(\mathbf{t}_{3}^{\frac{1}{2}} \mathbf{t}_{4}^{a_{4}}, A\right)$. Then $\alpha^{2}=\mathbf{t}_{3} \mathbf{t}_{4}^{2 a_{4}}$. Therefore, $a_{4}=0$ or $\frac{1}{2 q}$. By Lemma 6.12 , both Π and Q are torsion free.
(3) From Remark 4.2, a must satisfy $(I-\mathcal{S}) \mathbf{a} \equiv \mathbf{0}$, and

$$
(I+\varphi(\bar{\alpha})) \mathbf{a}=\left[\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right] \mathbf{a} \equiv \mathbf{0} \text { modulo }(I-\varphi(\bar{\alpha})) \mathbf{v}=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \mathbf{v} \text { for }(I-\mathcal{S}) \mathbf{v} \equiv \mathbf{0}
$$

Computing, we obtain $a_{2} \equiv-a_{1}$, modulo $\left[\begin{array}{c}v_{1}-v_{2} \\ v_{2}-v_{1}\end{array}\right]$. Applying the coboundary operator to the cocycles yields:

$$
(I-\varphi(\bar{\alpha}))\left[\begin{array}{c}
a_{1} \\
-a_{1}
\end{array}\right]=\left[\begin{array}{c}
2 a_{1} \\
-2 a_{1}
\end{array}\right]
$$

which implies that a has order at most 2 and so $H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))$ is either \mathbb{Z}_{2} or trivial, depending on $\operatorname{Coker}(I-\mathcal{S})$. By Lemma 6.7, we may assume $a_{4}=0$, equivalently, $H^{2}\left(\Phi ; \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)$ vanishes, so that $\alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{4}^{a_{4}}, A\right)$.

Direct computation shows that the projection of Π to a Sol ${ }^{3}$-crystallographic group, Q, always has torsion. Note that $a_{2} \equiv-a_{1}$, and

$$
\begin{aligned}
\alpha^{2} & =\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{-a_{1}}, A\right)^{2}=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{-a_{1}} \cdot A\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{-a_{1}}\right), I\right) \\
& =\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{-a_{1}} \cdot \mathbf{t}_{2}^{a_{1}} \mathbf{t}_{1}^{-a_{1}}, I\right) \\
& =(e, I) .
\end{aligned}
$$

On $\operatorname{Sol}_{1}^{4}, \hat{A}=-1$, so A acts as reflection on $\mathcal{Z}\left(\operatorname{Sol}_{1}^{4}\right)$. Lemma 6.11 applies to show that Π always has torsion.
(3i) From Remark 4.2, a must satisfy $(I-\mathcal{S}) \mathbf{a} \equiv \mathbf{0}$,

$$
(I+\varphi(\bar{\alpha})) \mathbf{a}=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right] \mathbf{a} \equiv \mathbf{0} \text { modulo }(I-\varphi(\bar{\alpha})) \mathbf{v}=\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right] \mathbf{v}, \text { for }(I-\mathcal{S}) \mathbf{v} \equiv \mathbf{0},
$$

that is, $2 a_{1} \equiv \mathbf{0}$ (so $a_{1} \equiv 0$ or $\frac{1}{2}$), modulo $\left[\begin{array}{c}0 \\ 2 v_{2}\end{array}\right]$. This implies that

$$
H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))
$$

is isomorphic to a subgroup of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. By Lemma 6.7, we may assume $a_{4}=0$, that is, $H^{2}\left(\Phi ; \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)$ vanishes. Therefore, $\alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}, A\right)$.

Lemma 6.11 applies to show that Π is torsion free precisely when the Sol^{3} crystallographic group Q is torsion free, which is equivalent to the action of Q on Sol^{3} having no fixed points. By Lemma 4.4, $Q \backslash \mathrm{Sol}^{3}$ is $T^{2} \times I$ with $T^{2} \times\{0\}$ identified to itself by the affine involution of $T^{2}\left(\left[\begin{array}{cc}a_{1} \\ a_{2}\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\right)$ and $T^{2} \times\{1\}$ identified to itself by the affine involution $\left(\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right],\left[\begin{array}{cc}\sigma_{11} & -\sigma_{12} \\ \sigma_{21} & -\sigma_{11}\end{array}\right]\right)$. Both of these involutions act freely on the torus precisely when $a_{1} \equiv \frac{1}{2}$ and $a_{2} \not \equiv \frac{\left(\sigma_{11}+1\right)(2 n+1)}{2 \sigma_{12}}$ for any $n \in \mathbb{Z}$.
(4) This is the only case where a non-standard lattice is present, that is $c_{3} \neq 0$.

By Remark 4.2, a must satisfy $(I-\mathcal{S}) \mathbf{a} \equiv \mathbf{0}$, taken modulo $\operatorname{Im}(I-\varphi(\bar{\alpha}))$. Note that $\operatorname{det}(I-\varphi(\bar{\alpha}))=\operatorname{det}\left(\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]\right)=2$, which implies that $H^{1}(\Phi ; \operatorname{Coker}(I-$ $S)$) is either \mathbb{Z}_{2} or the trivial group.

We compute that

$$
\alpha \mathbf{t}_{3} \alpha^{-1}=\mathbf{t}_{1}^{\left(1-\sigma_{22}\right) a_{1}+\sigma_{12} a_{2}} \mathbf{t}_{2}^{\sigma_{21} a_{1}+\left(1-\sigma_{11}\right) a_{2}} \mathbf{t}_{3}^{-1} \mathbf{t}_{4}^{u_{4}+2 c_{3}}
$$

By Proposition 6.2, u_{4} must be rational. We have two choices for c_{3} (modulo $\frac{1}{q} \mathbb{Z}$, as $\mathbf{t}_{4}^{\frac{1}{q}}$ is a generator of the lattice), $c_{3}=-\frac{u_{4}}{2},-\frac{u_{4}}{2}+\frac{1}{2 q}$, so that $u_{4}+2 c_{3}=0$ or 1 . Unless c_{3} is a multiple of $\frac{1}{q}$, the corresponding lattice is non-standard.

For a_{4}, we have

$$
\alpha^{4}=\mathbf{t}_{4}^{4 a_{4}-\left(a_{1}-a_{2}\right)^{2}+v_{4}}
$$

Then there are 4 choices for $a_{4}, a_{4}=\frac{\left(a_{1}-a_{2}\right)^{2}-v_{4}+i}{4 q}(i=0,1,2,3)$. These are the solutions of $\alpha^{4}=\mathbf{t}_{4}^{\frac{i}{q}}(i=0,1,2,3)$.

From this, Q must always have torsion. For $i=0,2, \Pi$ has torsion. To see this when $i=2$, note that

$$
\left(\mathbf{t}_{4}^{-\frac{1}{q}} \alpha^{2}\right)^{2}=\mathbf{t}_{4}^{-\frac{2}{q}} \mathbf{t}_{4}^{\frac{2}{q}}=e
$$

For $i=1,3$ and q even (see classification of crystallographic groups of Nil, case 10, p. 163, [5]), Π is torsion free.
(5) By Corollary 4.3, we take $a_{1}=a_{2}=0$. We need \mathbf{b} to satisfy $(I-\mathcal{S}) \mathbf{b} \equiv$ 0. Then the cocycle conditions for $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ in Remark 4.2 show that we must have $(I-\varphi(\bar{\alpha})) \mathbf{b}=(I+K) \mathbf{b} \equiv \mathbf{0}$. In fact, since $(I-\mathcal{S})=(I-K)(I+K)$, this condition implies $(I-\mathcal{S}) \mathbf{b} \equiv \mathbf{0}$. Since we have already fixed $a_{1}=a_{2}=0$, for the coboundary in Remark 4.2, we take \mathbf{b} modulo $(I-\varphi(\bar{\beta})) \mathbf{v}=2 \mathbf{v}$ only when \mathbf{v} satisfies $(I-\varphi(\bar{\alpha})) \mathbf{v}=(I+K) \mathbf{v} \equiv \mathbf{0}$.

Since $\operatorname{det}(A)=-1$, we may assume $a_{4}=0$ by Lemma 6.7. There are two choices for b_{4}, the solutions of $\beta^{2}=\mathbf{t}_{4}^{\frac{i}{q}},(i=0,1)$, just like in case (2a). That is, $H^{2}\left(\Phi, \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)=\mathbb{Z}_{2}$. Indeed, β has order 2 when projected to $\operatorname{Sol}^{3} \rtimes D_{4}$, and hence Q always has torsion.

Note that $\gamma \alpha$ and $\gamma \alpha \beta$ are of infinite order for all $\gamma \in \widetilde{\Gamma}_{\mathcal{S}}$ by Lemma 6.12. Like case (2a), Π is torsion free precisely when $\beta^{2}=\mathbf{t}_{4}^{\frac{1}{q}}$ and q is even.
(6a) This is a combination of cases (3) $+(2 a)$.
We have $(I-\mathcal{S}) \mathbf{a} \equiv \mathbf{0}$ and $(I-\mathcal{S}) \mathbf{b} \equiv \mathbf{0}$. Also, \mathbf{a} and \mathbf{b} must satisfy the cocycle conditions in Remark 4.2. Note that $(I+\varphi(\bar{\alpha})) \mathbf{a} \equiv \mathbf{0}$ forces $a_{2} \equiv-a_{1}$, whereas

$$
(I-\varphi(\bar{\alpha})) \mathbf{b}-(I-\varphi(\bar{\beta})) \mathbf{a} \equiv \mathbf{0}
$$

forces $b_{1}-b_{2}-2 a_{1} \equiv 0,-b_{1}+b_{2}-2 a_{2} \equiv 0$. Since $a_{2} \equiv-a_{1}$, the second equation is redundant. We take \mathbf{a} and \mathbf{b} modulo $(I-\varphi(\bar{\alpha})) \mathbf{v}$ and $(I-\varphi(\bar{\beta})) \mathbf{v}$, respectively, where $(I-\mathcal{S}) \mathbf{v} \equiv \mathbf{0}$. By Lemma 6.7 , we may assume $a_{4}=0$.
There are two choices for b_{4}, the solutions of $\beta^{2}=\mathbf{t}_{4}^{\frac{i}{q}},(i=0,1)$. That is, $H^{2}\left(\Phi, \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)=\mathbb{Z}_{2}$.

As Π contains a subgroup of type (3), both Q and Π always have torsion.
(6ai) Similar to case (6a), this is a combination of (3i)+(2a). The description of $H^{1}(\Phi, \operatorname{Coker}(I-\mathcal{S}))$ follows just like in case (6a).

There are two choices for b_{4}, the solutions of $\beta^{2}=\mathbf{t}_{4}^{\frac{i}{q}},(i=0,1)$. That is, $H^{2}\left(\Phi, \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)=\mathbb{Z}_{2}$. Since β^{2} projects to the identity on $\operatorname{Sol}^{3}, Q$ always has torsion.

For Π to be torsion free, the subgroups $\left\langle\widetilde{\Gamma}_{\mathcal{S}}, \alpha\right\rangle,\left\langle\widetilde{\Gamma}_{\mathcal{S}}, \beta\right\rangle$, and $\left\langle\widetilde{\Gamma}_{\mathcal{S}}, \alpha \beta\right\rangle$, where

$$
\alpha \beta=\left(\mathbf{t}_{1}^{a_{1}+b_{1}} \mathbf{t}_{2}^{a_{2}-b_{2}} \mathbf{t}_{4}^{b_{4}^{\prime}},\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]\right)
$$

must all be torsion free. The group $\left\langle\widetilde{\Gamma}_{\mathcal{S}}, \beta\right\rangle$ is torsion free precisely when b_{4} satisfies $\beta^{2}=\mathbf{t}_{4}^{\frac{1}{q}}$ and q is even.

By Lemma $6.11,\left\langle\widetilde{\Gamma}_{\mathcal{S}}, \alpha\right\rangle$ and $\left\langle\widetilde{\Gamma}_{\mathcal{S}}, \alpha \beta\right\rangle$ are torsion free precisely when their projections to $\operatorname{Sol}^{3},\left\langle\Gamma_{\mathcal{S}},\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}, A\right)\right\rangle$ and $\left\langle\Gamma_{\mathcal{S}},\left(\mathbf{t}_{1}^{a_{1}+b_{1}} \mathbf{t}_{2}^{a_{2}-b_{2}}, A B\right)\right\rangle$ are torsion free. Similar to case (3i), by computing when the appropriate affine involutions on T^{2} in Lemma 4.4 have no fixed points, we obtain the conditions $a_{1}=\frac{1}{2}$, $a_{2}=b_{2}+\frac{1}{2}, b_{1} \not \equiv \frac{\sigma_{12}(2 n+1)}{2\left(\sigma_{11}-1\right)}+\frac{1}{2} b_{2} \not \equiv \frac{\left(\sigma_{11}+1\right)(2 m+1)}{2 \sigma_{12}}+\frac{1}{2}$ for any $m, n \in \mathbb{Z}$.
(6b) This is a combination of (3) $+(2 b)$.
By Corollary 4.3, we can take $b_{1}=b_{2}=0$. The cocycle conditions in Remark 4.2 force $(I+\varphi(\bar{\alpha})) \mathbf{a} \equiv \mathbf{0}$ as well as $(I-\varphi(\bar{\beta})) \mathbf{a}=(I+K) \mathbf{a} \equiv \mathbf{0}$, so that $\mathbf{a} \in \operatorname{Coker}(I+K)$. Since $b_{1}, b_{2}=0$ is fixed, we can take a modulo $(I-\varphi(\bar{\alpha})) \mathbf{v}$ only when $(I-\varphi(\bar{\beta})) \mathbf{v}=(I+K) \mathbf{v} \equiv \mathbf{0}$, that is, only for $\mathbf{v} \in \operatorname{Coker}(I+K)$.

Note that we can take $a_{4}=0$ by Lemma 6.7, and there are two choices for b_{4}, the solutions of $\beta^{2}=\mathbf{t}_{3} \mathbf{t}_{4}^{\frac{i}{q}}(i=0,1)$. Hence $H^{2}\left(\Phi, \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)=\mathbb{Z}_{2}$. Both Q and Π always have torsion, as they contain a subgroup of type (3).
($6 \mathrm{~b} i$) This is a combination of $(3 i)+(2 \mathrm{~b})$.
By Corollary 4.3, we can take $b_{1}=b_{2}=0$. The computation of

$$
H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))
$$

is identical to that of (6b). In this case, we use $\varphi(\bar{\alpha})=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ rather than $\varphi(\bar{\alpha})=A$. Note that we take $a_{4}=0$ by Lemma 6.7, and there are two choices for b_{4}, the solutions of $\beta^{2}=\mathbf{t}_{3} \mathbf{t}_{4}^{\frac{i}{q}},(i=0,1)$. Thus $H^{2}\left(\Phi, \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)=\mathbb{Z}_{2}$.

By Lemma 6.11, Π is torsion free precisely when the Sol^{3}-crystallographic group Q is torsion free, which is equivalent to Q acting freely on Sol^{3}. By Lemma 4.4, $Q \backslash \mathrm{Sol}^{3}$ is $T^{2} \times I$ with $T^{2} \times\{0\}$ identified to itself by the affine involution of $T^{2}\left(\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\right)$, and $T^{2} \times\{1\}$ identified to itself by the affine involution $\left(\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right],\left[\begin{array}{cc}-k_{11} & k_{12} \\ -k_{21} & k_{11}\end{array}\right]\right)$. Both of these involutions act freely on the torus precisely when $a_{1}=\frac{1}{2}$ and $a_{2} \not \equiv \frac{\left(k_{11}-1\right)(2 n+1)}{2 k_{12}}$ for any $n \in \mathbb{Z}$.
(7) This is a combination (3) + (1). which includes (6a).

By Corollary 4.3, we can take $b_{1}=b_{2}=0$. For $(I-\mathcal{S}) \mathbf{a} \equiv \mathbf{0}$, the only cocycle condition that a must satisfy is $(I+\varphi(\bar{\alpha})) \mathbf{a} \equiv \mathbf{0}$, which forces $a_{2} \equiv$ $-a_{1}$. However, we have fixed $b_{1}=b_{2}=0$. Therefore, when computing the coboundaries, we can take a modulo $(I-\varphi(\bar{\alpha})) \mathbf{v}$ only for \mathbf{v} that satisfies $(I-$ $\varphi(\bar{\beta})) \mathbf{v}=(I+K) \mathbf{v} \equiv \mathbf{0}$. Note that $(I+K) \mathbf{v} \equiv \mathbf{0}$ actually implies $(I-\mathcal{S}) \mathbf{v} \equiv \mathbf{0}$ since $(I-\mathcal{S})=(I-K)(I+K)$.

We may take $a_{4}=0$ by Lemma 6.7. The computation

$$
(\beta \alpha)^{4}=\mathbf{t}_{4}^{4 b_{4}+\ell}
$$

shows that there are 4 choices for b_{4}, the solutions of $(\beta \alpha)^{4}=\mathbf{t}_{4}{ }^{\frac{j}{q}}(j=0,1,2,3)$. Hence $H^{2}\left(D_{4} ; \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)=\mathbb{Z}_{4}$. Both Π and Q contain a subgroup of type (3), and so both always have torsion.
(7i) This is a combination of (3i)+(1), which includes (6ai).

By Corollary 4.3, we can take $b_{1}=b_{2}=0$. The description for

$$
H^{1}(\Phi ; \operatorname{Coker}(I-\mathcal{S}))
$$

follows as in case (7), using $\varphi(\bar{\alpha})=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ rather than $\varphi(\bar{\alpha})=A$.
Like case (7), by Lemma 6.7, we take $a_{4}=0$, and there are 4 choices for b_{4}, the solutions of $(\beta \alpha)^{4}=\mathbf{t}_{4}{ }^{\frac{j}{q}}(j=0,1,2,3)$, so that $H^{2}\left(D_{4} ; \mathcal{Z}\left(\widetilde{\Gamma}_{\mathcal{S}}\right)\right)=\mathbb{Z}_{4}$.

For Π to be torsion free, $\left\langle\widetilde{\Gamma}_{\mathcal{S}}, \beta \alpha\right\rangle$ is necessarily torsion free. This forces b_{4} to satisfy $(\beta \alpha)^{4}=\mathbf{t}_{4}^{\frac{j}{q}}(j=1,3)$, and q even. Note that $\left\langle\widetilde{\Gamma}_{\mathcal{S}}, \beta\right\rangle$ and $\left\langle\widetilde{\Gamma}_{\mathcal{S}}, \alpha \beta \alpha\right\rangle$, are torsion free by Lemma 6.12.
Thus the only remaining subgroups of Π to consider are $\left\langle\widetilde{\Gamma}_{\mathcal{S}}, \alpha\right\rangle$ and $\left\langle\widetilde{\Gamma}_{\mathcal{S}}, \beta \alpha \beta\right\rangle$, where

$$
\beta \alpha \beta=\left(\mathbf{t}_{1}^{-k_{11} a_{1}-k_{12} a_{2}} \mathbf{t}_{2}^{-k_{21} a_{1}-k_{11} a_{2}} \mathbf{t}_{4}^{2 b_{4}+v},\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]\right) .
$$

By Lemma 6.11, $\left\langle\widetilde{\Gamma}_{\mathcal{S}}, \alpha\right\rangle$ and $\left\langle\widetilde{\Gamma}_{\mathcal{S}}, \beta \alpha \beta\right\rangle$ are torsion free precisely when their projections to $\mathrm{Sol}^{3},\left\langle\Gamma_{\mathcal{S}},\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}, A\right)\right\rangle$ and $\left\langle\Gamma_{\mathcal{S}},\left(\mathbf{t}_{1}^{-k_{11} a_{1}-k_{12} a_{2}} \mathbf{t}_{2}^{-k_{21} a_{1}-k_{11} a_{2}} A, B A B\right)\right\rangle$, are torsion free.

By Proposition 4.4, we just need to ensure that the appropriate affine maps are fixed point free on T^{2}, and this occurs precisely when

$$
\begin{align*}
a_{1}=\frac{1}{2}, \quad a_{2} & \not \equiv \frac{\left(\sigma_{11}+1\right)(2 n+1)}{2 \sigma_{12}} \tag{6.2}\\
\frac{-k_{21}}{2}-k_{11} a_{2} & \equiv \frac{1}{2} \tag{6.3}\\
\frac{-k_{11}}{2}-k_{12} a_{2} & \not \equiv \frac{\sigma_{12}(2 n+1)}{2\left(\sigma_{11}-1\right)} \tag{6.4}
\end{align*}
$$

Now we claim that the second part of condition (6.2) and the condition (6.4) are redundant. That is, they follow from (6.3).

From (6.3), we have

$$
\begin{equation*}
a_{2}=-\frac{k_{21}+1}{2 k_{11}}+\frac{p}{k_{11}}, p \in \mathbb{Z} \tag{6.5}
\end{equation*}
$$

With $a_{1}=\frac{1}{2}$ and above a_{2} with $p=0, \ldots, k_{11}-1$, using that $\operatorname{det}(K)=-1$ and $K^{2}=\mathcal{S}$, one can compute that the remaining criteria are satisfied. In fact, we compute the term in (6.2)

$$
\begin{aligned}
\frac{\left(\sigma_{11}+1\right)(2 n+1)}{2 \sigma_{12}} & =\frac{\left(k_{11}^{2}+k_{12} k_{21}+1\right)(2 n+1)}{4 k_{11} k_{12}} \\
& =\frac{2 k_{12} k_{21}(2 n+1)}{4 k_{11} k_{12}}=\frac{k_{21}(2 n+1)}{2 k_{11}}
\end{aligned}
$$

Now, for some $m \in \mathbb{Z}$, suppose we had

$$
a_{2}=\frac{\left(\sigma_{11}+1\right)(2 n+1)}{2 \sigma_{12}}+m
$$

as opposed to (6.2). Then we would have

$$
-\frac{k_{21}+1}{2 k_{11}}+\frac{p}{k_{11}}=\frac{k_{21}(2 n+1)}{2 k_{11}}+m .
$$

Clearing up, we get

$$
-1+2 p=2 k_{21}(n+1)+2 m k_{11}
$$

a contradiction for any integers p, n, m, as they are of different parity. Thus, (6.2) holds.

For (6.4), using (6.5), we get

$$
\begin{aligned}
\frac{-k_{11}}{2}-k_{12} a_{2} & =\frac{-k_{11}}{2}-k_{12}\left(-\frac{k_{21}+1}{2 k_{11}}+\frac{p}{k_{11}}\right) \\
& =\frac{-k_{11}^{2}+k_{12} k_{21}+k_{12}-2 k_{12} p}{2 k_{11}} \\
& =\frac{1+k_{12}-2 k_{12} p}{2 k_{11}}
\end{aligned}
$$

Now suppose we had

$$
\frac{-k_{11}}{2}-k_{12} a_{2}=\frac{\sigma_{12}(2 n+1)}{2\left(\sigma_{11}-1\right)}+m
$$

for some $m \in \mathbb{Z}$. Then we would have

$$
\frac{1+k_{12}-2 k_{12} p}{2 k_{11}}=\frac{\sigma_{12}(2 n+1)}{2\left(\sigma_{11}-1\right)}+m=\frac{2 k_{11} k_{12}(2 n+1)}{2\left(k_{11}^{2}+k_{12} k_{21}-1\right)}+m .
$$

Clearing up, we get

$$
1-2 k_{12} p=2\left(n k_{12}+m k_{11}\right),
$$

a contradiction for any integers p, n, m, as they are of different parity. Thus, (6.4) holds automatically.

Consequently, with $a_{1}=\frac{1}{2}, a_{2}=-\frac{k_{21}+1}{2 k_{11}}+\frac{p}{k_{11}}$ for $p=0, \ldots, k_{11}-1$, and $(\beta \alpha)^{4}=\mathbf{t}_{4}^{\frac{j}{q}}(j=1,3), \Pi$ is torsion free.

This completes the proof of Theorem 6.13.

7. Examples

We can embed Sol ${ }^{3}$ and $\mathrm{Sol}_{1}{ }^{4}$ into $\mathrm{Aff}(3)$ and $\mathrm{Aff}(4)$, respectively so that our Sol^{3} and Sol_{1}^{4}-orbifolds, $Q \backslash \mathrm{Sol}^{3}$ and $\Pi \backslash \mathrm{Sol}_{1}{ }^{4}$, have complete affinely flat structures. Below we use the embedding $\operatorname{Aff}(n)=\mathbb{R}^{n} \rtimes \operatorname{GL}(n, \mathbb{R}) \hookrightarrow \operatorname{GL}(n+$ $1, \mathbb{R})$. See $[13]$ for the more general question.

One can check the following correspondence is an injective homomorphism of Lie groups, $\mathrm{Sol}_{1}{ }^{4} \longrightarrow \operatorname{Aff}(4)$,

$$
\left[\begin{array}{ccc}
1 & e^{u} x & z \tag{7.1}\\
0 & e^{u} & y \\
0 & 0 & 1
\end{array}\right] \longmapsto\left[\begin{array}{ccccc}
1 & -\frac{1}{2} e^{-u} y & \frac{e^{u} x}{2} & 0 & z-\frac{x y}{2} \\
0 & e^{-u} & 0 & 0 & x \\
0 & 0 & e^{u} & 0 & y \\
0 & 0 & 0 & 1 & u \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Moreover, the automorphisms

$$
\left[\begin{array}{cc}
a & 0 \\
0 & d
\end{array}\right], \quad\left[\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right] \in \operatorname{Aut}\left(\operatorname{Sol}_{1}^{4}\right)
$$

can also be embedded as

$$
\left[\begin{array}{ccccc}
a d & 0 & 0 & 0 & 0 \\
0 & a & 0 & 0 & 0 \\
0 & 0 & d & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{ccccc}
-b c & 0 & 0 & 0 & 0 \\
0 & 0 & b & 0 & 0 \\
0 & c & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right],
$$

respectively, where a, b, c, d are ± 1. Note that, if we remove the first row and the first column from $\operatorname{Aff}(4)$, we get a representation of Sol^{3} into $\mathrm{Aff}(3)$.

If we write the element $(\mathbf{a}, A) \in \mathrm{Sol}_{1}^{4} \rtimes D_{4}$ by the product $\mathbf{a} \cdot A$, then the group operation of $\mathrm{Sol}_{1}^{4} \rtimes D_{4}$ is compatible with the matrix product in this affine group. The action of A on \mathbf{a} is by conjugation. That is,

$$
\begin{aligned}
(\mathbf{a} \cdot A)(\mathbf{b} \cdot B) & =\mathbf{a} A \mathbf{b} B \\
& =\mathbf{a}\left(A \mathbf{b} A^{-1}\right) \cdot A B \\
& =(\mathbf{a}, A) \cdot(\mathbf{b}, B)
\end{aligned}
$$

We have embedded $\operatorname{Isom}\left(\mathrm{Sol}_{1}^{4}\right)$ into $\mathrm{Aff}(4)$ in such a way that any lattice acts on \mathbb{R}^{4} properly discontinuously. Therefore all of our infra-Sol ${ }_{1}^{4}$-orbifolds will have an affine structure. Note that not every nilpotent Lie group admits an affine structure [11, p. 227].

With $\mathcal{S} \in \mathrm{SL}(2, \mathbb{Z}), \operatorname{tr}(\mathcal{S})>2$, and appropriate P and Δ, so that $P \mathcal{S}^{-1}=$ Δ, we can lift $\mathbb{Z}^{2} \rtimes_{\mathcal{S}} \mathbb{Z} \subset \mathbb{R}^{2} \rtimes_{\mathcal{S}} \mathbb{R}$ to a lattice of $\mathrm{Sol}_{1}{ }^{4}$ as in the proof of Theorem 5.1. The image of our lattice in Aff(5) under the embedding (7.1) is complicated. When we conjugate it by

$$
P^{-1}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & p_{11} & p_{12} & 0 & 0 \\
0 & p_{21} & p_{22} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]^{-1}
$$

we get a much better representation of the group as shown below. Note that c_{3} will have no effect on the presentation of our lattice. Since $\operatorname{det}(P)=1$,
$\left[\mathbf{t}_{1}, \mathbf{t}_{2}\right]=\mathbf{t}_{4}$.

$$
\begin{aligned}
& \mathbf{e}_{1}=\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right], 0\right) \longmapsto \mathbf{t}_{1}=\left[\begin{array}{ccc}
1 & p_{11} & c_{1} \\
0 & 1 & p_{21} \\
0 & 0 & 1
\end{array}\right] \longmapsto\left[\begin{array}{ccccc}
1 & 0 & \frac{1}{2} & 0 & c_{1}-\frac{\sigma_{21}}{2 \sqrt{T^{2}-4}} \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right], \\
& \mathbf{e}_{2}=\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right], 0\right) \longmapsto \mathbf{t}_{2}=\left[\begin{array}{ccc}
1 & p_{12} & c_{2} \\
0 & 1 & p_{22} \\
0 & 0 & 1
\end{array}\right] \longmapsto\left[\begin{array}{ccccc}
1 & -\frac{1}{2} & 0 & 0 & c_{2}-\frac{\sigma_{12}}{2 \sqrt{T^{2}-4}} \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right], \\
& \mathbf{e}_{3}=\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right], 1\right) \longmapsto \mathbf{t}_{3}=\left[\begin{array}{ccc}
1 & 0 & c_{3} \\
0 & \lambda & 0 \\
0 & 0 & 1
\end{array}\right] \longmapsto\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & c_{3} \\
0 & \sigma_{11} & \sigma_{12} & 0 & 0 \\
0 & \sigma_{21} & \sigma_{22} & 0 & 0 \\
0 & 0 & 0 & 1 & \ln (\lambda) \\
0 & 0 & 0 & 0 & 1
\end{array}\right], \\
& \mathbf{t}_{4}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \longmapsto\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right],
\end{aligned}
$$

where $T=\operatorname{tr}(\mathcal{S})$.
Example 7.1 ((4) Non-standard lattice). This is an example where c_{3} can be non-zero (Theorem 6.13, case (4)). Here $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$, so that the holonomy $\Phi=\mathbb{Z}_{4}$.

Let $\mathcal{S}=\left[\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right]$. Then $\lambda=3+2 \sqrt{2}$, and with

$$
P=\left[\begin{array}{cc}
-\frac{1}{2} \sqrt{2+\sqrt{2}} & \frac{1}{2} \sqrt{2-\sqrt{2}} \\
-\frac{1}{\sqrt{2(2+\sqrt{2})}} & -\frac{1}{2} \sqrt{2+\sqrt{2}}
\end{array}\right]
$$

our crystallographic group $\Pi=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{1 / q}, \alpha\right\rangle$, where $\alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}} \mathbf{t}_{4}^{a_{4}}, A\right) \in$ $\mathrm{Sol}_{1}^{4} \rtimes \operatorname{Aut}\left(\mathrm{Sol}_{1}^{4}\right)$, has a representation into $\mathrm{Aff}(4)$:

$$
\mathbf{t}_{1}=\left[\begin{array}{ccccc}
1 & 0 & \frac{1}{2} & 0 & m_{1}-\frac{m_{2}}{2}-\frac{3}{2} \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right], \mathbf{t}_{2}=\left[\begin{array}{ccccc}
1 & -\frac{1}{2} & 0 & 0 & \frac{1}{2}\left(-m_{1}-1\right) \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \mathbf{t}_{3}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & c_{3} \\
0 & 1 & 2 & 0 & 0 \\
0 & 2 & 5 & 0 & 0 \\
0 & 0 & 0 & 1 & \ln (3+2 \sqrt{2}) \\
0 & 0 & 0 & 0 & 1
\end{array}\right], \mathbf{t}_{4}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& (a, A)=\left[\begin{array}{ccccc}
1 & -\frac{a_{1}}{2} & -\frac{a_{2}}{2} & 0 & \frac{1}{2}\left(2 a_{4}-a_{2}\left(m_{1}+1\right)+a_{1}\left(a_{2}+2 m_{1}-m_{2}-3\right)\right) \\
0 & 0 & 1 & 0 & a_{1} \\
0 & -1 & 0 & 0 & a_{2} \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Π has presentation

$$
\begin{aligned}
& {\left[\mathbf{t}_{1}, \mathbf{t}_{2}\right]=\mathbf{t}_{4}, \quad \text { and } \mathbf{t}_{4} \text { is central, } \mathbf{t}_{3} \mathbf{t}_{1} \mathbf{t}_{3}^{-1}=\mathbf{t}_{1} \mathbf{t}_{2}^{2} \mathbf{t}_{4}^{m_{1}}, \mathbf{t}_{3} \mathbf{t}_{2} \mathbf{t}_{3}^{-1}=\mathbf{t}_{1}^{2} \mathbf{t}_{2}^{5} \mathbf{t}_{4}^{m_{2}},} \\
& \alpha \mathbf{t}_{1} \alpha^{-1}=\mathbf{t}_{2}^{-1} \mathbf{t}_{4}^{\frac{1}{2}\left(-4-2 a_{1}+m_{1}-m_{2}\right)}, \alpha \mathbf{t}_{2} \alpha^{-1}=\mathbf{t}_{1} \mathbf{t}_{4}^{\frac{1}{2}\left(2-2 a_{2}-3 m_{1}+m_{2}\right)}, \\
& \alpha \mathbf{t}_{3} \alpha^{-1}=\mathbf{t}_{1}^{-4 a_{1}+2 a_{2}} \mathbf{t}_{2}^{2 a_{1}} \mathbf{t}_{3}^{-1} \mathbf{t}_{4}^{5 a_{1}^{2}+2 c_{3}+a_{1}\left(-5+5 m_{1}-2 m_{2}\right)+a_{2}\left(3-a_{2}-2 m_{1}+m_{2}\right)}, \\
& \alpha \mathbf{t}_{4} \alpha^{-1}=\mathbf{t}_{4}, \alpha^{4}=\mathbf{t}_{4}^{-a_{1}^{2}+4 a_{4}-a_{2}\left(2+a_{2}+2 m_{1}\right)+2 a_{1}\left(-3+a_{2}+2 m_{1}-m_{2}\right)} \cong\left\langle\left[\begin{array}{c}
\frac{1}{2} \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
\frac{1}{2}
\end{array}\right]\right\rangle . \\
& \text { Since }(I-\mathcal{S})^{-1}=\left[\begin{array}{cc}
1 & -\frac{1}{2} \\
-\frac{1}{2} & 0
\end{array}\right], \operatorname{Coker}(I)
\end{aligned}
$$

Therefore, the equation $(I-\mathcal{S}) \mathbf{a} \equiv \mathbf{0}$ has 4 solutions modulo \mathbb{Z}^{2};

$$
\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
0 \\
0
\end{array}\right], \frac{1}{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right], \frac{1}{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right], \frac{1}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Recall that we had no other conditions on a in Theorem 6.13 case (4). The coboundary is

$$
\operatorname{Im}(I-\varphi(\bar{\alpha}))=\operatorname{Im}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]\right\} .
$$

Thus, we have only have to consider two cases

$$
\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
\frac{1}{2} \\
0
\end{array}\right] .
$$

For simplicity, we shall assume $m_{1}=m_{2}=0$.
With $\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right], \Pi=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}, \alpha\right\rangle$, where $\alpha=\left(\mathbf{t}_{4}^{a_{4}}, A\right)$ has presentation

$$
\begin{aligned}
& {\left[\mathbf{t}_{1}, \mathbf{t}_{2}\right]=\mathbf{t}_{4}, \text { and } \mathbf{t}_{4} \text { is central }, \mathbf{t}_{3} \mathbf{t}_{1} \mathbf{t}_{3}^{-1}=\mathbf{t}_{1} \mathbf{t}_{2}^{2}, \mathbf{t}_{3} \mathbf{t}_{2} \mathbf{t}_{3}^{-1}=\mathbf{t}_{1}^{2} \mathbf{t}_{2}^{5},} \\
& \alpha \mathbf{t}_{1} \alpha^{-1}=\mathbf{t}_{2}^{-1} \mathbf{t}_{4}^{-2}, \alpha \mathbf{t}_{2} \alpha^{-1}=\mathbf{t}_{1} \mathbf{t}_{4}, \alpha \mathbf{t}_{3} \alpha^{-1}=\mathbf{t}_{3}^{-1} \mathbf{t}_{4}^{2 c c_{3}}, \alpha \mathbf{t}_{4} \alpha^{-1}=\mathbf{t}_{4}, \\
& \alpha^{4}=\mathbf{t}_{4}^{4 a_{4}} .
\end{aligned}
$$

The minimum q for $\widetilde{\Gamma}_{\mathcal{S}}$ is $q=1$. However, to have a torsion free crystallographic group we must take q to be even, say $q=2$. Then we have choices $a_{4}=0, \frac{1}{8}, \frac{1}{4}, \frac{3}{8}$ and $c_{3}=0, \frac{1}{4}$ (any combination of a_{4} and c_{3}), with the same center. So, there are 8 distinct groups. Half of them (with $c_{3}=0$) have standard lattices, and the
rest (with $c_{3}=\frac{1}{4}$) have non-standard lattices. When $a_{4}=\frac{1}{8}$ or $\frac{3}{8}$ (regardless of c_{3}), Π is torsion free, and $\Pi \backslash \mathrm{Sol}_{1}{ }^{4}$ is an infra-solvmanifold of $\mathrm{Sol}_{1}{ }^{4}$ with \mathbb{Z}_{4} holonomy.

With $\left[\begin{array}{c}a_{1} \\ a_{2}\end{array}\right]=\left[\begin{array}{c}\frac{1}{2} \\ 0\end{array}\right], \Pi=\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}, \alpha\right\rangle$, where $\alpha=\left(\mathbf{t}_{1}^{\frac{1}{2}} \mathbf{t}_{4}^{a_{4}}, A\right)$ has presentation

$$
\begin{aligned}
& {\left[\mathbf{t}_{1}, \mathbf{t}_{2}\right]=\mathbf{t}_{4}, \quad \text { and } \mathbf{t}_{4} \text { is central, } \mathbf{t}_{3} \mathbf{t}_{1} \mathbf{t}_{3}^{-1}=\mathbf{t}_{1} \mathbf{t}_{2}^{2}, \mathbf{t}_{3} \mathbf{t}_{2} \mathbf{t}_{3}^{-1}=\mathbf{t}_{1}^{2} \mathbf{t}_{2}^{5},} \\
& \alpha \mathbf{t}_{1} \alpha^{-1}=\mathbf{t}_{2}^{-1} \mathbf{t}_{4}^{-\frac{5}{2}}, \alpha \mathbf{t}_{2} \alpha^{-1}=\mathbf{t}_{1} \mathbf{t}_{4}, \alpha \mathbf{t}_{3} \alpha^{-1}=\mathbf{t}_{1}^{-2} \mathbf{t}_{2} \mathbf{t}_{3}^{-1} \mathbf{t}_{4}^{-\frac{5}{4}+2 c_{3}}, \\
& \alpha \mathbf{t}_{4} \alpha^{-1}=\mathbf{t}_{4}, \alpha^{4}=\mathbf{t}_{4}^{-\frac{13}{4}+4 a_{4}}
\end{aligned}
$$

The minimum q for $\widetilde{\Gamma}_{\mathcal{S}}$ is $q=2$ (which comes out of $\alpha \mathbf{t}_{1} \alpha^{-1}=\mathbf{t}_{2}^{-1} \mathbf{t}_{4}{ }^{-\frac{5}{2}}$), and we have choices $a_{4}=\frac{1}{16}+\frac{1}{2} \cdot\left\{0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}\right\}=\frac{1}{16}, \frac{3}{16}, \frac{5}{16}, \frac{7}{16}$ and $c_{3}=\frac{1}{8}+\frac{1}{2} \cdot\left\{0, \frac{1}{2}\right\}=$ $\frac{1}{8}, \frac{3}{8}$ (any combination of a_{4} and c_{3}), with the same center. So, there are 8 distinct groups.

All these groups have non-standard lattices, because no c_{3} is an integer multiple of $\frac{1}{q}, q=2$. When $a_{4}=\frac{3}{16}$ or $\frac{7}{16}$ (regardless of c_{3}), Π is torsion free, and $\Pi \backslash \operatorname{Sol}_{1}{ }^{4}$ is an infra-solvmanifold of $\operatorname{Sol}_{1}{ }^{4}$ with \mathbb{Z}_{4} holonomy.

Example 7.2 ($(7 i)$ Maximal holonomy). Even if this has the maximal holonomy group D_{4}, it does not contain all the possible holonomy actions. For example, groups of type (6b) or (6bi) are not contained in this group. Let $\Phi=\mathbb{Z}_{4} \rtimes \mathbb{Z}_{2}=\langle A, B\rangle$, where

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], B=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \text { and } \alpha=\left(\mathbf{t}_{1}^{a_{1}} \mathbf{t}_{2}^{a_{2}}, A\right), \beta=\left(\mathbf{t}_{3}^{\frac{1}{2}} \mathbf{t}_{4}^{b_{4}}, B\right) .
$$

Our \mathcal{S} is of the form $\mathcal{S}=n K+I$, where $K=\left[\begin{array}{ll}k_{11} & k_{12} \\ k_{21} & k_{22}\end{array}\right]$ with $\operatorname{det}(K)=-1$ and $\operatorname{tr}(K)=n \neq 0$. Now for $\varphi(\bar{\alpha})=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$, we take $k_{11}=k_{22}$. For example, we need $K=\left[\begin{array}{cc}1 & 2 \\ 1 & 1\end{array}\right], n=k_{11}+k_{22}=2, \mathcal{S}=n K+I=\left[\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right]$. Then $\lambda=3+2 \sqrt{2}$, and with $P=\left[\begin{array}{cc}-\frac{1}{\sqrt[4]{2^{3}}} & \frac{1}{\sqrt[4]{2}} \\ -\frac{1}{\sqrt[4]{2^{3}}} & -\frac{1}{\sqrt[4]{2}}\end{array}\right]$, the equations in Lemma 5.2 yield

$$
c_{1}=\frac{1}{8}\left(-12+\sqrt{2}+4 m_{1}-4 m_{2}\right), c_{2}=\frac{1}{4}\left(-\sqrt{2}-4 m_{1}+2 m_{2}\right) .
$$

Recall we can take $c_{3}=0$ by Theorem 6.6. Our crystallographic group $\Pi=$ $\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}^{\frac{1}{q}}, \alpha, \beta\right\rangle$ has a representation into Aff(4):
$\mathbf{t}_{1}=\left[\begin{array}{ccccc}1 & 0 & \frac{1}{2} & 0 & \frac{1}{2}\left(m_{1}-m_{2}-3\right) \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right], \mathbf{t}_{2}=\left[\begin{array}{ccccc}1 & -\frac{1}{2} & 0 & 0 & \frac{1}{2}\left(m_{2}-2 m_{1}\right) \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$,
$\mathbf{t}_{3}=\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 3 & 4 & 0 & 0 \\ 0 & 2 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & \ln (3+2 \sqrt{2}) \\ 0 & 0 & 0 & 0 & 1\end{array}\right], \quad \mathbf{t}_{4}=\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$,
$(a, A)=\left[\begin{array}{ccccc}-1 & -\frac{a_{2}}{2} & -\frac{a_{1}}{2} & 0 & \frac{1}{2}\left(a_{1}\left(a_{2}+m_{1}-m_{2}-3\right)+a_{2}\left(m_{2}-2 m_{1}\right)\right) \\ 0 & 1 & 0 & 0 & a_{1} \\ 0 & 0 & -1 & 0 & a_{2} \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$,
$(b, B)=\left[\begin{array}{ccccc}-1 & 0 & 0 & 0 & b_{4} \\ 0 & -1 & -2 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & \frac{1}{2} \ln (3+2 \sqrt{2}) \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$.
We have

$$
\operatorname{Coker}(I-\mathcal{S})=\left(\mathbb{Z}_{2}\right)^{2}=\left\{\frac{1}{2}\left[\begin{array}{l}
0 \\
0
\end{array}\right], \frac{1}{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right], \frac{1}{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right], \frac{1}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

Now

$$
\varphi(\bar{\alpha})=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad \varphi(\bar{\beta})=-K
$$

yields

$$
I+\varphi(\bar{\alpha})=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right], I+\varphi(\bar{\beta})=\left[\begin{array}{cc}
0 & -2 \\
-1 & 0
\end{array}\right]
$$

Then $(I+\varphi(\bar{\alpha})) \mathbf{a} \equiv \mathbf{0}$ yields $2 a_{1} \equiv 0$, which is not a new condition. We therefore have 4 choices for \mathbf{a},

$$
\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
0 \\
0
\end{array}\right], \frac{1}{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right], \frac{1}{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right], \frac{1}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

The coboundary $\operatorname{Im}(I-\varphi(\bar{\alpha}))$ yields the trivial group, and hence there are 4 distinct choices for a. The group Π has a presentation

$$
\begin{aligned}
& {\left[\mathbf{t}_{1}, \mathbf{t}_{2}\right]=\mathbf{t}_{4},\left[\mathbf{t}_{i}, \mathbf{t}_{4}\right]=1(i=1,2,3),} \\
& \mathbf{t}_{3} \mathbf{t}_{1} \mathbf{t}_{3}^{-1}=\mathbf{t}_{1}^{3} \mathbf{t}_{2} \mathbf{t}_{4}^{m_{1}}, \mathbf{t}_{3} \mathbf{t}_{2} \mathbf{t}_{3}^{-1}=\mathbf{t}_{1}^{4} \mathbf{t}_{2}^{3} \mathbf{t}_{4}^{m_{2}}, \\
& \alpha \mathbf{t}_{1} \alpha^{-1}=\mathbf{t}_{1} \mathbf{t}_{4}^{3-a_{2}-m_{1}+m_{2}}, \alpha \mathbf{t}_{2} \alpha^{-1}=\mathbf{t}_{2}^{-1} \mathbf{t}_{4}^{-a_{1}}, \\
& \alpha \mathbf{t}_{3} \alpha^{-1}=\mathbf{t}_{1}^{-2 a_{1}+4 a_{2}} \mathbf{t}_{2}^{2\left(a_{1}-a_{2}\right)} \mathbf{t}_{3}^{-1} \mathbf{t}_{4}^{3 a_{1}^{2}-a_{1}\left(3+6 a_{2}-3 m_{1}+2 m_{2}\right)+a_{2}\left(6+2 a_{2}-4 m_{1}+3 m_{2}\right)}, \\
& \alpha \mathbf{t}_{4} \alpha^{-1}=\mathbf{t}_{4}^{-1}, \\
& \beta \mathbf{t}_{1} \beta^{-1}=\mathbf{t}_{1}^{-1} \mathbf{t}_{2}^{-1} \mathbf{t}_{4}^{\frac{1}{2}\left(-1-2 m_{1}+m_{2}\right)}, \beta \mathbf{t}_{2} \beta^{-1}=\mathbf{t}_{1}^{-2} \mathbf{t}_{2}^{-1} \mathbf{t}_{4}^{-4+m_{1}-m_{2}}, \\
& \beta \mathbf{t}_{3} \beta^{-1}=\mathbf{t}_{3}, \beta \mathbf{t}_{4} \beta^{-1}=\mathbf{t}_{4}^{-1}, \\
& \alpha^{2}=\mathbf{t}_{1}^{2 a_{1}} \mathbf{t}_{4}^{-a_{1}\left(-3+a_{2}+m_{1}-m_{2}\right)},
\end{aligned}
$$

$$
\begin{aligned}
& \beta^{2}=\mathbf{t}_{3} \\
& (\alpha \beta)^{4}=\mathbf{t}_{4}^{-4 b_{4}+a_{1}^{2}+4 a_{1} a_{2}+2 a_{2}^{2}-2 a_{1}\left(3-m_{1}+m_{2}\right)-2 a_{2}\left(2 m_{1}-m_{2}\right)}
\end{aligned}
$$

Of the four choices for a, only $a_{1}=\frac{1}{2}, a_{2}=0$ can yield a torsion free group, and the other three choices always yield a group with torsion:

$$
\begin{array}{ll}
{\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
\frac{1}{2}
\end{array}\right]:} & \alpha^{2}=\mathrm{id.} \\
{\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]:} & \left(\mathbf{t}_{2}^{-1}(\alpha \beta)^{2} \alpha\right)^{2}=\mathrm{id} . \\
{\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
0
\end{array}\right]:} & a_{2} \equiv-\frac{k_{21}+1}{2 k_{11}}=-1 .
\end{array}
$$

Let us take $m_{1}=m_{2}=0$. When $a_{1}=\frac{1}{2}, a_{2}=0, q=4$ (minimum), b_{4} takes values $\frac{j}{16}, 0 \leq j \leq 3$. When $b_{4}=\frac{1}{16}$ or $\frac{3}{16}, \Pi$ has torsion. However, when $b_{4}=0$ or $\frac{2}{16}, \Pi$ is torsion free when $\left[\begin{array}{c}a_{1} \\ a_{2}\end{array}\right]=\left[\begin{array}{c}\frac{1}{2} \\ 0\end{array}\right]$, because all criteria of Theorem 6.13 case ($7 i$) are satisfied. In this case, $\Pi \backslash \mathrm{Sol}_{1}{ }^{4}$ is an infra-solvmanifold of Sol_{1}^{4} with maximal holonomy D_{4}.

References

[1] H. Brown, R. Bulow, J. Neubuser, H. Wondratschek, and H. Zassenhaus, Crystallographic Groups of Four-Dimensional Space, A.M.S., Wiley Monographs in Crystallography, 1978.
[2] K. Brown, Cohomology of Groups, GTM 87, Springer-Verlag New York, 1982.
[3] J. T. Campbell and E. C. Trouy, When are two elements of $\mathrm{GL}(2, \mathbb{Z})$ similar?, Linear Algebra Appl. 157 (1991), 175-184.
[4] R. Cobb, Infrasolvmanifolds of Dimension Four, Ph.D. thesis, The University of Sydney, 1999.
[5] K. Dekimpe, Almost-Bieberbach Groups: Affine and Polynomial Structures, Lecture Notes in Mathematics, Springer-Verlag, 1996.
[6] K. Dekimpe, K. B. Lee, and F. Raymond, Bieberbach theorems for solvable Lie groups, Asian J. Math. 5 (2001), no. 3, 499-508.
[7] K. Y. Ha and J. B. Lee, Crystallographic groups of Sol, Math. Nachr. 286 (2013), no. 16, 1614-667.
[8] J. A. Hillman, Four-Manifolds, Geometries, and Knots, GT Monographs 5, Geometry and Topology Publications, 2002.
[9] , Geometries and infra-solvmanifolds in dimension 4, Geom. Dedicata 129 (2007), 57-72.
[10], $\mathrm{Sol}^{3} \times \mathbb{E}^{1}$-manifolds, arXiv:1304.2436v2 [math.GT], 18 Apr 2013.
[11] K. B. Lee and F. Raymond, Seifert Fiberings, A.M.S., Mathematical Surveys and Monographs, vol 166, 2010.
[12] S. Mac Lane, Homology, Die Grundlehren der Math., Wissenschaften, vol. 114, SpringerVerlag Berlin Heidelberg New York, 1975.
[13] J. Milnor, On fundamental groups of complete affinely flat manifolds, Adv. Math. 25 (1977), no. 2, 178-187.
[14] G. D. Mostow, Self-adjoint groups, Ann. of Math. 62 (1955), 44-55.
[15] M. S. Raghunathan, Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 68, Springer-Verlag, 1972.
[16] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), no. 5, 401-487.
[17] Wolfram Research, Mathematica, version 9, 2013.
Kyung Bai Lee
University of Oklahoma
Norman, OK 73019, USA
E-mail address: kblee@math.ou.edu
Scott Thuong
Pittsburg State University
Pittsburg, KS 66762, USA
E-mail address: sthuong@pittstate.edu

[^0]: Received December 27, 2014.
 2010 Mathematics Subject Classification. Primary 20H15, 22E25, 20F16, 57S25.
 Key words and phrases. solvmanifolds, infra-solvmanifolds, $\mathrm{Sol}^{3}, \mathrm{Sol}_{1}^{4}$, Bieberbach theorems, crystallographic groups.

