
J. Korean Math. Soc. 52 (2015), No. 6, pp. 1209–1251
http://dx.doi.org/10.4134/JKMS.2015.52.6.1209

INFRA-SOLVMANIFOLDS OF Sol1
4

Kyung Bai Lee and Scott Thuong

Abstract. The purpose of this paper is to classify all compact manifolds
modeled on the 4-dimensional solvable Lie group Sol1

4, and more gener-
ally, the crystallographic groups of Sol1

4. The maximal compact subgroup
of Isom(Sol1

4) is D4 = Z4 ⋊ Z2. We shall exhibit an infra-solvmanifold
of Sol1

4 whose holonomy is D4. This implies that all possible holonomy
groups do occur; the trivial group, Z2 (5 families), Z4, Z2×Z2 (5 families),
and Z4 ⋊ Z2 (2 families).

The 4-dimensional Lie group Sol1
4 is the subgroup of GL(3,R) defined as

Sol1
4 =








1 x z
0 eu y
0 0 1



∣∣∣∣∣ x, y, z, u ∈ R




 .

The nilradical of Sol1
4 is the 3-dimensional Heisenberg group Nil (the elements

of Sol1
4 with u = 0). It has 1-dimensional center (the elements of Sol1

4 with
x = y = u = 0), and the quotient of Sol1

4 by the center is isomorphic to Sol3.

Recall that both Nil and Sol3 are model spaces for 3-dimensional geometry.
Let C be a maximal compact subgroup of Aut(Sol1

4). A cocompact discrete
subgroup

Π ⊂ Sol1
4
⋊ C

is a crystallographic group of Sol1
4. The motivation for this arises from the

crystallographic groups of Euclidean space Rn, that is, the cocompact discrete
subgroups of Isom(Rn) = Rn⋊O(n,R). In general, the classification of crystal-
lographic groups of nilpotent Lie groups, or certain well-behaved solvable Lie
groups (such as Sol1

4), is an important question. For example, crystallographic
groups of Rn are classified for n ≤ 4. See [1] for a classification. Dekimpe
provides a classification of crystallographic groups of 4-dimensional nilpotent
Lie groups in [5]. A classification of crystallographic groups of Sol3 is given by
K. Y. Ha and J. B. Lee in [7].

Since the Bieberbach theorems generalize to Sol1
4 [6], the translation sub-

group of Π , Π ∩ Sol1
4, is of finite index in Π , and is a cocompact discrete
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subgroup (that is, a lattice) of Sol1
4. Fortunately for us, the maximal compact

subgroup C is very small. It is D4, the dihedral group of 8 elements. Therefore,
all crystallographic groups of Sol1

4 are extensions of a lattice by a subgroup Φ
of the finite group D4. On the other hand, there are many non-isomorphic
lattices, which makes things quite complicated. We shall classify the crystal-
lographic groups of Sol1

4 (this will include the classification of crystallographic
groups of Sol3).

A crystallographic group Π ⊂ Sol1
4
⋊ C acts naturally on Sol1

4; that is, for
(a, α) ∈ Π , x ∈ Sol1

4, (a, α) · x = aα(x). The orbit space of Sol1
4 by the action

of a torsion free crystallographic group Π , Π\Sol14, is an infra-solvmanifold

of Sol1
4. By the generalized Bieberbach theorems, two infra-solvmanifolds of

Sol1
4, say Π\Sol14 and Π ′\Sol14, are (affinely) diffeomorphic precisely when Π

and Π ′ are isomorphic. We shall exhibit an infra-solvmanifold of Sol1
4 with

maximal holonomy D4, the largest possible. This implies that all possible
holonomy groups do occur; the trivial group, Z2 (5 families), Z4, Z2 × Z2 (5
families), and Z4 ⋊ Z2 (2 families).

This paper is organized as follows. In Section 1, we determine Aut(Sol1
4),

and show the dihedral group D4 of order 8 is the maximal compact subgroup.
In Section 2, we recall the classification of lattices of Sol3: all are isomorphic

to Z2 ⋊S Z, for some S ∈ SL(2,Z), tr(S) > 2.
In Section 3, we recall the result of [7] that any crystallographic group Q of

Sol3 can be viewed as an extension

1 → Z2 → Q → ZΦ → 1,

where ZΦ itself is an extension 1 → Z → ZΦ → Φ → 1 for Φ ⊂ D4. Using
the results of [7], Theorem 3.3 classifies all possible abstract kernels ϕ : ZΦ →
GL(2,Z).

In Section 4, we study the classification of Sol3-crystallographic groups, in
a similar fashion to that in [7]. We show an isomorphism between H2

ϕ(ZΦ,Z
2)

and H1(Φ,Coker(I − S)), which greatly simplifies the calculations in [7]. The
list is deferred until Section 6.

In Section 5, the classification of Sol1
4-lattices as lifts of Sol3-lattices is given.

In Section 6, the main classification theorem of crystallographic groups of
Sol1

4, Theorem 6.13, is proved. We find 8 categories; some are never torsion
free, some are always torsion free, and some contain mixed cases. We determine
this by examining the action of a crystallographic group on Sol1

4. This theorem
also serves as a classification of Sol3-crystallographic groups, by considering the
groups modulo the center of Sol1

4.
In Section 7, we first show that Sol1

4 admits an affine structure. It is much
easier to represent crystallographic groups using this affine structure. We ex-
hibit two examples of infra-Sol1

4 manifolds. The first one is where the lattice is
“non-standard”. The second one is a space with the maximal holonomy group
D4. Both yield non-orientable manifolds.



INFRA-SOLVMANIFOLDS OF Sol1
4 1211

All calculations were done by the programMathematica [17], and were hand-
checked.

1. The automorphism groups of Sol3 and Sol4
1

The group Sol3 = R2 ⋊R has group operation

(x, u)(y, v) = (x+ Euy, u + v), where Eu =

[
e−u 0
0 eu

]
.

Let α be an automorphism of Sol3. Since R2 is the nilradical (maximal normal

nilpotent subgroup) of Sol3, α induces an automorphism A of R2, and hence,
also an automorphism Ā of the quotient R. Thus, there is a homomorphism

Aut(Sol3) −−−−→ Aut(R2)×Aut(R)

α −−−−→ (A, Ā).

The following is known.

Proposition 1.1 ([7, p. 2]). We have Aut(Sol3) ∼= Sol3 ⋊ (R+ ×D4), where
D4 is the dihedral group with 8 elements. Under this isomorphism, Sol3 acts as

inner automorphisms, and (R+ ×D4) is identified with the group of matrices

R+ ×D4 =
〈
k
[
0 −1
1 0

]
, k
[
1 0
0 −1

]〉
, k > 0, (k = 1 yields D4), A ∈ R+ ×D4 acts

on Sol3 as

A :

([
x
y

]
, u

)
7−→

(
A

[
x
y

]
, Āu

)
.

(Ā = +1 if A is diagonal, Ā = −1 otherwise.)

We now turn our attention to Sol1
4, embedded in GL(3,R) as

Sol1
4 =



s(x, y, z, u) :=




1 x z
0 eu y
0 0 1




∣∣∣∣∣ x, y, z, u ∈ R



 .

By writing every element as a product


1 eux z
0 eu y
0 0 1


 =



1 x z
0 1 y
0 0 1





1 0 0
0 eu 0
0 0 1


 := xeu,

we see that Sol1
4 is the semi-direct product Nil⋊R, where

(x, u) · (y, v) = (x · euye−u, u+ v).

Nil is the nil-radical of Sol1
4, and the center of Nil, R = {s(0, 0, z, 0) | z ∈

R}, is also the center of Sol1
4. Evidently, Sol1

4/R ∼= Sol3. Thus we have a
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commuting diagram with exact rows and columns:

(1.1)

1 1
y

y

R = Z(Nil) R = Z(Sol1
4)

y
y

1 −−−−→ Nil −−−−→ Sol1
4 = Nil⋊R −−−−→ R −−−−→ 1

y
y

∥∥∥

1 −−−−→ R2 −−−−→ Sol3 = R2 ⋊R −−−−→ R −−−−→ 1
y

y

1 1
The rows split, but the columns do not.

An automorphism α̂ of Sol1
4 induces automorphisms of the center R and the

quotient Sol3:

Aut(Sol1
4) −−−−→ Aut(Z(Sol1

4))×Aut(Sol3) −−−−→ Aut(R)×Aut(R2)×Aut(R)

α̂ −−−−→ (Â, α) −−−−→ (Â, A, Ā).

Similar to the case of Nil, Â is multiplication by det(A). Conversely, every
automorphism of Sol3 induces an automorphism of Sol1

4, and Aut(Sol3) lifts to

a subgroup of Aut(Sol1
4). More specifically, we have:

Proposition 1.2.

Aut(Sol1
4) ∼= R⋊Aut(Sol3) ∼= R ⋊ (Sol3 ⋊ (R+ ×D4))

∼= (R× Sol3)⋊ (R+ ×D4),

where Sol3 ∼= Inn(Sol1
4). The group R is the kernel of the homomorphism

Aut(Sol1
4) → Aut(Sol3).

The automorphism k̂, k ∈ R, is given by

k̂ :




1 eux z
0 eu y
0 0 1



 7−→




1 eux z + ku
0 eu y
0 0 1



 .

This commutes with the inner automorphisms of Sol1
4, and A ∈ R+ ×D4 acts

on this R by Ak̂ = (Â · Ā) · k̂.
Proof. We have seen that the image of Aut(Sol1

4) under

Aut(Sol1
4) → Aut(R)×Aut(Sol3) → Aut(R)×Aut(R2)×Aut(R)

is determined by its image in Aut(R2). On the other hand, Aut(Sol3) lifts back

to Aut(Sol1
4). Recall the isomorphism Aut(Sol3) ∼= Sol3 ⋊ (R+ ×D4) given in



INFRA-SOLVMANIFOLDS OF Sol1
4 1213

Proposition 1.1. First, Sol3 ⊂ Sol3 ⋊ (R+ × D4), corresponding to the inner
automorphisms of Sol3 lifts to the inner automorphisms of Aut(Sol1

4). Note

that Inn(Sol1
4) = Inn(Sol3) ∼= Sol3.

For the subgroup R+ × D4 of Aut(Sol3), we have that a diagonal or off-
diagonal matrix A ∈ GL(2,R) can be lifted to an automorphism of Sol1

4:

A =

[
a b
c d

]
:



1 eux z
0 eu y
0 0 1


 7−→



1 eĀu(ax+ by) 1

2
(abx2+2bcxy+cdy2+2(ad−bc)z)

0 eĀu (cx+ dy)
0 0 1


 .

This formula is valid only for the cases when either a = d = 0 (Ā = −1) or
b = c = 0 (Ā = +1).

The kernel of Aut(Sol1
4) → Aut(Sol3) is the group of crossed homomor-

phisms Z1(Sol3,R). Since Sol3 acts trivially on the center R, the crossed ho-
momorphisms become genuine homomorphisms, and

Z1(Sol3,R) = hom(Sol3,R) = hom(R,R) = R.

Thus we have a splitting Aut(Sol1
4) ∼= R⋊Aut(Sol3). �

Proposition 1.3. The dihedral group D4 =
〈[

0 −1
1 0

]
,
[
1 0
0 −1

]〉
is the maximal

compact subgroup of both Aut(Sol3) and Aut(Sol1
4). Furthermore, it is unique

up to conjugation.

Proof. The statement on uniqueness follows from [14, Theorem 3.1]. �

Remark 1.4. Up to the R = Z1(Sol3,R)-factor, Aut(Sol1
4) = Aut(Sol3), and

we may denote an automorphism in D4 ⊂ Aut(Sol1
4) by a 2× 2 matrix A only

(suppressing even Ā and Â) when there is no confusion likely.

Remark 1.5. Both Sol3 and Sol1
4 admit a left-invariant metric so that

Isom(Sol3) = Sol3 ⋊D4 and Isom(Sol1
4) = Sol1

4
⋊D4.

2. The Lattices of Sol

Let S = [ σ11 σ12
σ21 σ22

] ∈ SL(2,Z) with tr(S) > 2. Such a matrix has two positive
eigenvalues satisfying λ + 1

λ > 0. Then we can find a diagonalizing matrix

P ∈ GL(2,R), with det(P ) = 1, diagonalizing S: PSP−1 = ∆.

Notation 2.1. For uniformity of statements, we always take

∆ =

[
1
λ 0
0 λ

]
with 1

λ < 1 < λ.

With such P and ∆ for S, the relation PSP−1 = ∆ allows us to embed the
semidirect product Z2 ⋊S Z as a lattice of Sol3,

φ : Z2 ⋊S Z −→ Sol3(2.1)
([

x
y

]
, u

)
7−→

(
P

[
x
y

]
, u ln(λ)

)
.
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It maps the generators as follows:

e1 =

([
1
0

]
, 0

)
7−→ t1 = Pe1,

e2 =

([
0
1

]
, 0

)
7−→ t2 = Pe2,(2.2)

e3 =

([
0
0

]
, 1

)
7−→ t3 = (0, ln(λ)).

We denote image of Z2 ⋊S Z by ΓS = 〈t1, t2, t3〉 ⊂ Sol3, which has relations

[t1, t2] = 1, t3 · t1 · t−1
3 = tσ11

1 · tσ21

2 , t3 · t2 · t−1
3 = tσ12

1 · tσ22

2 .(2.3)

Notation 2.2. We shall refer to a lattice of Sol3 generated by t1, t2, t3 of the
form in assignment (2.2) as a standard lattice of Sol3.

Conversely, any lattice of Sol3 is isomorphic to such a ΓS as the following
proposition shows. We say S,S ′ ∈ SL(2,Z) are weakly conjugate if and only if
S ′ is conjugate, via an element of GL(2,Z), to S or S−1.

Proposition 2.3 ([7, Theorem 3.4]). There is a one-one correspondence be-

tween the isomorphism classes of Sol3-lattices and the weak-conjugacy classes

of S ∈ SL(2,Z) with tr(S) > 2. Therefore, any lattice of Sol3 is conjugate to

ΓS , for some S, by an element of Aff(Sol3) = Sol3 ⋊Aut(Sol3).

Proof. The isomorphism statement follows from Theorem 3.4 in [7]. The con-
jugacy statement follows from Theorem 3.1 below. This can also be seen by
direct computation, as we do for Sol1

4 lattices in Proposition 6.1. �

3. Compatibility of S with automorphisms

Both Sol3 and Sol1
4 are type (R) Lie groups that admit generalizations of

Bieberbach’s theorems for crystallographic groups of Rn [6, 11].

Theorem 3.1 ([11, Theorem 8.3.4 and Theorem 8.4.3]). Let G denote either

Sol3 or Sol1
4, and C denote a maximal compact subgroup of Aut(G).

(1) For a crystallographic group Π ⊂ G ⋊ C of G, the translation subgroup

Π ∩G is a lattice of G, with Φ := Π/(Π ∩G) ⊂ C finite, the holonomy group.

(2) Any isomorphism between two crystallographic groups of G is conjugation

by an element of Aff(G) = G⋊Aut(G).

When G is either Sol3 or Sol1
4, C is conjugate in Aut(G) to D4 (Proposition

1.3). Therefore, we can assume that C = D4 in either case. We will see
that every Sol1

4-crystallographic group Π ⊂ Sol1
4
⋊D4 projects to some Sol3-

crystallographic group Q ⊂ Sol3⋊D4 under the natural projection Sol1
4
⋊D4 →

Sol3 ⋊D4. Therefore, we first recall the classification of Sol3-crystallographic
groups in [7]. We use different notation that is more amenable to lifting to the

Sol1
4 case.
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Proposition 3.2. Any crystallographic group Q′ of Sol3 can be conjugated in

Aff(Sol3) to Q ⊂ Sol3 ⋊ D4 so that Q ∩ Sol3 = ΓS . That is, the translation

subgroup of Q is a standard lattice of Sol3, generated by t1, t2, and t3 as in

(2.2). Thus, Q is generated by 〈t1, t2, t3〉, and at most two isometries of the

form (ta1

1 ta2

2 ta3

3 , A) ∈ Sol3 ⋊D4, where ai are rational numbers.

Proof. This follows from Theorem 3.1. and Proposition 2.3. �

We will assume our Sol3–crystallographic group Q is embedded in Sol3⋊D4

as in Proposition 3.2. Note that Q ∩ R2 = 〈t1, t2〉 ∼= Z2 is a lattice of R2.
Denote Q/〈t1, t2〉 by ZΦ so that we have the commuting diagram:

(3.1)

1 1
y

y

Z2 Z2

y
y

1 −−−−→ ΓS −−−−→ Q −−−−→ Φ −−−−→ 1
y/Z2

y/Z2

∥∥∥

1 −−−−→ Z = 〈t3〉 −−−−→ ZΦ −−−−→ Φ −−−−→ 1
y

y

1 1

To classify Q as extensions of Z2 by ZΦ as in (3.1), we need all possible
abstract kernels

ϕ : ZΦ −→ GL(2,Z).

Now ZΦ is generated by t3 together with ᾱ = (ta3

3 , A) (with possibly an addi-

tional generator β̄ = (tb33 , B)):

ZΦ = 〈t3, ᾱ = (ta3

3 , A), β̄ = (tb33 , B)〉.
Note we only need to consider Φ ⊂ D4 up to conjugacy. By definition,

ϕ(t3) = S. Since ΓS = 〈t1, t2, t3〉 is embedded in Sol3 as in (2.1), as an

automorphism of Z2 = 〈t1, t2〉, ᾱ = (ta3

3 , A) should map by ϕ to ϕ(ᾱ) = Sa3Ã,
where

Sa3 = P−1∆a3P,

Ã = P−1AP.

The action of A ∈ D4 on Z = 〈t3〉 in ZΦ is the induced action of A, Ā, on

the quotient R = Sol3/R2. Thus, if A ∈ D4 is a diagonal matrix, then Ā = +1.
Otherwise Ā = −1, see Proposition 1.1. So, if Ā = +1, ϕ(ᾱ) must commute
with S. Otherwise, ϕ(ᾱ) conjugates S to its inverse.
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Theorem 3.3 below follows from Theorem 8.2 of [7]. In the proof we explain
differences in notation.

Theorem 3.3 ([7, cf. Theorem 8.2]). The following is a complete list of ZΦ

and homomorphisms ϕ : ZΦ → GL(2,Z) with ϕ(t3) = S and

ϕ(ta3

3 , A) = Sa3Ã,

ϕ(tb33 , B) = Sb3 B̃,

up to conjugation in GL(2,Z), that is, change of generators for 〈t1, t2〉 ∼= Z2.

(0) Φ is trivial,

ZΦ = Z = 〈t3〉.
(1) Φ = Z2 : A =

[
1 0
0 −1

]
,

ZΦ = Z = 〈t3, ᾱ = (t
1
2

3 , A)〉.
• ϕ(ᾱ) = −K with det(K) = −1, tr(K) = n > 0, and S = nK + I.

(2a) Φ = Z2 : A =
[−1 0

0 −1

]
,

ZΦ = Z× Z2 = 〈t3, ᾱ = (t03, A)〉.
• ϕ(ᾱ) = A, S ∈ SL(2,Z) with tr(S) > 2.

(2b) Φ = Z2 : A =
[−1 0

0 −1

]
,

ZΦ = Z = 〈t3, ᾱ = (t
1
2

3 , A)〉.
• ϕ(ᾱ) = −K with det(K) = +1, tr(K) = n > 2, and S = nK − I.

(3) Φ = Z2 : A = [ 0 1
1 0 ],

ZΦ = Z ⋊ Z2 = 〈t3, ᾱ = (t03, A)〉.
• ϕ(ᾱ) = A, S ∈ SL(2,Z) with tr(S) > 2 and σ12 = −σ21.

(3i) Φ = Z2 : A = [ 0 1
1 0 ],

ZΦ = Z ⋊ Z2 = 〈t3, ᾱ = (t03, A)〉.
• ϕ(ᾱ) =

[
1 0
0 −1

]
, S ∈ SL(2,Z) with tr(S) > 2 and σ11 = σ22.

(4) Φ = Z4 : A =
[

0 1
−1 0

]
,

ZΦ = Z ⋊ Z4 = 〈t3, ᾱ = (t03, A)〉.
• ϕ(ᾱ) = A, S ∈ SL(2,Z) with tr(S) > 2 and symmetric.

(5) Φ = Z2 × Z2 : A =
[
1 0
0 −1

]
, B =

[−1 0
0 −1

]
,

ZΦ = Z× Z2 = 〈t3, ᾱ = (t
1
2

3 , A), β̄ = (t03, B)〉.
• ϕ(ᾱ) = −K, ϕ(β̄) = B (1)+(2a)

• S = nK + I, K ∈ GL(2,Z), det(K) = −1, and tr(K) = n > 0.
(6a) Φ = Z2 × Z2 : A = [ 0 1

1 0 ], B =
[−1 0

0 −1

]
,

ZΦ = (Z× Z2)⋊ Z2 = 〈t3, ᾱ = (t03, A), β̄ = (t03, B)〉.
• ϕ(ᾱ) = A, ϕ(β̄) = B (3)+(2a)

• S ∈ SL(2,Z) with tr(S) > 2 and σ12 = −σ21.

(6ai) Φ = Z2 × Z2 : A = [ 0 1
1 0 ], B =

[−1 0
0 −1

]
,

ZΦ = (Z× Z2)⋊ Z2 = 〈t3, ᾱ = (t03, A), β̄ = (t03, B)〉.
• ϕ(ᾱ) =

[
1 0
0 −1

]
, ϕ(β̄) = B (3i)+(2a)

• S ∈ SL(2,Z) with tr(S) > 2 and σ11 = σ22.

(6b) Φ = Z2 × Z2 : A = [ 0 1
1 0 ], B =

[−1 0
0 −1

]
,
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ZΦ = Z ⋊ Z2 = 〈t3, ᾱ = (t03, A), β̄ = (t
1
2

3 , B)〉.
• ϕ(ᾱ) = A, ϕ(β̄) = −K (3)+(2b)

• S = nK − I, where K ∈ SL(2,Z) with tr(K) = n > 2; k12 = −k21.
(6bi) Φ = Z2 × Z2 : A = [ 0 1

1 0 ], B =
[−1 0

0 −1

]
,

ZΦ = Z ⋊ Z2 = 〈t3, ᾱ = (t03, A), β̄ = (t
1
2

3 , B)〉.
• ϕ(ᾱ) =

[
1 0
0 −1

]
, ϕ(β̄) = −K (3i)+(2b)

• S = nK − I, where K ∈ SL(2,Z) with tr(K) = n > 2; k11 = k22.
(7) Φ = Z4 ⋊ Z2 : A = [ 0 1

1 0 ] , B =
[
1 0
0 −1

]
,

ZΦ = (Z× Z2)⋊ Z2 = 〈t3, ᾱ = (t03, A), β̄ = (t
1
2

3 , B)〉.
• ϕ(ᾱ) = A, ϕ(β̄) = −K (includes (6a)) (3)+(1)

• S = nK + I, K ∈ GL(2,Z), det(K) = −1, tr(K) > 0; k12 = −k21.
(7i) Φ = Z4 ⋊ Z2 : A = [ 0 1

1 0 ] , B =
[
1 0
0 −1

]
,

ZΦ = (Z× Z2)⋊ Z2 = 〈t3, ᾱ = (t03, A), β̄ = (t
1
2

3 , B)〉.
• ϕ(ᾱ) =

[
1 0
0 −1

]
, ϕ(β̄) = −K (includes (6ai)) (3i)+(1)

• S = nK+I, K ∈ GL(2,Z), det(K) = −1, tr(K) = n > 0, k11 = k22.

Proof. The 9 families of Sol3-crystallographic groups in Theorem 8.2 of [7] are
labeled E0, E1, E

±
2 , E3, E5, E8, E9, E10, and E11. The table below shows our

notation convention:
E0 E1 E+

2 E−
2 E3 E5 E8 E9 E10 E11

(0) (2a) (2b) (1) (3),
(3i)

(5) (6a),
(6ai)

(6b),
(6bi)

(4) (7),
(7i)

From Theorem 8.2 of [7], ϕ(ᾱ) = ϕ(t03, A) where A = [ 0 1
1 0 ] ∈ D4 can act on

〈t1, t2〉 ∼= Z2 in two different ways: either P−1AP = [ 0 1
1 0 ] or P

−1AP =
[
1 0
0 −1

]
.

In Theorem 8.2 of [7], cases E3, E8, E9, and E11 contain such a holonomy
element, and therefore we split each into two cases, depending on how ϕ(ᾱ)
acts on 〈t1, t2〉 ∼= Z2. We will see that one case always lifts to crystallographic
groups of Sol1

4 with torsion, whereas the other can lift to torsion free crystal-
lographic groups.

When ᾱ = (t
1
2

3 , A), A is necessarily diagonal of order 2, and

ϕ(ᾱ) = P−1∆
1
2AP = −K,

where (−K)2 = K2 = S. Letting n = tr(K), it follows that S = nK + I when
det(K) = −1, and S = nK − I when det(K) = 1. This applies to the cyclic
holonomy cases (1), (2b).

When ᾱ = (t03, A), ϕ(ᾱ) = P−1AP . If A = −I, ϕ(ᾱ) = P (−I)P−1 = −I
(regardless of S and P ). For other choices of A, we have:

(1) P−1
[

0 1
−1 0

]
P =

[
0 1
−1 0

]
if and only if P = ±

[
cos t sin t

− sin t cos t

]
.

S is diagonalized by such a P if and only if σ12 = σ21.

(2) P−1 [ 0 1
1 0 ]P = [ 0 1

1 0 ] if and only if P = ±
[
cosh t sinh t
sinh t cosh t

]
.

S is diagonalized by such a P if and only if σ12 = −σ21.
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(3) P−1 [ 0 1
1 0 ]P =

[
1 0
0 −1

]
if and only if P = ± 1√

2

[
t − 1

t

t 1
t

]
, t 6= 0.

S is diagonalized by such a P if and only if σ11 = σ22.
This applies to the cyclic holonomy cases (3), (3i), and (4), and forces

the stated conditions on S. The two generator cases follow from the cyclic
cases. �

4. Crystallographic groups of Sol3

With a fixed abstract kernel ϕ : ZΦ → GL(2,Z) from Theorem 3.1, the
set of all equivalence classes of extensions Q in (3.1) is in one-one correspon-
dence with the group H2

ϕ(ZΦ,Z
2). The following theorem greatly simplifies the

computations in [7].

Theorem 4.1. For each homomorphism ϕ : ZΦ → GL(2,Z), in Theorem 3.3,
we have an isomorphism

H2
ϕ(ZΦ;Z

2) ∼= H1(Φ;Coker(I − S)),
where Coker(I − S) ∼= (I − S)−1Z2/Z2 ⊂ T 2 is a finite abelian group. So, the

set of equivalence classes of extensions Q,

1 −→ Z2 −→ Q −→ ZΦ −→ 1,

is in one-one correspondence with H1(Φ;Coker(I − S)).
Proof. Since det(I − S) 6= 0, H1(Φ;Coker(I − S)) is finite, as Coker(I − S)
is finite. First, we verify that ϕ(ZΦ) ⊂ GL(2,Z) = Aut(Z2) leaves the group
(I − S)−1Z2 ⊂ R2 containing Z2 invariant. Suppose there exists a ∈ R2 such
that (I − S)a = z ∈ Z2. Then,

(I − S)
(
ϕ(t3)a

)
= (I − S)

(
Sa
)
= S

(
(I − S)(a)

)
= S(z) ∈ Z2.

Now for ϕ(ᾱ), if Ā = +1,

(I − S)
(
ϕ(ᾱ)a

)
= ϕ(ᾱ)(I − S)a = ϕ(ᾱ)z ∈ Z2;

and if Ā = −1, then ϕ(α) conjugates S to S−1, and so,

(I − S)
(
ϕ(ᾱ)a

)
= ϕ(ᾱ)(−S−1)(I − S)a = ϕ(ᾱ)(−S−1)z ∈ Z2.

This shows that, if a ∈ (I − S)−1Z2, then so are ϕ(t3)a and ϕ(ᾱ)a. Conse-
quently, (I − S)−1Z2 is ϕ(ZΦ)-invariant. Since a − ϕ(t3)a = (I − S)a ∈ Z2,
t3 acts as the identity on Coker(I − S). We obtain an induced action of
ZΦ/〈t3〉 ∼= Φ on Coker(I − S), and so H1(Φ;Coker(I − S)) is defined.

Suppose we have a class in H2(ZΦ;Z
2) defining an extension Q. Since Z2 ⊂

R2 has the unique automorphism extension property, there exists a push-out

Q̃ [11, (5.3.4)] fitting the commuting diagram:

1 −−−−→ Z2 −−−−→ Q −−−−→ ZΦ −−−−→ 1
y

y
∥∥∥

1 −−−−→ R2 −−−−→ Q̃ −−−−→ ZΦ −−−−→ 1
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Note that H2(ZΦ;R
2) is annihilated by the (finite) index of Z = 〈t3〉 in ZΦ [2,

Proposition 10.1]. Therefore, H2(ZΦ;R
2) vanishes, and Q̃ is the split extension

R2 ⋊ ZΦ. Since Z ⊂ ZΦ lifts back to ΓS , it lifts back to Q̃ so that Q̃ contains
(0, t3) ∈ R2 ⋊ZΦ. For each element tn3 ᾱ ∈ ZΦ, pick a preimage α = (a, tn3 ᾱ) ∈
R2 ⋊ ZΦ, taking care that a = 0 if ᾱ = id. Then tn3 ᾱ 7→ a defines a map
η : ZΦ → R2/Z2 = T 2, and in fact, η maps into Coker(I − S) ⊂ T 2. Thus we
have

η : Φ → Coker(I − S).
We claim that η is a crossed homomorphism. Let ᾱ, β̄ ∈ Φ, and η(ᾱ) =

a, η(β̄) = b. For preimages (a, tm3 ᾱ) and (b, tn3 β̄) in Q̃,

(a, tm3 ᾱ)(b, tn3 β̄) = (a+ ϕ(tm3 ᾱ)(b), tm3 ᾱtn3 β̄)

= (a+ ϕ(tm3 )(ϕ(ᾱ)(b)), tm3 (ᾱtn3 ᾱ
−1)ᾱβ̄).

Since ᾱtn3 ᾱ
−1 = tℓ3 for some ℓ ∈ Z,

η(ᾱβ̄) = a+ ϕ(tm3 )(ϕ(ᾱ)(b))

= η(ᾱ) + Sm(ϕ(ᾱ)(η(β̄)))

= η(ᾱ) + ϕ(ᾱ)(η(β̄)),

where the last equality holds because ϕ(ᾱ)(η(β̄)) ∈ Coker(I−S), and the action
of S on Coker(I − S) is trivial (if a ∈ Coker(I − S), then (I − S)a ∈ Z2, and
hence a = Sa modulo Z2). Thus η is a crossed homomorphism. Conversely,
such a crossed homomorphism η clearly gives rise to an extension Q. Thus, we
obtain a surjective map

Z1(Φ;Coker(I − S)) → H2(ZΦ;Z
2),

which we claim is a homomorphism. To see this, given

η : Φ → Coker(I − S),
we find a 2-cocycle f : ZΦ×ZΦ → Z2 representing the extension Q correspond-
ing to η. Fix a lift η̃ : Φ → (I − S)−1(Z2) (not a homomorphism in general) of
η. Then we can write any element of Q as

(n+ η̃(ᾱ), tm3 ᾱ),

where n ∈ Z2, m ∈ Z. Now, for (n1 + η̃(ᾱ), tm1

3 ᾱ) and (n2 + η̃(β̄), tm2

3 β̄) ∈ Q,

(n1 + η̃(ᾱ), tm1

3 ᾱ)(n2 + η̃(β̄), tm2

3 β̄) =

(n1 + Sm1ϕ(ᾱ)(n2) + η̃(ᾱ) + Sm1ϕ(ᾱ)(η̃(β̄)), tm1

3 ᾱtm2

3 β̄).

Therefore, Q is represented by the 2-cocycle f : ZΦ × ZΦ → Z2 defined by

f(tm1

3 ᾱ, tm2

3 β̄) = η̃(ᾱ) + Sm1ϕ(ᾱ)(η̃(β̄))− η̃(ᾱβ̄).

It is now clear that addition of crossed homomorphisms in Z1(Φ;Coker(I−S))
corresponds to addition of 2-cocycles in Z2(ZΦ;Z

2).
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We shall prove that Q splits if and only if the corresponding η is a cobound-
ary, i.e., η ∈ B1(Φ;Coker(I−S)). Note that this will imply that Z1(Φ;Coker(I
−S)) → H2(ZΦ;Z

2) induces an isomorphism

H1(Φ;Coker(I − S)) ∼= H2(ZΦ;Z
2).

A splitting ZΦ → Q induces a homomorphism

s : ZΦ → Q̃.

Suppose s(t3) = (z, t3) with z ∈ Z2. Even in this case, our definition of η
shows that, we will pick (0, t3) as our preimage of t3 so that η(t3) = 0, and
η(ᾱ) = a if s(ᾱ) = (a, ᾱ) for others.

Let y = −(I − S)−1z. Then

(y, I)(z, t3)(−y, I) = (y + z − ϕ(t3)(y), t3) = (z + (I − S)(y), t3)
= (0, t3)

and

(y, I)(a, ᾱ)(−y, I) = (y + a− ϕ(ᾱ)y, ᾱ) = (a+ (I − ϕ(ᾱ))y, ᾱ)

= (v, ᾱ), by setting a+ (I − ϕ(ᾱ))y = v.

Now,

(v, ᾱ)(0, t3)(v, ᾱ)
−1 = (v − (ᾱt3ᾱ

−1)v, ᾱt3ᾱ
−1) = (v − tĀ3 v, t

Ā
3 )

= ((I − SĀ)v, tĀ3 ).

Since Z is normal in ZΦ, for s to be a homomorphism, we must have (I−SĀ)v =

0. This happens if and only if v = 0 since (I − SĀ) is invertible, which holds
if and only if

η(ᾱ) = a = (ϕ(ᾱ)− I)(−y) = (δy)(ᾱ),

so that η is a coboundary. �

An alternate argument for Theorem 4.1 is provided by the long exact se-
quence

· · · → H1
ϕ(ZΦ;R

2) → H1
ϕ(ZΦ;T

2) → H2
ϕ(ZΦ;Z

2) → H2
ϕ(ZΦ;R

2) → · · · ,
induced by the short exact sequence of coefficients 0 → Z2 → R2 → T 2 → 0.

Since both H1
ϕ(ZΦ;R

2) and H2
ϕ(ZΦ;R

2) vanish, we obtain an isomorphism

H1
ϕ(ZΦ;T

2) ∼= H2
ϕ(ZΦ;Z

2).

To establish that H1
ϕ(ZΦ;T

2) ∼= H1(Φ;Coker(I − S)), note that any class

in H1
ϕ(ZΦ;T

2) is represented by a crossed homomorphism, mapping t3 to the

identity of T 2, and such a crossed homomorphism η̃ : ZΦ → T 2 induces η :
Φ → T 2. The image of η must lie in (I − S)−1Z2/Z2, and so η defines an
element of H1(Φ;Coker(I − S)). It is straightforward to check that this is an
isomorphism.
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On the other hand, our proof of Theorem 4.1 establishes the precise one-
one correspondence between H1(Φ;Coker(I−S)) and the set of all equivalence
classes of extensions Q,

1 −→ Z2 −→ Q −→ ZΦ −→ 1.

Remark 4.2. For each subgroup Φ of D4, we describe both Z1(Φ;Coker(I−S))
and B1(Φ;Coker(I − S)), where the action of Φ on Coker(I − S) is induced
from a ϕ : ZΦ → GL(2,Z) in Theorem 3.3. For Φ ∼= Z2 ×Z2, we need to check
that the commutator of (a, ᾱ) and (b, β̄) is in Z2. For Z4, there is no cocycle
condition to check (since I +ϕ(ᾱ) +ϕ(ᾱ)2 +ϕ(ᾱ)3 = 0). Likewise for Z4 ⋊Z2,
there is no cocycle condition for the order 4 element.

(1) Φ = Z2 = 〈ᾱ〉,
Z1(Φ;Coker(I − S)) = {a ∈ Coker(I − S) | (I + ϕ(ᾱ))a ≡ 0},
B1(Φ;Coker(I − S)) = {(I − ϕ(ᾱ))v | v ∈ Coker(I − S)}.

(2) Φ = Z4 = 〈ᾱ〉,
Z1(Φ;Coker(I − S)) = {a ∈ Coker(I − S)},
B1(Φ;Coker(I − S)) = {(I − ϕ(ᾱ))v | v ∈ Coker(I − S)}.

(3) Φ = Z2 × Z2 = 〈ᾱ, β̄〉,
Z1(Φ;Coker(I − S)) = {(a,b) | a,b ∈ Coker(I − S),

(I + ϕ(ᾱ))a ≡ (I + ϕ(β̄))b ≡ 0,

(I − ϕ(ᾱ))b ≡ (I − ϕ(β̄))a},
B1(Φ;Coker(I − S)) = {((I − ϕ(ᾱ))v, (I − ϕ(β̄))v) | v ∈ Coker(I − S)}.
(4) Φ = Z4 ⋊ Z2 = 〈ᾱ, β̄| ᾱ2, β̄2, (β̄ᾱ)4〉,
Z1(Φ;Coker(I − S)) = {(a,b) | a,b ∈ Coker(I − S),

(I + ϕ(ᾱ))a ≡ (I + ϕ(β̄))b ≡ 0},
B1(Φ;Coker(I − S)) = {((I − ϕ(ᾱ))v, (I − ϕ(β̄))v) | v ∈ Coker(I − S)}.
Suppose we have an extension Q; that is, η ∈ H1(Φ;Coker(I − S)) with

η(ᾱ) = a = [ a1
a2
]. Then

Q = 〈t1, t2, t3, α = (ta1

1 ta2

2 ta3

3 , A)〉 ⊂ Sol3 ⋊D4

has the following presentation

t3(t
n1

1 tn2

2 )t−1
3 = tm1

1 tm2

2 , where

[
m1

m2

]
= S

[
n1

n2

]
,

α(tn1

1 tn2

2 )α−1 = m′
1m

′
2, where

[
m′

1

m′
2

]
= ϕ(ᾱ)

[
n1

n2

]
,

αt3α
−1 = tw1

1 tw2

2 tĀ3 , where

[
w1

w2

]
=
(
I − SĀ

) [a1
a2

]
,
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α2 = tv11 tv22 t
(1+Ā)a3

3 , where

[
v1
v2

]
= (I + ϕ(ᾱ))

[
a1
a2

]
, if A2 = I,

α4 = id, if ord(A) = 4.

Corollary 4.3. Let Q = 〈ΓS , (t
a1

1 ta2

2 ta3

3 , A)〉 be a Sol3-crystallographic group

with standard lattice ΓS = 〈t1, t2, t3〉. Suppose ϕ(ᾱ) = −K and S = nK ± I.
Recall that by Theorem 3.3, A has order 2, Ā = 1, and a3 = 1

2 . Then

H1(Φ;Coker(I − S)) = 0.

In fact, there exists tv11 tv22 which conjugates (ta1

1 ta2

2 t
1
2

3 , A) to (t
1
2

3 , A) and leaves

ΓS invariant.

Proof. We have det(I−ϕ(ᾱ)) = det(I+K) = 1+det(K)+tr(K). By Theorem
3.3, when det(K) = −1, tr(K) > 0; and when det(K) = 1, tr(K) > 2.

Consequently, I − ϕ(ᾱ) is always non-singular and we may take v = (I −
ϕ(ᾱ))−1a. Then (tv11 tv22 , I) ∈ Sol3 ⋊ D4 conjugates (t

1
2

3 , A) to (ta1

1 ta2

2 t
1
2

3 , A).
It remains to show v ∈ (I − S)−1Z2. This condition guarantees conjugation
by (tv11 tv22 , I) leaves ΓS invariant. Since ϕ(ᾱ) = −K is a square root of S and
v = (I − ϕ(ᾱ))−1a,

(I − S)v = (I + ϕ(ᾱ))(I − ϕ(ᾱ))v = (I + ϕ(ᾱ))a ∈ Z2,

where the last inclusion holds by the cocycle conditions in Remark 4.2. There-
fore Φ ∋ A 7→ a ∈ Coker(I − S) is a coboundary, and H1(Φ;Coker(I − S))
vanishes. �

Corollary 4.3 greatly simplifies the computation of H1(Φ;Coker(I − S)).
For example, in cases (1), (2b), and (5) of Theorem 3.3, we can take a = 0,
whereas in cases (6b), (6bi), (7), and (7i), we can take b = 0.

The complete list of crystallographic groups for Sol3 will follow from our
classification of crystallographic groups of Sol1

4. However, we will need to
analyze how a type (3i) or (6i) crystallographic group of Sol3 acts on Sol3.
This will be critical to determining when a crystallographic group of Sol1

4 has
torsion.

Lemma 4.4. Let Q be a crystallographic group of Sol3 of type (3i) or (6bi).
When Q is of type (3i),

Q =
〈
ΓS , α =

(
ta1

1 ta2

2 t03, [
0 1
1 0 ]
)〉

, and

Q\Sol3 can be described as T 2 × I with T 2 × {0} identified to itself by the

affine involution
(
[ a1
a2
] ,
[
1 0
0 −1

])
, and T 2 × {1} identified to itself by the affine

involution
(
[ a1
a2
] ,
[
σ11 −σ12

σ21 −σ11

])
. Here T 2 is the 2-dimensional torus.

If
[−1 0

0 1

]
is used instead of

[
1 0
0 −1

]
, then Q\Sol3 can be described as T 2 × I

with T 2 × {0} identified to itself by the affine involution
(
[ a1
a2
] ,
[−1 0

0 1

])
, and

T 2 × {1} identified to itself by the affine involution
(
[ a1
a2
] ,
[−σ11 σ12

−σ21 σ11

])
.
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When Q is of type (6bi),

Q =
〈
ΓS , α =

(
ta1

1 ta2

2 t03, [
0 1
1 0 ]
)
, β =

(
t

1
2

3 ,
[−1 0

0 −1

])〉
, and

Q\Sol3 can be described as T 2 × I with T 2 × {0} identified to itself by the

affine involution
(
[ a1
a2
] ,
[
1 0
0 −1

])
, and T 2 × {1} identified to itself by the affine

involution
(
[ a1
a2
] ,
[−k11 k12

−k21 k11

])
.

Proof. The action of ΓS on Sol3 is equivalent to the action of Z2 ⋊S Z on
R2 ⋊S R. A fundamental domain for this action is given by the unit cube I3,
and evidently Q\Sol3 is given by T 2×I with T 2×{0} identified to T 2×{1} via
S, which we view as a self-diffeomorphism of T 2. Note that R2 → R2⋊SR → R

induces the fiber bundle with infinite cyclic structure group generated by S:
T 2 → ΓS\Sol3 → S1.

Now suppose Q is of type (3i). Then Q\Sol3 is the quotient of ΓS\Sol3 by
the involution defined by α = (ta1

1 ta2

2 , [ 0 1
1 0 ]). Here α acts as a reflection on the

base S1. A fundamental domain for this action is given by T 2 ×
[
0, 12
]
. Now α

identifies T 2 × {0} to itself and T 2 × { 1
2} to itself.

Indeed, (ta1

1 ta2

2 , A) · tx1

1 tx2

2 = ta1

1 ta2

2 A(tx1

1 tx2

2 ) shows that α acts on T 2×{0}
as the affine transformation (a, ϕ(ᾱ)). For tx1

1 tx2

2 t
1
2

3 ∈ T 2 × { 1
2},

t3(t
a1

1 ta2

2 , A) · tx1

1 tx2

2 t
1
2

3 = t3t
a1

1 ta2

2 A(tx1

1 tx2

2 )A(t
1
2

3 ) = t3t
a1

1 ta2

2 A(tx1

1 tx2

2 )t
− 1

2

3

=
(
t3t

a1

1 ta2

2 t−1
3

) (
t3A(t

x1

1 tx2

2 )t−1
3

)
t

1
2

3 ∈ T 2 × { 1
2}.

Since conjugation by t3 is the action of S, we see that α acts on T 2 as the
affine transformation (Sa,Sϕ(ᾱ)). But since a ∈ Coker(I − S), this simplifies
to (a,Sϕ(ᾱ)). Note that the condition that σ11 = σ22 ensures that Sϕ(ᾱ) has
order 2.

The argument in case (6bi) is nearly identical. In this case, note that Q
contains a group of type (2b), say Q′, as an index 2 subgroup,

Q′ =
〈
ΓS , β =

(
t

1
2

3 ,
[−1 0

0 −1

])〉
.

Therefore, Q\Sol3 is the quotient of Q′\Sol3 by α = (ta1

1 ta2

2 , [ 0 1
1 0 ]). Now

Q′\Sol3 is the quotient of ΓS\Sol3 by the involution defined by β. On the base

of T 2 → ΓS\Sol3 → S1, β acts as a translation. Thus a fundamental domain
for the action of β is given by T 2 ×

[
0, 1

2

]
. Note that β identifies T 2 × {0}

with T 2 × { 1
2} via ϕ(β̄) = −K, which is a square root of S, and Q′\Sol3 is

the mapping torus of ϕ(β̄). Now because Q′\Sol3 admits the structure of a T 2

bundle over S1, the construction in (3i) applies. A fundamental domain for
the action of α on Q′\Sol3 is given by T 2 × { 1

4}. As in case (3i), α acts on

T 2 × {0} affinely as (a, ϕ(ᾱ)). For tx1

1 tx2

2 t
1
4

3 ∈ T 2 × { 1
4},

(t
1
2

3 , B)(ta1

1 ta2

2 , A) · tx1

1 tx2

2 t
1
4

3 = t
1
2

3 B(ta1

1 ta2

2 )BA(tx1

1 tx2

2 )BA(t
1
4

3 )
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= t
1
2

3 B(ta1

1 ta2

2 )t
− 1

2

3 t
1
2

3 BA(tx1

1 tx2

2 )t
− 1

4

3

=
(
t

1
2

3 B(ta1

1 ta2

2 )t
− 1

2

3

)(
t

1
2

3 BA(tx1

1 tx2

2 )t
− 1

2

3

)
t

1
4

3

∈ T 2 × { 1
4}.

Now conjugation by (t
1
2

3 , B) is the action of ϕ(β̄) = −K on T 2. Hence α acts
affinely on T 2×{ 1

4} as (ϕ(β̄)a, ϕ(β̄)ϕ(ᾱ)). The commutator cocycle conditions

for Φ = Z2×Z2 in Remark 4.2, with b = 0 implies (I−ϕ(β̄))a = (I+K)a ∈ Z2,
so this simplifies to (a, ϕ(β̄)ϕ(ᾱ)) = (a, (−K)ϕ(ᾱ)). �

5. Lattices of Sol4
1

In this section we classify the lattices of Sol1
4. Given a lattice Γ̃S of Sol1

4,

Γ̃S ∩ Z(Sol1
4) ∼= Z is a lattice of Z(Sol1

4) ∼= R, and the projection map,

G → G/Z(G) ∼= Sol3,

carries Γ̃S to a lattice of Sol3, isomorphic to ΓS , for some S ∈ SL(2,Z) with

trace(S) > 2. Thus, Γ̃S is the central extension

1 −→ Z −→ Γ̃S −→ ΓS −→ 1.

As is well known, such central extensions of Z by ΓS are classified by the second
cohomology group H2(ΓS ;Z).

Theorem 5.1. Let S ∈ SL(2,Z) with trace(S) > 2. There is a one-one

correspondence between the equivalence classes of all central extensions

1 −→ Z −→ Γ̃ −→ ΓS −→ 1

and the group Z⊕ Coker(S − I). Note Coker(S − I) is finite.

Proof. Recall ΓS = Z2 ⋊S Z. Then

H2(Z2 ⋊S Z;Z) = Free
(
H2(Z

2 ⋊S Z;Z)
)
⊕ Torsion

(
H1(Z

2 ⋊S Z;Z)
)

= Z⊕ (Z2/(S − I)Z2) = Z⊕ Coker(S − I). �

For {q, (m1,m2)} ∈ Z ⊕ Coker(S − I), denote the corresponding extension

Γ̃ by Γ̃(S;q,m1,m2) whose presentation is given in Lemma 5.2. We show that

Γ̃(S;q,m1,m2) with q 6= 0 embeds as a lattice in Sol1
4 (when q = 0, Γ̃(S;q,m1,m2)

embeds into Sol3 × R). An S ∈ SL(2,Z) with tr(S) > 2 produces P and ∆,

where P ∈ SL(2,R) diagonalizes S, PSP−1 =
[

1
λ 0

0 λ

]
, 1

λ < 1 < λ. We had the

embedding of Z2 ⋊S Z into Sol3 in (2.1):
([

x
y

]
, u

)
7−→

(
P

[
x
y

]
, u ln(λ)

)
.
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The quotient of Sol1
4 by its center is isomorphic to Sol3 by the projection



1 eux z
0 eu y
0 0 1


 7−→

([
x
y

]
, u

)
.

Under this projection, we will find all lattices of Sol1
4 projecting to ΓS . Let

e1 =

([
1
0

]
, 0

)
7−→ (Pe1, 0) 7−→ t1 =




1 p11 c1
0 1 p21
0 0 1



 ,

e2 =

([
0
1

]
, 0

)
7−→ (Pe2, 0) 7−→ t2 =




1 p12 c2
0 1 p22
0 0 1



 ,

e3 =

([
0
0

]
, 1

)
7−→ (0, ln(λ)) 7−→ t3 =




1 0 c3
0 λ 0
0 0 1



 ,

t4 =




1 0 1
0 1 0
0 0 1



 ,

(5.1)

where ci’s are to be determined. Then [t1, t2] = t4 (regardless of the ci’s).

Lemma 5.2. For any integers q,m1,m2, there exist unique c1, c2 for which

{t1, t2, t3, t
1
q

4 } forms a group Γ̃(S;q,m1,m2) with the presentation

Γ̃(S;q,m1,m2) = 〈t1, t2, t3, t
1
q

4 | [t1, t2] = t4, t4 is central,

t3t1t
−1
3 = tσ11

1 tσ21

2 t
m1
q

4 ,

t3t2t
−1
3 = tσ12

1 tσ22

2 t
m2
q

4 〉.

Consequently, Γ̃(S;q,m1,m2) is solvable and contains Γq = 〈t1, t2, t
1
q

4 〉 as its

discrete nil-radical, where Γq is a lattice of Nil.

Proof. We only need to verify the last two equalities. But they become a system
of equations on ci’s

(1− σ11)c1 − σ21c2 =
m1

q
− σ21(σ12 + 1− σ11 + σ11

√
T 2 − 4)

2
√
T 2 − 4

,

−σ12c1 + (1− σ22)c2 =
m2

q
+

σ12(σ21 + 1− σ22 − σ22

√
T 2 − 4)

2
√
T 2 − 4

,

(5.2)

where T = σ11+σ22. Since I−S is non-singular, there exists a unique solution
for c1, c2. �
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Equation (5.2) also shows the cohomology classification. Suppose {c1, c2}
and {c′1, c′2} are solutions for the equations with {m1,m2} and {m′

1,m
′
2}, re-

spectively. Then (c′1 − c1, c
′
2− c2) ∈

(
1
qZ
)2

if and only if (m′
1 −m1,m

′
2−m2) ∈

Coker(ST − I) ∼= Coker(S − I). This happens if and only if Γ̃(S;q,m1,m2) =

Γ̃(S;q,m′
1
,m′

2
).

Remark 5.3. (1) Note that any lattice Γ̃(S;q,m1,m2) of Sol1
4 projects to the

standard lattice ΓS of Sol3.
(2) In Lemma 5.2, the ci’s are independent of choice of P because equation

(5.2) has coefficients only from the matrix S.
(3) Notice that c3 does not show up in the presentation of the lattice

Γ̃(S;q,m1,m2), so c3 can be changed without affecting the isomorphism type of
the lattice.

Notation 5.4 (Standard lattice). The lattice generated by

t1 =




1 p11 c1
0 1 p21
0 0 1



 , t2 =




1 p12 c2
0 1 p22
0 0 1



 , t3 =




1 0 c3
0 λ 0
0 0 1



 , t
1
q

4 =




1 0 1

q

0 1 0
0 0 1





with c3 = 0, is called a standard lattice of Sol1
4.

Therefore, any lattice of Sol1
4 is isomorphic to a standard lattice. However,

a non-standard lattice (i.e., c3 6= 0) will be needed when we consider finite

extensions of Γ̃S , specifically, in the holonomy Z4 case.
The following lemma on lattices of Sol1

4 will be needed in the next section.

Lemma 5.5. Let Γ̃(S;q,m1,m2) be a lattice of Sol1
4, embedded as in assignment

(5.1).
(a) Let r1, r2 ∈ Q. Then

tr11 tr22 = tr22 tr11 tr1r24 .

(b) Let a1, a2 ∈ Q. Then, for Ā = ±1,

tĀ3 t
a1

1 ta2

2 t−Ā
3 = tl11 t

l2
2 t

v
4 , where

[
l1
l2

]
= SĀ

[
a1
a2

]
, and v ∈ Q.(5.3)

Proof. For part (a), we compute that [tr11 , tr22 ] = t
r1r2 det(P )
4 = tr1r24 .

For part (b), the definition of Γ̃(S;q,m1,m2) shows that
[
l1
l2

]
= SĀ [ a1

a2
]. We

must show that v in (5.3) is rational.
Because a1 and a2 are rational, there is a positive integer n so that na1, na2 ∈

Z. By part (a),

(ta1

1 ta2

2 )n = ta1

1 ta2

2 · · · ta1

1 ta2

2 (n times) = tna1

1 tna2

2 tu
′

4 , for some u′ ∈ Q.

Therefore,

tĀ3 (t
a1

1 ta2

2 )nt−Ā
3 = tĀ3 t

na1

1 tna2

2 tu
′

4 t−Ā
3
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= tĀ3 t
na1

1 tna2

2 t−Ā
3 tu

′

4

= tn1

1 tn2

2 tu4 for some n1, n2 ∈ Z, and some u ∈ Q,

where the last equality follows from that na1 and na2 are integers, together
with the relations in Lemma 5.2.

On the other hand, we have that

tĀ3 (t
a1

1 ta2

2 )nt−Ā
3 = tĀ3 t

a1

1 ta2

2 t−Ā
3 · · · tĀ3 ta1

1 ta2

2 t−Ā
3 (n times)

= tl11 t
l2
2 t

v
4 · · · tl11 tl22 tv4(n times)

= tnl11 tnl22 tnv+w
4 for some w ∈ Q,

where v is from (5.3) and the last equality follows from part (a).
Consequently, we have

tn1

1 tn2

2 tu4 = tnl11 tnl22 tnv+w
4 .

This forces n1 = nl1 and n2 = nl2. Therefore, nv + w = u. Since n ∈ Z,
u,w ∈ Q, it follows that v ∈ Q. �

6. Crystallographic groups of Sol4
1

Let Π ⊂ Sol1
4
⋊C be a crystallographic group of Sol1

4, where C is a maximal
compact subgroup of Aut(Sol1

4). As all maximal compact subgroups of Sol1
4

are conjugate, we can assume that C is the maximal compact subgroup

D4 =

〈[
0 −1
1 0

]
,

[
1 0
0 −1

]〉

of Aut(Sol1
4) (Proposition 3.1), the action of which on Sol1

4 is described in

Proposition 1.2. As noted in Proposition 3.1, Sol1
4 satisfies generalization of

Bieberbach’s Theorems. Furthermore, as shown below, we can conjugate Π in

Aff(Sol1
4) so that the lattice inside Π is some Γ̃(S;q,m1,m2), embedded in Sol1

4

as in assignment (5.1).

Proposition 6.1. (1) Any crystallographic group Π ′ of Sol1
4 can be conjugated

in Aff(Sol1
4) to Π ⊂ Sol1

4
⋊D4 so that

Π ∩ Sol1
4 = 〈t1, t2, t3, t

1
q

4 〉,
where

t1 =




1 p11 c1
0 1 p21
0 0 1



 , t2 =




1 p12 c2
0 1 p22
0 0 1



 , t3 =




1 0 c3
0 λ 0
0 0 1



 , t4 =




1 0 1
0 1 0
0 0 1



 .

(2) The holonomy group Φ is generated by at most two elements of D4, and

thus Π is generated by 〈t1, t2, t3, t
1
q

4 〉 and at most two isometries of the form

(ta1

1 ta2

2 ta3

3 ta4

4 , A), for A ∈ D4 and real numbers ai.
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Proof. Let Γ̃ = Π∩Sol1
4. This lattice must meet the center of Sol1

4 in a lattice:

Γ̃∩Z(Sol1
4) is a lattice of Z(Sol1

4), say generated by t
1
q

4 . Also Γ̃∩Nil is a lattice

of the nilradical Nil, so we can find generators 〈t1, t2, t
1
q

4 〉 of this lattice as given
in the statement. The remaining one generator for the lattice Γ̃ must project

down to a generator of the quotient Γ̃/〈t1, t2, t
1
q

4 〉 ∼= Z. It must be of the form

t′′3 =



1 a c3
0 λ b
0 0 1


 .

Conjugation by

[
1 a

1−λ
0

0 λ − bλ
1−λ

0 0 1

]
maps t′′3 to the form of t3. Note Γ̃/Z(Γ̃) is a

lattice of Sol3, isomorphic to Z2 ⋊S Z, for S ∈ SL(2,Z), tr(S) > 2, where

P = (pij) diagonalizes S. As in the case of Sol3 (Proposition 2.3), we can
assume det(P ) = 1, so that [t1, t2] = t4. Therefore, any lattice is conjugate to

a lattice 〈t1, t2, t3, t
1
q

4 〉 of the desired form. �

Henceforth we will assume all Sol1
4-crystallographic groups are embedded

in Sol1
4
⋊D4 as in Proposition 6.1. However, we will see that we can always

take c3 = 0, except possibly when the holonomy of Π , Φ, is Z4. Because
lattices of Sol1

4 project to lattices of Sol3, the projections Sol1
4 → Sol3 and

Aut(Sol1
4) → Aut(Sol3) induce a projection Sol1

4
⋊ D4 → Sol3 ⋊ D4 which

carries a Sol1
4-crystallographic group Π to a Sol3-crystallographic group Q.

Furthermore, when Π is embedded in Sol1
4
⋊ D4 as in Proposition 6.1, the

lattice Γ̃S = Γ̃(S;q,m1,m2) projects to a standard lattice ΓS of Sol3. That is, we
have the following commuting diagram:

1 1
y

y
1
qZ = 〈t

1
q

4 〉 1
qZ = 〈t

1
q

4 〉y
y

1 −−−−→ Γ̃S −−−−→ Π −−−−→ Φ −−−−→ 1
y

y
∥∥∥

1 −−−−→ ΓS −−−−→ Q −−−−→ Φ −−−−→ 1
y

y

1 1

Our goal is finding all crystallographic groupsΠ of Sol1
4 which project down

toQ. In general, it is not true that there existsΠ fitting the above commutative
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diagram of exact sequences without making the kernel 〈t4〉 finer to 〈t1/q4 〉. That
is, even though Γ̃S always exists, for Π to exist, sometimes the kernel Z = 〈t4〉
needs to be “inflated” to 1

qZ = 〈t1/q4 〉. It turns out that, after appropriate

inflation, an extension Π always exists.
The abstract kernel of Φ → Out(ΓS) is given by, for A ∈ Φ,

µ(α) : ΓS → ΓS , where α = (ta1

1 ta2

2 ta3

3 , A) ∈ Q.

Here µ(α) denotes conjugation in Sol3 ⋊ D4. Suppose in Proposition 6.1, we
have fixed the ci, as well as set q = 1, thus fixing the lattice

Γ̃(S;1,n1,n2) = 〈t1, t2, t3, t4〉 →֒ Sol1
4.

For any generator A ∈ Φ, let

α = (ta1

1 ta2

2 ta3

3 ta4

4 , A) = (a,A).

We consider the effect that conjugation by α has on Γ̃(S;1,n1,n2). Note that
conjugation by α is independent of a4. We have the relations:

αt1α
−1 = tm1

1 tm2

2 tv14 , where

[
m1

m2

]
= ϕ(ᾱ)

[
1
0

]
,

αt2α
−1 = tn1

1 tn2

2 tv24 , where

[
n1

n2

]
= ϕ(ᾱ)

[
0
1

]
,

αt3α
−1 = tw1

1 tw2

2 tĀ3 t
v3
4 , where

[
w1

w2

]
=
(
I − SĀ

)[
a1
a2

]
,

αt4α
−1 = tÂ4 .

We will need the following lemma on the vi.

Lemma 6.2. The numbers v1 and v2 are rational. Furthermore, we can adjust

c3 so that v3 is rational.

Proof. Note that the image of Γ̃(S;1,n1,n2) under conjugation by α,

µ(α)(Γ̃(S;1,n1,n2)) = αΓ̃(S;1,n1,n2)α
−1,

is a lattice of Sol1
4 lifting the standard lattice ΓS of Sol3.

All such lifts are given in Lemma 5.2. In equation (5.2), we see that for any
two solutions c1, c2 and c′1, c

′
2, both c′1 − c1 and c′2 − c2 must be rational. Thus

v1 and v2 are rational numbers.
From Proposition 1.2, A ∈ Φ ⊆ D4 can be viewed as an element of GL(2,Z).

The induced action of A on Z(Sol1
4) is multiplication by Â = det(A), and

the induced action of A on Sol1
4/Nil ∼= R is multiplication by Ā. We need to

understand the action of A on the generator t3 of Γ̃(S;1,n1,n2). Let t̂3 denote

t3 with the (1, 3)-slot set to be zero, so that t3 = t̂3t
c3
4 :

A(t3) = A(t̂3t
c3
4 ) = A(t̂3)A(t

c3
4 ) = t̂Ā3 t

Âc3
4 = (t̂Ā3 t

Āc3
4 )(t−Āc3

4 tÂc3
4 )
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= tĀ3 t
(Â−Ā)c3
4 .

In order to show

αt3α
−1 = tw1

1 tw2

2 tĀ3 t
v3
4 , where

[
w1

w2

]
=
(
I − SĀ

)[a1
a2

]
,(6.1)

we need only consider two cases, either a3 = 1
2 or a3 = 0.

First, consider the case when a3 = 1
2 . Then A must be diagonal, so that

Ā = +1. By Corollary 4.3, we can take a1 = a2 = 0 so that α = (t
1
2

3 t
a4

4 , A), so

αt3α
−1 = t

1
2

3 A(t3)t
− 1

2

3 = t
1
2

3 t
Ā
3 t

(Â−Ā)c3
4 t

− 1
2

3 = t3t
(Â−1)c3
4 .

Since Â = ±1, there is a choice of c3 which makes (Â− 1)c3 ∈ Q.
Now consider the case a3 = 0, so that α = (ta1

1 ta2

2 ta4

4 , A). We compute:

αt3α
−1 = ta1

1 ta2

2 A(t3)t
−a2

2 t−a1

1 = ta1

1 ta2

2

(
tĀ3 t

(Â−Ā)c3
4

)
t−a2

2 t−a1

1

=
(
ta1

1 ta2

2 tĀ3 t
−a2

2 t−a1

1 t−Ā
3

)
tĀ3 t

(Â−Ā)c3
4 .

Now by Lemma 5.5, and using that a1, a2 are rational, we have
(
ta1

1 ta2

2 tĀ3 t
−a2

2 t−a1

1 t−Ā
3

)
tĀ3 t

(Â−Ā)c3
4 =

(
tb11 tb22 tu4

)
tĀ3 t

(Â−Ā)c3
4

= tb11 tb22 tĀ3 t
u+(Â−Ā)c3
4

for a rational number u. Equating this with equation (6.1), we obtain

tw1

1 tw2

2 tĀ3 t
v3
4 = tb11 tb22 tĀ3 t

u+(Â−Ā)c3
4 .

Now w1 = b1 and w2 = b2 is forced. Therefore, v3 = u + (Â − Ā)c3. Because

Â = ±1, Ā = ±1, and u is rational, c3 can always be chosen so that v3 is
rational. �

Proposition 6.3. Let Q →֒ Sol3 ⋊ D4 be a crystallographic group of Sol3

with lattice ΓS . Then there exists a lattice Γ̃(S;q,m1,m2) = 〈t1, t2, t3, t
1
q

4 〉 of

Sol1
4, projecting to ΓS , for which the abstract kernel Φ → Out(ΓS) induces

Φ → Out(Γ̃(S;q,m1,m2)).

Proof. For any integer q > 0, we add a finer generator of the central direction

to the group Γ̃(S;1,n1,n2) to obtain 〈Γ̃(S;1,n1,n2), t
1
q

4 〉 = Γ̃(S;q,qn1,qn2).
Now, for each generator A ∈ Φ, the vi in Proposition 6.2 are rational.

Therefore, for q large enough, Γ̃(S;q,qn1,qn2) is invariant under conjugation by
(ta1

1 ta2

2 ta3

3 ta4

4 , A), for each A ∈ Φ. As this conjugation is independent of lift of

(ta1

1 ta2

2 ta3

3 , A) ∈ Sol3 ⋊ D4 to (ta1

1 ta2

2 ta3

3 ta4

4 , A) ∈ Sol1
4
⋊ D4, with m1 = qn1

and m2 = qn2, we obtain an abstract kernel Φ → Out(Γ̃(S;q,m1,m2)). �
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Proposition 6.4. Let Q →֒ Sol3 ⋊ D4 be a crystallographic group of Sol3

containing lattice ΓS . Assume that the abstract kernel Φ → Out(ΓS) induces

Φ → Out(Γ̃(S;q,m1,m2)). Then for some p > 0, there exists Π which fits the

following commuting diagram:

1 1
y

y
1
pqZ

1
pqZy
y

1 −−−−→ Γ̃(S;pq,pm1,pm2) −−−−→ Π −−−−→ Φ −−−−→ 1
y

y
∥∥∥

1 −−−−→ ΓS −−−−→ Q −−−−→ Φ −−−−→ 1
y

y

1 1

Proof. Since the center of Γ̃(S;q,m1,m2) is
1
qZ and Φ is finite, H3(Φ; 1

qZ) is finite.

This means the obstruction class to the existence of the extension vanishes if
we use 1

pqZ for the coefficients, for some p > 0. That is, it vanishes inside

H3(Φ; 1
pqZ). Thus, with such pq, the center of Γ̃(S;pq,pm1,pm2) is 1

pqZ, and an

extension Π exists. �

So we can assume that after appropriate inflation, there exists an extension

Π with lattice Γ̃(S;q,m1,m2) for some q > 0. The Seifert Construction will show

that such an abstract extension actually embeds in Sol1
4
⋊D4 as a crystallo-

graphic group. By taking pq as a new q, we have:

Theorem 6.5. Let Γ̃S = Γ̃(S;q,m1,m2) be a lattice of Sol1
4, and

1 −→ Γ̃S −→ Π −→ Φ −→ 1

be an extension of Γ̃S by a finite group Φ from Proposition 6.4. Then there

exists an injective homomorphism

θ : Π → Sol1
4
⋊D4 ⊂ Sol1

4
⋊Aut(Sol1

4)

carrying Γ̃S onto a standard lattice. Such θ is unique up to conjugation by an

element of Sol1
4
⋊Aut(Sol1

4).

Proof. This is a consequence of the Seifert construction, since Sol1
4 is com-

pletely solvable. We can apply [11, Theorem 7.3.2] with G = Sol1
4 and W =

{point}. Since Φ is finite, the homomorphism Π → Out(Γ̃) → Out(Sol1
4) has

finite image in Out(Sol1
4), and it lifts back to a finite subgroup C of Aut(Sol1

4).
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But this C can be conjugated into D4 ⊂ Aut(Sol1
4), a maximal compact sub-

group. Consequently, we have a commuting diagram:

1 −−−−→ Γ̃S −−−−→ Π −−−−→ Φ −−−−→ 1
y

y
y

1 −−−−→ Sol1
4 −−−−→ Sol1

4
⋊D4 −−−−→ D4 −−−−→ 1

The homomorphism Π → Sol1
4
⋊ D4 is injective since the abstract kernel

Φ → Out(Γ̃S) from Proposition 6.4 is injective. The essence of the argument
is showing that the cohomology set H2(Φ; Sol1

4) is trivial for any finite group
Φ. The uniqueness is a result of [11, Corollary 7.7.4]. It also comes from
H1(Φ; Sol1

4) = 0. �

After inflation, the Seifert Construction produces a crystallographic group

of Sol1
4. Often we can assume that c3 = 0, that is, Γ̃(S;q,m1,m2) is a standard

lattice of Sol1
4. Recall that Aut(Sol1

4) = R⋊Aut(Sol3) (Proposition 1.2), where

k̂ ∈ R acts by 


1 eux z
0 eu y
0 0 1



 7−→




1 eux z + ku
0 eu y
0 0 1



 .

We have the following:

Theorem 6.6. For all holonomy groups, except Z4, a crystallographic group

Π of Sol1
4 embeds into Sol1

4
⋊D4 in such a way that Π ∩ Sol1

4 is a standard

lattice (c3 = 0).

Proof. Let e denote the identity element of Sol1
4. For the statement concerning

c3, conjugation by (e, k̂) with k = − c3
lnλ sets c3 = 0 in t3. However, this

conjugation moves D4 to k̂D4k̂
−1.

Suppose every A ∈ Φ satisfies ĀÂ = +1. Since such A commute with

k̂, conjugation by (e, k̂) leaves the holonomy group Φ inside D4 while setting
c3 = 0 in t3. This applies to, from the list of Theorem 3.3, all the groups lifting
Sol3-crystallographic groups of type (2a), (2b), (3), (3i), (6a), (6ai), (6b),
and (6bi).

Suppose Φ contains A =
[
1 0
0 −1

]
. Then Corollary 4.3 and Lemma 6.7 below

show that a generator α of Π projecting to A ∈ Φ can be conjugated to

α = (t
1
2

3 , A) (so that a1 = a2 = a4 = 0). Then, we shall show that t3 = t̂3t
c3
4

can be replaced by t̂3 (where t̂3 is t3 with c3 = 0).

α2 = (t
1
2

3 , A)
2 = ((t̂3t

c3
4 )

1
2 , A)2 = (t̂3t

c3
4 )

1
2A((t̂3t

c3
4 )

1
2 )

= t̂
1
2

3 t
c3
2

4 · t̂
1
2

3 t
− c3

2

4 = t̂3.

Thus t̂3 = α2 ∈ Π , and we can take t̂3 instead of t3 as a generator for the same
group (which is apparently redundant since α is in the group already). This
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shows that tc34 = α−2t3 ∈ Π must be a multiple of 1
q , and we can take c3 = 0.

From the list in Theorem 3.3, the groups (1), (5), (7) and (7i) contain such
an A in the holonomy.

The only case that is not covered by these two cases is when Φ = Z4 (type
(4) in the list), which is discussed below in our main classification (Theorem
6.13). �

Lemma 6.7. If det(A) = −1, by conjugation, a4 can be made 0.

Proof. Suppose det(A)=−1. Conjugation by t
− a4

2

4 fixes the lattice Γ̃(S;q,m1,m2),
and moves (ta1

1 ta2

2 ta3

3 ta4

4 , A) to (ta1

1 ta2

2 ta3

3 , A). �

Proposition 6.8 (Fixing a4, b4). Consider the commuting diagram in Proposi-

tion 6.4. Given Q and integers q,m1,m2, we had Γ̃(S;q,m1,m2). The only thing

that remains for the construction of Π is fixing a4, b4. As is known, all the

extensions Π in the short exact sequence

1 → Γ̃(S;q,m1,m2) → Π → Φ → 1

are classified by H2(Φ;Z(Γ̃(S;q,m1,m2))) = H2(Φ;Z). When Φ = 〈A〉,

H2(Zp;Z) =

{
0, if Â = −1;

Zp, if Â = 1,

see [12, Theorem 7.1, p. 122].
In actual calculation, this becomes an equation

αp = tn1

1 tn2

2 tn3

3 tk4

4

for integers ni and k4 = i
q , i = 0, 1, . . . , p− 1.

Remark 6.9. When Φ = 〈A,B〉 is not cyclic, Â = B̂ = +1 never happens, so

we can set one of a4, b4 to zero. Thus, H2(Φ;Z(Γ̃S)) is cyclic for all Φ.

6.10 (Detecting Torsion in Sol4
1
-Crystallographic Groups). Given a lat-

tice Γ̃S of Sol1
4 (which projects to a lattice ΓS of Sol3), the short exact sequence

1 → Z(Γ̃S) → Γ̃S → ΓS → 1

induces an S1-bundle over the solvmanifold ΓS\Sol3,
S1 → Γ̃S\(Sol14) → ΓS\Sol3.

The following two lemmas will be useful for determining when a Sol1
4-crystallo-

graphic group is torsion free.

Lemma 6.11. Let Γ̃S be a lattice of Sol1
4, projecting to a standard lattice

ΓS of Sol3, and suppose that for α ∈ Sol1
4
⋊ D4, the group Π = 〈Γ̃S , α〉 is

crystallographic. Let ᾱ denote the projection of α to Sol3 ⋊ D4. When the

automorphism part of α acts as a reflection on the center of Sol1
4, Π is torsion

free if and only if 〈ΓS , ᾱ〉 ⊂ Sol3 ⋊D4 is torsion free.



1234 KYUNG BAI LEE AND SCOTT THUONG

Proof. Evidently, if 〈ΓS , ᾱ〉 is torsion free, then Π must be torsion free. For
the converse, suppose that 〈ΓS , ᾱ〉 has torsion. In this case, the action of ᾱ on

the solvmanifold ΓS\Sol3 must fix a point. Observe that the action of α on

the solvmanifold Γ̃S\Sol14 is S1 fiber preserving. Therefore, a circle fiber is left
invariant under the action of α. Since α acts as reflection on the fiber, α must

fix a point. Since the action of α fixes a point on Γ̃S\Sol14, the action of Π

fixes a point on Sol1
4. Thus, Π has torsion. �

Lemma 6.12. Let Π be a crystallographic group of Sol1
4 with lattice Γ̃S . If

α = (ta1

1 ta2

2 ta3

3 ta4

4 , A) ∈ Π satisfies a3 = 1
2 and Ā = 1, then γα is infinite order

for any γ ∈ Γ̃S .

Proof. Note that A is necessarily of order 2. Let pr : Sol1
4 → R denote

the quotient homomorphism of Sol1
4 by its nil-radical Nil. Write γ ∈ Γ̃S as

tn1

1 tn2

2 tn3

3 tn4

4 . Application of pr to (γα)2 yields

pr(γα)2 = 2n3 + 1,

from which we infer γα is of infinite order. �

We are now ready to give our main classification of Sol1
4-crystallographic

groups. Following Proposition 6.1, a crystallographic group

Π ⊂ Sol1
4
⋊D4

of Sol1
4 is generated by a lattice Γ̃(S;q,m1,m2) = 〈t1, t2, t3, t

1
q

4 〉 of Sol14, together
with at most two generators of the form

(ta1

1 ta2

2 ta3

3 ta4

4 , A), (tb11 tb22 tb33 tb44 , B),

where A,B generate the holonomy group Φ ⊂ D4. The Sol1
4-crystallographic

group Π projects to a Sol3-crystallographic group Q. We view Q as an exten-
sion

1 → Z2 → Q → ZΦ → 1,

and Theorem 6.6 classifies all possible ZΦ and abstract kernels ϕ : ZΦ →
GL(2,Z). We organize the Sol1

4-crystallographic groups according to which
ZΦ and ϕ : ZΦ → GL(2,Z) in Theorem 6.6 they project to. Theorem 6.13

also classifies Sol3-crystallographic groups, by projecting from Sol1
4
⋊ D4 to

Sol3 ⋊D4.

Theorem 6.13 (Classification of Sol1
4-Crystallographic Groups). The follow-

ing is a complete list of crystallographic groups Π of Sol1
4, generated by a lattice

Γ̃(S;q,m1,m2) of Sol1
4, together with at most two generators of the form

(ta1

1 ta2

2 ta3

3 ta4

4 , A), (tb11 tb22 tb33 tb44 , B).

They are organized according to which ZΦ and ϕ : ZΦ → GL(2,Z) they

project to (see Theorem 6.6). This determines the exponents a3, b3.
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We find equations describing H1(Φ;Coker(I −S)), and thus classifying a =

[ a1
a2
], b =

[
b1
b2

]
. In general, H1(Φ;Coker(I − S)) depends on S.

By Proposition 6.4 and Theorem 6.5, for sufficiently large q, an abstract

kernel Φ → Out(Γ̃(S;q,m1,m2)) is induced, with vanishing obstruction to the

existence of Π in H3(Φ;Z(Γ̃(S;q,m1,m2))). The exponents on t4, a4 and b4, are

classified by the group H2(Φ;Z(Γ̃(S;q,m1,m2))).

In all cases, except, Φ = Z4, we can take c3 = 0 in the lattice Γ̃(S;q,m1,m2)

of Π (Theorem 6.6). In the Z4 holonomy case, we have two different (up to

isomorphism) choices for c3.

Whenever the holonomy group contains an automorphism of Sol1
4 which is

represented by an off-diagonal matrix, the orbifold Π\Sol14 is non-orientable.

We give precise criterion for Π to be torsion free. When Π is torsion free,

Π\Sol14 is an infra-solvmanifold of Sol1
4.

By projecting each Sol1
4-crystallographic group Π to a crystallographic group

Q ⊂ Sol3 ⋊D4, we also obtain a classification of Sol3-crystallographic groups.

(0) Φ = trivial

Π = Γ̃(S;q,m1,m2).

• Torsion free.

(1) Φ = Z2 : A =
[
1 0
0 −1

]
,

ZΦ = Z = 〈t3, ᾱ = (t
1
2

3 , A)〉.
ϕ(ᾱ) = −K with det(K) = −1, tr(K) = n > 0, and S = nK + I.

Π = 〈t1, t2, t3, t
1
q

4 , α = (t
1
2

3 , A)〉.
• H1(Φ;Coker(I − S)) is trivial so that a = 0.

• H2(Φ;Z(Γ̃S)) is trivial.

• Both Q and Π are torsion free.

(2a) Φ = Z2 : A =
[−1 0

0 −1

]
,

ZΦ = Z× Z2 = 〈t3, ᾱ = (t03, A)〉.
ϕ(ᾱ) = A, S ∈ SL(2,Z) with tr(S) > 2.

Π = 〈t1, t2, t3, t
1
q

4 , α = (ta1

1 ta2

2 ta4

4 , A)〉.
• H1(Φ;Coker(I − S)) = {a | a ∈ Coker(I − S)}/{2a | a ∈ Coker(I −
S)} ⊆ Z2 × Z2.

• H2(Φ;Z(Γ̃S)) = Z2. There are two choices for a4, the solutions of

α2 = t
i
q

4 (i = 0, 1).
• Q has torsion, Π is torsion free when i = 1 and q is even.

(2b) Φ = Z2 : A =
[−1 0

0 −1

]
,

ZΦ = Z = 〈t3, ᾱ = (t
1
2

3 , A)〉.
ϕ(ᾱ) = −K with det(K) = +1, tr(K) = n > 2, and S = nK − I.

Π = 〈t1, t2, t3, t
1
q

4 , α = (t
1
2

3 t
a4

4 , A)〉.
• H1(Φ;Coker(I − S)) is trivial so that a = 0.
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• H2(Φ;Z(Γ̃S)) = Z2, a4 = 0 or 1
2q .

• Both Q and Π are torsion free.

(3) Φ = Z2 : A = [ 0 1
1 0 ],

ZΦ = Z ⋊ Z2 = 〈t3, ᾱ = (t03, A)〉.
ϕ(ᾱ) = A, S ∈ SL(2,Z) with tr(S) > 2 and σ12 = −σ21.

Π = 〈t1, t2, t3, t
1
q

4 , α = (ta1

1 ta2

2 , A)〉.
• H1(Φ;Coker(I − S)) = {a | a ∈ Coker(I − S), a2 ≡ −a1}/{[

v1 − v2
v2 − v1

]
| v ∈ Coker(I − S)

}
⊆ Z2.

• H2(Φ;Z(Γ̃S)) is trivial.

• Both Q and Π have torsion.

(3i) Φ = Z2 : A = [ 0 1
1 0 ],

ZΦ = Z ⋊ Z2 = 〈t3, ᾱ = (t03, A)〉.
ϕ(ᾱ) =

[
1 0
0 −1

]
, S ∈ SL(2,Z) with tr(S) > 2 and σ11 = σ22.

Π = 〈t1, t2, t3, t
1
q

4 , α = (ta1

1 ta2

2 , A)〉.
• H1(Φ;Coker(I − S)) = {a | a ∈ Coker(I − S), 2a1 ≡ 0}/{[

0
2v2

]
| v ∈ Coker(I − S)

}
⊆ Z2 × Z2.

• H2(Φ;Z(Γ̃S)) is trivial.

• Both Q and Π are torsion free if and only if a1 ≡ 1
2 and a2 6≡

(σ11+1)(2n+1)
2σ12

for any n ∈ Z.

(4) Φ = Z4 : A =
[

0 1
−1 0

]
,

ZΦ = Z ⋊ Z4 = 〈t3, ᾱ = (t03, A)〉.
ϕ(ᾱ) = A, S ∈ SL(2,Z) with tr(S) > 2 and symmetric.

Π = 〈t1, t2, t3, t
1
q

4 , α = (ta1

1 ta2

2 ta4

4 , A)〉.
• There are two choices for c3 in t3. They are solutions of d = 0 or

d = 1
q for c3, where αt3α

−1 = t
(1−σ22)a1+σ12a2

1 t
σ21a1+(1−σ11)a2

2 t−1
3 td4.

Each corresponds to a distinct abstract kernel Φ → Out(Γ̃S).
• H1(Φ;Coker(I − S)) = {a | a ∈ Coker(I − S)}/{(I − A)a | a ∈
Coker(I − S)} ⊆ Z2.

• H2(Φ;Z(Γ̃S)) = Z4. There are 4 choices for a4, the solutions of

α4 = t
i
q

4 (i = 0, 1, 2, 3).
• Q has torsion, Π is torsion free precisely when i = 1, 3 and q is even.

(5) Φ = Z2 × Z2 : A =
[
1 0
0 −1

]
, B =

[−1 0
0 −1

]
,

ZΦ = Z× Z2 = 〈t3, ᾱ = (t
1
2

3 , A), β̄ = (t03, B)〉.
ϕ(ᾱ) = −K, ϕ(β̄) = B (1)+(2a)

S = nK + I, K ∈ GL(2,Z), det(K) = −1, and tr(K) = n > 0.

Π = 〈t1, t2, t3, t
1
q

4 , α = (t
1
2

3 , A), β = (tb11 tb22 tb44 , B)〉.
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• H1(Φ;Coker(I −S)) = {b | b ∈ Coker(I +K)}/{2b | b ∈ Coker(I +
K)} ⊆ Z2 × Z2.

• H2(Φ;Z(Γ̃S)) = Z2. There are two choices for b4, the solutions of

β2 = t
i
q

4 (i = 0, 1).
• Q has torsion, Π is torsion free precisely when i = 1 and q is even.

(6a) Φ = Z2 × Z2 : A = [ 0 1
1 0 ], B =

[−1 0
0 −1

]
,

ZΦ = (Z× Z2)⋊ Z2 = 〈t3, ᾱ = (t03, A), β̄ = (t03, B)〉.
ϕ(ᾱ) = A, ϕ(β̄) = B (3)+(2a)

S ∈ SL(2,Z) with tr(S) > 2 and σ12 = −σ21.

Π = 〈t1, t2, t3, t
1
q

4 , α = (ta1

1 ta2

2 , A), β = (tb11 tb22 tb44 , B)〉.
• H1(Φ;Coker(I − S)) = {(a,b) | a,b ∈ Coker(I − S), a2 ≡ −a1, b1 −

b2 − 2a1 ≡ 0}/
{(





v1 − v2
v2 − v1



, 2v

)
| v ∈ Coker(I − S)

}
.

• H2(Φ;Z(Γ̃S)) = Z2. There are two choices for b4, the solutions of

β2 = t
i
q

4 (i = 0, 1).
• Both Q and Π have torsion.

(6ai) Φ = Z2 × Z2 : A = [ 0 1
1 0 ], B =

[−1 0
0 −1

]
,

ZΦ = (Z× Z2)⋊ Z2 = 〈t3, ᾱ = (t03, A), β̄ = (t03, B)〉.
ϕ(ᾱ) =

[
1 0
0 −1

]
, ϕ(β̄) = B (3i)+(2a)

S ∈ SL(2,Z) with tr(S) > 2 and σ11 = σ22.

Π = 〈t1, t2, t3, t
1
q

4 , α = (ta1

1 ta2

2 , A), β = (tb11 tb22 tb44 , B)〉.
• H1(Φ;Coker(I − S)) = {(a,b) | a,b ∈ Coker(I − S), 2a1 ≡ 0, 2b2 −
2a2 ≡ 0}/

{([
0
2v2

]
, 2v

)
| v ∈ Coker(I − S)

}
.

• H2(Φ;Z(Γ̃S)) = Z2. There are two choices for b4, the solutions of

β2 = t
i
q

4 (i = 0, 1).
• Q has torsion, Π is torsion free if and only if i = 1, q is even, and

a1 ≡ 1
2 , a2 ≡ b2 +

1
2 , b1 6≡ σ12(2n+1)

2(σ11−1) + 1
2 , b2 6≡ (σ11+1)(2m+1)

2σ12
+ 1

2 for

any m,n ∈ Z.

(6b) Φ = Z2 × Z2 : A = [ 0 1
1 0 ], B =

[−1 0
0 −1

]
,

ZΦ = Z ⋊ Z2 = 〈t3, ᾱ = (t03, A), β̄ = (t
1
2

3 , B)〉.
ϕ(ᾱ) = A, ϕ(β̄) = −K (3)+(2b)

S = nK − I, where K ∈ SL(2,Z) with tr(K) = n > 2; k12 = −k21.

Π = 〈t1, t2, t3, t
1
q

4 , α = (ta1

1 ta2

2 , A), β = (t
1
2

3 t
b4
4 , B)〉.

• H1(Φ;Coker(I − S)) = {a | a ∈ Coker(I +K), a2 ≡ −a1}/{




v1 − v2
v2 − v1



 | v ∈ Coker(I +K)

}
⊆ Z2.
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• H2(Φ;Z(Γ̃S)) = Z2. There are two choices for b4, the solutions of

β2 = t3t
i
q

4 (i = 0, 1).
• Both Q and Π have torsion.

(6bi) Φ = Z2 × Z2 : A = [ 0 1
1 0 ], B =

[−1 0
0 −1

]
,

ZΦ = Z ⋊ Z2 = 〈t3, ᾱ = (t03, A), β̄ = (t
1
2

3 , B)〉.
ϕ(ᾱ) =

[
1 0
0 −1

]
, ϕ(β̄) = −K (3i)+(2b)

S = nK − I, where K ∈ SL(2,Z) with tr(K) = n > 2; k11 = k22.

Π = 〈t1, t2, t3, t
1
q

4 , α = (ta1

1 ta2

2 , A), β = (t
1
2

3 t
b4
4 , B)〉.

• H1(Φ;Coker(I − S)) = {a | a ∈ Coker(I +K), 2a1 ≡ 0}/{[
0
2v2

]
| v ∈ Coker(I +K)

}
⊆ Z2 × Z2.

• H2(Φ;Z(Γ̃S)) = Z2. There are two choices for b4, the solutions of

β2 = t3t
i
q

4 (i = 0, 1).
• Both Q and Π are torsion free if and only if a1 = 1

2 and a2 6≡
(k11−1)(2n+1)

2k12
for any n ∈ Z.

(7) Φ = Z4 ⋊ Z2 : A = [ 0 1
1 0 ] , B =

[
1 0
0 −1

]
,

ZΦ = (Z× Z2)⋊ Z2 = 〈t3, ᾱ = (t03, A), β̄ = (t
1
2

3 , B)〉.
ϕ(ᾱ) = A, ϕ(β̄) = −K (includes (6a)) (3)+(1)

S = nK + I, K ∈ GL(2,Z), det(K) = −1, tr(K) > 0; k12 = −k21.

Π = 〈t1, t2, t3, t
1
q

4 , α = (ta1

1 ta2

2 , A), β = (t
1
2

3 t
b4
4 , B)〉.

• H1(Φ;Coker(I − S)) = {a | a ∈ Coker(I − S), a2 ≡ −a1}/{




v1 − v2
v2 − v1



 | v ∈ Coker(I +K)

}
.

• H2(Φ;Z(Γ̃S)) = Z4. There are 4 choices for b4, the solutions of

(βα)4 = t
j

q

4 (j = 0, 1, 2, 3).
• Both Q and Π have torsion.

(7i) Φ = Z4 ⋊ Z2 : A = [ 0 1
1 0 ] , B =

[
1 0
0 −1

]
,

ZΦ = (Z× Z2)⋊ Z2 = 〈t3, ᾱ = (t03, A), β̄ = (t
1
2

3 , B)〉.
ϕ(ᾱ) =

[
1 0
0 −1

]
, ϕ(β̄) = −K (includes (6ai)) (3i)+(1)

S = nK + I, K ∈ GL(2,Z), det(K) = −1, tr(K) = n > 0, k11 = k22.

Π = 〈t1, t2, t3, t
1
q

4 , α = (ta1

1 ta2

2 , A), β = (t
1
2

3 t
b4
4 , B)〉.

• H1(Φ;Coker(I − S)) = {a | a ∈ Coker(I − S), 2a1 ≡ 0}/{[
0
2v2

]
| v ∈ Coker(I +K)

}
.

• H2(Φ;Z(Γ̃S)) = Z4. There are 4 choices for b4, the solutions of

(βα)4 = t
j

q

4 (j = 0, 1, 2, 3).
• Q has torsion, Π is torsion free if and only if j = 1, 3, q is even, and

a1 = 1
2 and a2 = −k21+1

2k11
+ i

k11
for i = 0, . . . , k11 − 1.
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Proof. Consider the descriptions of

H1(Φ;Coker(I − S)) ∼= Z1(Φ;Coker(I − S))/B1(Φ;Coker(I − S))
in Remark 4.2. In our computations below, we use that the condition

a =

[
a1
a2

]
∈ Coker(I − S) = (I − S)−1Z2/Z2

is equivalent to (I − S)a ≡ 0 mod Z2.
In cases (2a), (2b) and (4), Φ = Zp, p = 2 or 4. Since det(A) = +1, αp has

t4 component t4
p·a4+ℓ, where ℓ is independent of a4. We then have p choices

for a4 (modulo 1
qZ). Namely, the solutions of

p · a4 + ℓ = 1
q , . . . ,

p−1
q ,

each corresponding to a different class in H2(Φ;Z(Γ̃S)). In fact, the number ℓ
is always a rational number, and hence so is a4 (or b4). The remaining cases
when Φ = Z2×Z2 or D4 are similar. We set one of exponents on t4 by Lemma
6.7, and apply the above technique to find the remaining exponent on t4.

(0) See Theorem 5.1.

(1) Corollary 4.3 shows H1(Φ;Coker(I−S)) is trivial, and thus we can take

a1 = a2 = 0. Since Â = det(A) = −1, Lemma 6.7 implies a4 can be conjugated

to zero. So, Π = 〈t1, t2, t3, t4, α = (t
1
2

3 , A)〉. By Lemma 6.12, both Π and Q
are torsion free.

(2a) In this case ϕ(ᾱ) = −I. Now a must satisfy (I − S)a ≡ 0 taken
modulo (I − ϕ(ᾱ))a = 2a, since the cocycle condition in Remark 4.2, (I +
ϕ(ᾱ))a = 0 ∈ Z2, is satisfied independently of a. Note that all elements of
H1(Φ;Coker(I − S)) are of order 2, and is generated by at most 2 elements.
Therefore, H1(Φ;Coker(I − S)) is isomorphic to a subgroup of Z2 × Z2.

There are two choices for a4, the solutions of α2 = t
i
q

4 (i = 0, 1). Indeed, α2

projects to the identity on Sol3. Therefore, Π is torsion free only when i = 1
and q is even (see classification of crystallographic groups of Nil, case 2, p. 160,
[5]), and Q always has torsion.

(2b) By Corollary 4.3, we can take a1 = a2 = 0 so that α = (t
1
2

3 t
a4

4 , A).

Then α2 = t3t
2a4

4 . Therefore, a4 = 0 or 1
2q . By Lemma 6.12, both Π and Q

are torsion free.

(3) From Remark 4.2, a must satisfy (I − S)a ≡ 0, and

(I + ϕ(ᾱ))a = [ 1 1
1 1 ] a ≡ 0 modulo (I − ϕ(ᾱ))v =

[
1 −1
−1 1

]
v for (I − S)v ≡ 0.

Computing, we obtain a2 ≡ −a1, modulo
[
v1−v2
v2−v1

]
. Applying the coboundary

operator to the cocycles yields:

(I − ϕ(ᾱ))

[
a1
−a1

]
=

[
2a1
−2a1

]
,
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which implies that a has order at most 2 and so H1(Φ;Coker(I −S)) is either
Z2 or trivial, depending on Coker(I − S). By Lemma 6.7, we may assume

a4 = 0, equivalently, H2(Φ;Z(Γ̃S)) vanishes, so that α = (ta1

1 ta2

2 ta4

4 , A).

Direct computation shows that the projection ofΠ to a Sol3-crystallographic
group, Q, always has torsion. Note that a2 ≡ −a1, and

α2 = (ta1

1 t−a1

2 , A)2 = (ta1

1 t−a1

2 · A(ta1

1 t−a1

2 ), I)

= (ta1

1 t−a1

2 · ta1

2 t−a1

1 , I)

= (e, I).

On Sol1
4, Â = −1, so A acts as reflection on Z(Sol1

4). Lemma 6.11 applies
to show that Π always has torsion.

(3i) From Remark 4.2, a must satisfy (I − S)a ≡ 0,

(I + ϕ(ᾱ))a = [ 2 0
0 0 ]a ≡ 0 modulo (I − ϕ(ᾱ))v = [ 0 0

0 2 ]v, for (I − S)v ≡ 0,

that is, 2a1 ≡ 0 (so a1 ≡ 0 or 1
2 ), modulo

[
0

2v2

]
. This implies that

H1(Φ;Coker(I − S))
is isomorphic to a subgroup of Z2×Z2. By Lemma 6.7, we may assume a4 = 0,

that is, H2(Φ;Z(Γ̃S)) vanishes. Therefore, α = (ta1

1 ta2

2 , A).

Lemma 6.11 applies to show that Π is torsion free precisely when the Sol3-
crystallographic group Q is torsion free, which is equivalent to the action of Q
on Sol3 having no fixed points. By Lemma 4.4, Q\Sol3 is T 2× I with T 2×{0}
identified to itself by the affine involution of T 2

(
[ a1
a2
] ,
[
1 0
0 −1

])
and T 2 × {1}

identified to itself by the affine involution
(
[ a1
a2
] ,
[
σ11 −σ12

σ21 −σ11

])
. Both of these

involutions act freely on the torus precisely when a1 ≡ 1
2 and a2 6≡ (σ11+1)(2n+1)

2σ12

for any n ∈ Z.

(4) This is the only case where a non-standard lattice is present, that is
c3 6= 0.

By Remark 4.2, a must satisfy (I − S)a ≡ 0, taken modulo Im(I − ϕ(ᾱ)).
Note that det(I−ϕ(ᾱ)) = det

([
1 −1
1 1

])
= 2, which implies thatH1(Φ;Coker(I−

S)) is either Z2 or the trivial group.
We compute that

αt3α
−1 = t

(1−σ22)a1+σ12a2

1 t
σ21a1+(1−σ11)a2

2 t−1
3 tu4+2c3

4 .

By Proposition 6.2, u4 must be rational. We have two choices for c3 (modulo
1
qZ, as t

1
q

4 is a generator of the lattice), c3 = −u4

2 ,−u4

2 + 1
2q , so that u4+2c3 = 0

or 1. Unless c3 is a multiple of 1
q , the corresponding lattice is non-standard.

For a4, we have

α4 = t
4a4−(a1−a2)

2+v4
4 .

Then there are 4 choices for a4, a4 = (a1−a2)
2−v4+i

4q (i = 0, 1, 2, 3). These are

the solutions of α4 = t
i
q

4 (i = 0, 1, 2, 3).
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From this, Q must always have torsion. For i = 0, 2, Π has torsion. To see
this when i = 2, note that

(t
− 1

q

4 α2)2 = t
− 2

q

4 t
2
q

4 = e.

For i = 1, 3 and q even (see classification of crystallographic groups of Nil, case
10, p. 163, [5]), Π is torsion free.

(5) By Corollary 4.3, we take a1 = a2 = 0. We need b to satisfy (I −S)b ≡
0. Then the cocycle conditions for Z2 × Z2 in Remark 4.2 show that we must
have (I − ϕ(ᾱ))b = (I +K)b ≡ 0. In fact, since (I − S) = (I −K)(I +K),
this condition implies (I − S)b ≡ 0. Since we have already fixed a1 = a2 = 0,
for the coboundary in Remark 4.2, we take b modulo (I − ϕ(β̄))v = 2v only
when v satisfies (I − ϕ(ᾱ))v = (I +K)v ≡ 0.

Since det(A) = −1, we may assume a4 = 0 by Lemma 6.7. There are two

choices for b4, the solutions of β2 = t
i
q

4 , (i = 0, 1), just like in case (2a). That

is, H2(Φ,Z(Γ̃S)) = Z2. Indeed, β has order 2 when projected to Sol3 ⋊ D4,
and hence Q always has torsion.

Note that γα and γαβ are of infinite order for all γ ∈ Γ̃S by Lemma 6.12.

Like case (2a), Π is torsion free precisely when β2 = t
1
q

4 and q is even.

(6a) This is a combination of cases (3)+(2a).
We have (I − S)a ≡ 0 and (I − S)b ≡ 0. Also, a and b must satisfy the

cocycle conditions in Remark 4.2. Note that (I + ϕ(ᾱ))a ≡ 0 forces a2 ≡ −a1,
whereas

(I − ϕ(ᾱ))b− (I − ϕ(β̄))a ≡ 0

forces b1 − b2 − 2a1 ≡ 0, −b1 + b2 − 2a2 ≡ 0. Since a2 ≡ −a1, the second
equation is redundant. We take a and b modulo (I −ϕ(ᾱ))v and (I −ϕ(β̄))v,
respectively, where (I − S)v ≡ 0. By Lemma 6.7, we may assume a4 = 0.

There are two choices for b4, the solutions of β2 = t
i
q

4 , (i = 0, 1). That is,

H2(Φ,Z(Γ̃S)) = Z2.
As Π contains a subgroup of type (3), both Q and Π always have torsion.

(6ai) Similar to case (6a), this is a combination of (3i)+(2a). The de-
scription of H1(Φ,Coker(I − S)) follows just like in case (6a).

There are two choices for b4, the solutions of β2 = t
i
q

4 , (i = 0, 1). That is,

H2(Φ,Z(Γ̃S)) = Z2. Since β2 projects to the identity on Sol3, Q always has
torsion.

For Π to be torsion free, the subgroups 〈Γ̃S , α〉, 〈Γ̃S , β〉, and 〈Γ̃S , αβ〉, where

αβ =

(
ta1+b1
1 ta2−b2

2 t
b′4
4 ,

[
0 −1
−1 0

])
,

must all be torsion free. The group 〈Γ̃S , β〉 is torsion free precisely when b4

satisfies β2 = t
1
q

4 and q is even.
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By Lemma 6.11, 〈Γ̃S , α〉 and 〈Γ̃S , αβ〉 are torsion free precisely when their

projections to Sol3, 〈ΓS , (ta1

1 ta2

2 , A)〉 and 〈ΓS , (ta1+b1
1 ta2−b2

2 , AB)〉 are torsion
free. Similar to case (3i), by computing when the appropriate affine involutions
on T 2 in Lemma 4.4 have no fixed points, we obtain the conditions a1 = 1

2 ,

a2 = b2 +
1
2 , b1 6≡ σ12(2n+1)

2(σ11−1) + 1
2 b2 6≡ (σ11+1)(2m+1)

2σ12
+ 1

2 for any m,n ∈ Z.

(6b) This is a combination of (3)+(2b).
By Corollary 4.3, we can take b1 = b2 = 0. The cocycle conditions in Remark

4.2 force (I + ϕ(ᾱ))a ≡ 0 as well as (I − ϕ(β̄))a = (I + K)a ≡ 0, so that
a ∈ Coker(I +K). Since b1, b2 = 0 is fixed, we can take a modulo (I − ϕ(ᾱ))v
only when (I − ϕ(β̄))v = (I +K)v ≡ 0, that is, only for v ∈ Coker(I +K).

Note that we can take a4 = 0 by Lemma 6.7, and there are two choices for

b4, the solutions of β2 = t3t
i
q

4 (i = 0, 1). Hence H2(Φ,Z(Γ̃S)) = Z2. Both Q
and Π always have torsion, as they contain a subgroup of type (3).

(6bi) This is a combination of (3i)+(2b).
By Corollary 4.3, we can take b1 = b2 = 0. The computation of

H1(Φ;Coker(I − S))

is identical to that of (6b). In this case, we use ϕ(ᾱ) =
[
1 0
0 −1

]
rather than

ϕ(ᾱ) = A. Note that we take a4 = 0 by Lemma 6.7, and there are two choices

for b4, the solutions of β2 = t3t
i
q

4 , (i = 0, 1). Thus H2(Φ,Z(Γ̃S)) = Z2.

By Lemma 6.11, Π is torsion free precisely when the Sol3-crystallographic
group Q is torsion free, which is equivalent to Q acting freely on Sol3. By
Lemma 4.4, Q\Sol3 is T 2 × I with T 2 × {0} identified to itself by the affine
involution of T 2

(
[ a1
a2
] ,
[
1 0
0 −1

])
, and T 2 × {1} identified to itself by the affine

involution
(
[ a1
a2
] ,
[−k11 k12

−k21 k11

])
. Both of these involutions act freely on the torus

precisely when a1 = 1
2 and a2 6≡ (k11−1)(2n+1)

2k12
for any n ∈ Z.

(7) This is a combination (3)+(1). which includes (6a).
By Corollary 4.3, we can take b1 = b2 = 0. For (I − S)a ≡ 0, the only

cocycle condition that a must satisfy is (I + ϕ(ᾱ))a ≡ 0, which forces a2 ≡
−a1. However, we have fixed b1 = b2 = 0. Therefore, when computing the
coboundaries, we can take a modulo (I − ϕ(ᾱ))v only for v that satisfies (I −
ϕ(β̄))v = (I+K)v ≡ 0. Note that (I+K)v ≡ 0 actually implies (I−S)v ≡ 0
since (I − S) = (I −K)(I +K).

We may take a4 = 0 by Lemma 6.7. The computation

(βα)4 = t4b4+ℓ
4

shows that there are 4 choices for b4, the solutions of (βα)
4 = t4

j

q (j = 0, 1, 2, 3).

Hence H2(D4;Z(Γ̃S)) = Z4. Both Π and Q contain a subgroup of type (3),
and so both always have torsion.

(7i) This is a combination of (3i)+(1), which includes (6ai).
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By Corollary 4.3, we can take b1 = b2 = 0. The description for

H1(Φ;Coker(I − S))
follows as in case (7), using ϕ(ᾱ) =

[
1 0
0 −1

]
rather than ϕ(ᾱ) = A.

Like case (7), by Lemma 6.7, we take a4 = 0, and there are 4 choices for b4,

the solutions of (βα)4 = t4
j

q (j = 0, 1, 2, 3), so that H2(D4;Z(Γ̃S)) = Z4.

For Π to be torsion free, 〈Γ̃S , βα〉 is necessarily torsion free. This forces b4

to satisfy (βα)4 = t
j

q

4 (j = 1, 3), and q even. Note that 〈Γ̃S , β〉 and 〈Γ̃S , αβα〉,
are torsion free by Lemma 6.12.

Thus the only remaining subgroups of Π to consider are 〈Γ̃S , α〉 and 〈Γ̃S , βαβ〉,
where

βαβ =

(
t−k11a1−k12a2

1 t−k21a1−k11a2

2 t2b4+v
4 ,

[
0 −1
−1 0

])
.

By Lemma 6.11, 〈Γ̃S , α〉 and 〈Γ̃S , βαβ〉 are torsion free precisely when their pro-

jections to Sol3, 〈ΓS , (ta1

1 ta2

2 , A)〉 and 〈ΓS , (t−k11a1−k12a2

1 t−k21a1−k11a2

2 A,BAB)〉,
are torsion free.

By Proposition 4.4, we just need to ensure that the appropriate affine maps
are fixed point free on T 2, and this occurs precisely when

a1 =
1

2
, a2 6≡ (σ11 + 1)(2n+ 1)

2σ12
,(6.2)

−k21
2

− k11a2 ≡ 1

2
,(6.3)

−k11
2

− k12a2 6≡ σ12(2n+ 1)

2(σ11 − 1)
.(6.4)

Now we claim that the second part of condition (6.2) and the condition (6.4)
are redundant. That is, they follow from (6.3).

From (6.3), we have

a2 = −k21 + 1

2k11
+

p

k11
, p ∈ Z.(6.5)

With a1 = 1
2 and above a2 with p = 0, . . . , k11 − 1, using that det(K) = −1

and K2 = S, one can compute that the remaining criteria are satisfied. In fact,
we compute the term in (6.2)

(σ11 + 1)(2n+ 1)

2σ12
=

(k211 + k12k21 + 1)(2n+ 1)

4k11k12

=
2k12k21(2n+ 1)

4k11k12
=

k21(2n+ 1)

2k11
.

Now, for some m ∈ Z, suppose we had

a2 =
(σ11 + 1)(2n+ 1)

2σ12
+m,
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as opposed to (6.2). Then we would have

−k21 + 1

2k11
+

p

k11
=

k21(2n+ 1)

2k11
+m.

Clearing up, we get

−1 + 2p = 2k21(n+ 1) + 2mk11,

a contradiction for any integers p, n,m, as they are of different parity. Thus,
(6.2) holds.

For (6.4), using (6.5), we get

−k11
2

− k12a2 =
−k11
2

− k12

(
−k21 + 1

2k11
+

p

k11

)

=
−k211 + k12k21 + k12 − 2k12p

2k11

=
1 + k12 − 2k12p

2k11
.

Now suppose we had

−k11
2

− k12a2 =
σ12(2n+ 1)

2(σ11 − 1)
+m

for some m ∈ Z. Then we would have

1 + k12 − 2k12p

2k11
=

σ12(2n+ 1)

2(σ11 − 1)
+m =

2k11k12(2n+ 1)

2(k211 + k12k21 − 1)
+m.

Clearing up, we get

1− 2k12p = 2(nk12 +mk11),

a contradiction for any integers p, n,m, as they are of different parity. Thus,
(6.4) holds automatically.

Consequently, with a1 = 1
2 , a2 = −k21+1

2k11
+ p

k11
for p = 0, . . . , k11 − 1, and

(βα)4 = t
j

q

4 (j = 1, 3), Π is torsion free.

This completes the proof of Theorem 6.13. �

7. Examples

We can embed Sol3 and Sol1
4 into Aff(3) and Aff(4), respectively so that

our Sol3 and Sol1
4-orbifolds, Q\Sol3 and Π\Sol14, have complete affinely flat

structures. Below we use the embedding Aff(n) = Rn ⋊ GL(n,R) →֒ GL(n +
1,R). See [13] for the more general question.
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One can check the following correspondence is an injective homomorphism
of Lie groups, Sol1

4 −→ Aff(4),

(7.1)




1 eux z
0 eu y
0 0 1


 7−→




1 − 1
2e

−uy eux
2 0 z − xy

2
0 e−u 0 0 x
0 0 eu 0 y
0 0 0 1 u
0 0 0 0 1



.

Moreover, the automorphisms
[
a 0
0 d

]
,

[
0 b
c 0

]
∈ Aut(Sol1

4)

can also be embedded as


ad 0 0 0 0
0 a 0 0 0
0 0 d 0 0
0 0 0 1 0
0 0 0 0 1



,




−bc 0 0 0 0
0 0 b 0 0
0 c 0 0 0
0 0 0 −1 0
0 0 0 0 1



,

respectively, where a, b, c, d are ±1. Note that, if we remove the first row and
the first column from Aff(4), we get a representation of Sol3 into Aff(3).

If we write the element (a, A) ∈ Sol1
4
⋊D4 by the product a · A, then the

group operation of Sol1
4
⋊ D4 is compatible with the matrix product in this

affine group. The action of A on a is by conjugation. That is,

(a ·A)(b · B) = aAbB

= a(AbA−1) · AB
= (a, A) · (b, B).

We have embedded Isom(Sol1
4) into Aff(4) in such a way that any lattice

acts on R4 properly discontinuously. Therefore all of our infra-Sol1
4-orbifolds

will have an affine structure. Note that not every nilpotent Lie group admits
an affine structure [11, p. 227].

With S ∈ SL(2,Z), tr(S) > 2, and appropriate P and ∆, so that PSP−1 =

∆, we can lift Z2 ⋊S Z ⊂ R2 ⋊S R to a lattice of Sol1
4 as in the proof of

Theorem 5.1. The image of our lattice in Aff(5) under the embedding (7.1) is
complicated. When we conjugate it by

P−1 =




1 0 0 0 0
0 p11 p12 0 0
0 p21 p22 0 0
0 0 0 1 0
0 0 0 0 1




−1

,

we get a much better representation of the group as shown below. Note that
c3 will have no effect on the presentation of our lattice. Since det(P ) = 1,
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[t1, t2] = t4.

e1 =

([
1
0

]
, 0

)
7−→ t1 =




1 p11 c1
0 1 p21
0 0 1



 7−→




1 0 1
2 0 c1 − σ21

2
√
T 2−4

0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



,

e2 =

([
0
1

]
, 0

)
7−→ t2 =




1 p12 c2
0 1 p22
0 0 1



 7−→




1 − 1
2 0 0 c2 − σ12

2
√
T 2−4

0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1



,

e3 =

([
0
0

]
, 1

)
7−→ t3 =




1 0 c3
0 λ 0
0 0 1



 7−→




1 0 0 0 c3
0 σ11 σ12 0 0
0 σ21 σ22 0 0
0 0 0 1 ln(λ)
0 0 0 0 1



,

t4 =



1 0 1
0 1 0
0 0 1


 7−→




1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



,

where T = tr(S).

Example 7.1 ((4) Non-standard lattice). This is an example where c3 can
be non-zero (Theorem 6.13, case (4)). Here A =

[
0 −1
1 0

]
, so that the holonomy

Φ = Z4.
Let S = [ 1 2

2 5 ] . Then λ = 3 + 2
√
2, and with

P =




− 1

2

√
2 +

√
2 1

2

√
2−

√
2

− 1
√

2(2+
√
2)

− 1
2

√
2 +

√
2



 ,

our crystallographic group Π = 〈t1, t2, t3, t1/q4 , α〉, where α = (ta1

1 ta2

2 ta4

4 , A) ∈
Sol1

4
⋊Aut(Sol1

4), has a representation into Aff(4):

t1 =




1 0 1
2 0 m1−m2

2
− 3

2

0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



, t2 =




1 − 1
2 0 0 1

2
(−m1−1)

0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1



,
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t3 =




1 0 0 0 c3
0 1 2 0 0
0 2 5 0 0
0 0 0 1 ln(3+2

√
2)

0 0 0 0 1



, t4 =




1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



,

(a,A) =




1 −a1

2 −a2

2 0 1
2
(2a4−a2(m1+1)+a1(a2+2m1−m2−3))

0 0 1 0 a1
0 −1 0 0 a2
0 0 0 −1 0
0 0 0 0 1



.

Π has presentation

[t1, t2] = t4, and t4 is central, t3t1t
−1
3 = t1t

2
2t

m1

4 , t3t2t
−1
3 = t21t

5
2t

m2

4 ,

αt1α
−1 = t−1

2 t
1
2
(−4−2a1+m1−m2)

4 , αt2α
−1 = t1t

1
2
(2−2a2−3m1+m2)

4 ,

αt3α
−1 = t−4a1+2a2

1 t2a1

2 t−1
3 t

5a2
1+2c3+a1(−5+5m1−2m2)+a2(3−a2−2m1+m2)

4 ,

αt4α
−1 = t4, α4 = t

−a2
1+4a4−a2(2+a2+2m1)+2a1(−3+a2+2m1−m2)

4 .

Since (I − S)−1 =
[

1 − 1
2

− 1
2

0

]
, Coker(I − S) = Z2 × Z2

∼=
〈[

1
2

0

]
,
[

0
1
2

]〉
.

Therefore, the equation (I − S)a ≡ 0 has 4 solutions modulo Z2;
[
a1
a2

]
= 1

2

[
0
0

]
, 1

2

[
1
0

]
, 1

2

[
0
1

]
, 1

2

[
1
1

]
.

Recall that we had no other conditions on a in Theorem 6.13 case (4). The
coboundary is

Im(I − ϕ(ᾱ)) = Im

[
1 −1
1 1

]
=

{[
0
0

]
,

[ 1
2
1
2

]}
.

Thus, we have only have to consider two cases
[
a1
a2

]
=

[
0
0

]
,

[
1
2
0

]
.

For simplicity, we shall assume m1 = m2 = 0.

With [ a1
a2
] = [ 00 ], Π = 〈t1, t2, t3, t

1
q

4 , α〉, where α = (ta4

4 , A) has presentation

[t1, t2] = t4, and t4 is central, t3t1t
−1
3 = t1t

2
2, t3t2t

−1
3 = t21t

5
2,

αt1α
−1 = t−1

2 t−2
4 , αt2α

−1 = t1t4, αt3α
−1 = t−1

3 t2c34 , αt4α
−1 = t4,

α4 = t4a4

4 .

The minimum q for Γ̃S is q = 1. However, to have a torsion free crystallographic
group we must take q to be even, say q = 2. Then we have choices a4 = 0, 1

8 ,
1
4 ,

3
8

and c3 = 0, 1
4 (any combination of a4 and c3), with the same center. So, there

are 8 distinct groups. Half of them (with c3 = 0) have standard lattices, and the
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rest (with c3 = 1
4 ) have non-standard lattices. When a4 = 1

8 or 3
8 (regardless

of c3), Π is torsion free, and Π\Sol14 is an infra-solvmanifold of Sol1
4 with Z4

holonomy.

With [ a1
a2
] =

[
1
2

0

]
, Π = 〈t1, t2, t3, t

1
q

4 , α〉, where α = (t
1
2

1 t
a4

4 , A) has presen-

tation

[t1, t2] = t4, and t4 is central, t3t1t
−1
3 = t1t

2
2, t3t2t

−1
3 = t21t

5
2,

αt1α
−1 = t−1

2 t
− 5

2

4 , αt2α
−1 = t1t4, αt3α

−1 = t−2
1 t2t

−1
3 t

− 5
4
+2c3

4 ,

αt4α
−1 = t4, α4 = t

− 13
4
+4a4

4 .

The minimum q for Γ̃S is q = 2 (which comes out of αt1α
−1 = t−1

2 t
− 5

2

4 ), and
we have choices a4 = 1

16+
1
2 ·{0, 14 , 2

4 ,
3
4} = 1

16 ,
3
16 ,

5
16 ,

7
16 and c3 = 1

8+
1
2 ·{0, 12} =

1
8 ,

3
8 (any combination of a4 and c3), with the same center. So, there are 8

distinct groups.
All these groups have non-standard lattices, because no c3 is an integer

multiple of 1
q , q = 2. When a4 = 3

16 or 7
16 (regardless of c3), Π is torsion free,

and Π\Sol14 is an infra-solvmanifold of Sol1
4 with Z4 holonomy.

Example 7.2 ((7i) Maximal holonomy). Even if this has the maximal ho-
lonomy group D4, it does not contain all the possible holonomy actions. For
example, groups of type (6b) or (6bi) are not contained in this group. Let
Φ = Z4 ⋊ Z2 = 〈A,B〉, where

A = [ 0 1
1 0 ] , B =

[
1 0
0 −1

]
, and α = (ta1

1 ta2

2 , A), β = (t
1
2

3 t
b4
4 , B).

Our S is of the form S = nK + I, where K =
[
k11 k12

k21 k22

]
with det(K) = −1 and

tr(K) = n 6= 0. Now for ϕ(ᾱ) =
[
1 0
0 −1

]
, we take k11 = k22. For example, we

need K = [ 1 2
1 1 ], n = k11 + k22 = 2, S = nK + I = [ 3 4

2 3 ] . Then λ = 3 + 2
√
2,

and with P =

[− 1
4
√

23

1
4√
2

− 1
4
√

23
− 1

4√
2

]
, the equations in Lemma 5.2 yield

c1 =
1

8
(−12 +

√
2 + 4m1 − 4m2), c2 =

1

4
(−

√
2− 4m1 + 2m2).

Recall we can take c3 = 0 by Theorem 6.6. Our crystallographic group Π =

〈t1, t2, t3, t
1
q

4 , α, β〉 has a representation into Aff(4):

t1=




1 0 1
2 0 1

2 (m1 −m2 − 3)
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



, t2=




1 − 1
2 0 0 1

2 (m2 − 2m1)
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1



,
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t3 =




1 0 0 0 0
0 3 4 0 0
0 2 3 0 0

0 0 0 1 ln
(
3 + 2

√
2
)

0 0 0 0 1



, t4 =




1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



,

(a,A) =




−1 −a2

2 −a1

2 0 1
2
(a1(a2+m1−m2−3)+a2(m2−2m1))

0 1 0 0 a1
0 0 −1 0 a2
0 0 0 −1 0
0 0 0 0 1



,

(b, B) =




−1 0 0 0 b4
0 −1 −2 0 0
0 −1 −1 0 0

0 0 0 1 1
2 ln

(
3 + 2

√
2
)

0 0 0 0 1



.

We have

Coker(I − S) = (Z2)
2 =

{
1
2

[
0
0

]
, 1
2

[
0
1

]
, 1
2

[
1
0

]
, 1
2

[
1
1

]}
.

Now

ϕ(ᾱ) =
[
1 0
0 −1

]
, ϕ(β̄) = −K,

yields

I + ϕ(ᾱ) =

[
2 0
0 0

]
, I + ϕ(β̄) =

[
0 −2
−1 0

]
.

Then (I + ϕ(ᾱ))a ≡ 0 yields 2a1 ≡ 0, which is not a new condition. We
therefore have 4 choices for a,

[
a1
a2

]
= 1

2

[
0
0

]
, 1

2

[
0
1

]
, 1

2

[
1
0

]
, 1

2

[
1
1

]
.

The coboundary Im(I − ϕ(ᾱ)) yields the trivial group, and hence there are 4
distinct choices for a. The group Π has a presentation

[t1, t2] = t4, [ti, t4] = 1 (i = 1, 2, 3),

t3t1t
−1
3 = t31t

2
2t

m1

4 , t3t2t
−1
3 = t41t

3
2t

m2

4 ,

αt1α
−1 = t1t

3−a2−m1+m2

4 , αt2α
−1 = t−1

2 t−a1

4 ,

αt3α
−1 = t−2a1+4a2

1 t
2(a1−a2)
2 t−1

3 t
3a2

1−a1(3+6a2−3m1+2m2)+a2(6+2a2−4m1+3m2)
4 ,

αt4α
−1 = t−1

4 ,

βt1β
−1 = t−1

1 t−1
2 t

1
2
(−1−2m1+m2)

4 , βt2β
−1 = t−2

1 t−1
2 t−4+m1−m2

4 ,

βt3β
−1 = t3, βt4β

−1 = t−1
4 ,

α2 = t2a1

1 t
−a1(−3+a2+m1−m2)
4 ,
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β2 = t3,

(αβ)4 = t
−4b4+a2

1+4a1a2+2a2
2−2a1(3−m1+m2)−2a2(2m1−m2)

4 .

Of the four choices for a, only a1 = 1
2 , a2 = 0 can yield a torsion free group,

and the other three choices always yield a group with torsion:
[
a1
a2

]
=

[
0
0

]
,

[
0
1
2

]
: α2 = id.

[
a1
a2

]
=

[
1
2
1
2

]
:

(
t−1
2 (αβ)2α

)2
= id.

[
a1
a2

]
=

[
1
2
0

]
: a2 ≡ − k21+1

2k11
=−1.

Let us take m1 = m2 = 0. When a1 = 1
2 , a2 = 0, q = 4 (minimum), b4 takes

values j
16 , 0 ≤ j ≤ 3. When b4 = 1

16 or 3
16 , Π has torsion. However, when

b4 = 0 or 2
16 , Π is torsion free when [ a1

a2
] =

[
1
2

0

]
, because all criteria of Theorem

6.13 case (7i) are satisfied. In this case, Π\Sol14 is an infra-solvmanifold of

Sol1
4 with maximal holonomy D4.
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