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UNIMODULAR GROUPS OF TYPE R?® xR

JonGg BuM LEE, KYUNG BAI LEE, JOONKOOK SHIN, AND SEUNGHUN Y1

ABSTRACT. There are 7 types of 4-dimensional solvable Lie groups of the
form R3 %, R which are unimodular and of type (R). They will have left-
invariant Riemannian metrics with maximal symmetries. Among them,

three nilpotent groups (R*, Nil®> x R and Nil*) are well known to have
lattices.

All the compact forms modeled on the remaining four solvable groups
Sol® x R, Sold, Sol’§ and Sol§ are characterized: (1) Sol® x R has lattices.
For each lattice, there are infra-solvmanifolds with holonomy groups 1,
Zs or Z4. (2) Only some of Sol}, called Sol‘,lmn, have lattices with no
non-trivial infra-solvmanifolds. (3) Sol’ é does not have a lattice nor a
compact form. (4) Sol§ does not have a lattice, but has infinitely many
compact forms. Thus the first Bieberbach theorem fails on Sol%. This is
the lowest dimensional such example. None of these compact forms has
non-trivial infra-solvmanifolds.

1. Introduction

We study certain class of 4-dimensional solvable Lie groups of the form
R3 x, R, where ¢ : R — GL(3,R) is a continuous homomorphism. The ho-
momorphism ¢ yields a Lie algebra homomorphism v : R — gl(3,R) so that
o(t) = e¥®). Therefore, R® x, R is completely determined by the matrix
A =1(1) only.

A connected Lie group G is of type (R) if for every X € g, ad(X) : g — ¢
has only real eigenvalues. G is of type (E) if exp : g — G is surjective. It is
unimodular if ad(X) has trace 0 for every X € g. For our R? x, R when it is
unimodular and of type (R), up to conjugation and scalar multiple, there are
7 classes; only one class contains a parameter. We tabulate the isomorphism
classes of 4-dimensional unimodular, type (R) Lie algebras of the form R3 x 4R
and the associated simply connected Lie groups:
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A for Lie algebra R3 x4 R | Associated simply connected Lie group
R3 Xf(s)R

0 0 0 100
00 0 R4 10 1 0
0 0 0 0 0 1
0 1 0 1 s 0
0 00 Ni®xR; {0 1 0
0 0 0 0 0 1
010 1 s 38
0 0 1 Nily; | 0 1 s
0 00 00 1
1 00 e 0 0
0 -1 0 SoPxR; | 0 e 0
0 00 0 0 1
1 0 0 e 0 0
01 0 Sold; | 0 e 0
0 0 -2 0 0 e %
A0 0 e 0 0
0 1 0 (A >1) | Sol}; 0 e 0 (A>1)
00 —1-2X 0 0 e~(+Ns
11 0 e® sef 0
01 o0 Sol'g; | 0 e 0
0 0 -2 0 0 e

The group law of R? x, R is

(x,8)(¥,t) = (x+ p(s)y, s +1),
and it can be embedded in Aff(4) as

p(s) 0 x
G= 0 1 s|jcCAff(4) C GL(5,R),
0 0 1

where ¢(s) € GL(3,R), s € R and x € R? is a column vector.

For a Lie group G with a left-invariant metric, Isom(G&) denotes the group
of isometries, Isomo(G) its connected component of the identity. Also Aut(G)
denotes the group of automorphisms of G. If II is a discrete subgroup of
Isom(G) acting freely and properly discontinuously on G, the quotient space
IT\G is a compact form. If IT is a discrete cocompact subgroup of G x K (where
K a compact subgroup of Aut(G)) and IT C G is a lattice of G, acting freely and
properly discontinuously on G, the quotient space IT\G is an infra-homogeneous
space. If, in particular, IT C G, then IT\G is a homogeneous space. If G is R,
nilpotent, solvable, then the homogeneous space (infra-homogeneous space)
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is called a torus (flat manifold), nilmanifold (infra-nilmanifold), solvmanifold
(infra-solvmanifold), respectively.

Remark 1.1. Our list consists of R4, Nil®> xR, Nil?, Sol® xR, Solé, Sol é and Soli,
while the Lie groups in Filipkiewicz’s list in [12] consist of R?, éi(Z,R) x R,
Nil® x R, Nil%, Sol® x R, Sol, Sol] and Sol7, ,,.

Note that SAI:(Z,]R) x R and Sol} are not in our list since they are not of

the type R® x,, R. Note also that Sol} has nil-radical Nil®. Our Sol’ é is not in
Filipkiewicz’s list (with a unknown reason). We shall show the following:

(1) Sol’ é does not have a lattice nor a compact-form, see Proposition 2.2
and Theorem 4.2.

(2) Sol} has a lattice if and only if it is of the form Solfn,n. Otherwise,
there is no compact-form. See Proposition 2.1 and Theorem 4.2.

(3) Solg does not have a lattice, yet it has infinitely many compact-forms,
see Proposition 2.2 and Theorem 4.3. This is a type (R) counter-
example to the generalized Bieberbach’s first Theorem.

2. Existence of lattices

For a simply connected solvable Lie group G, a lattice of G is a discrete
cocompact subgroup of G. As is well known, the three nilpotent groups and
the first solvable group Sol®> x R have lattices. We study the remaining three
solvable cases. We shall prove Solj and Sol’ o do not have lattices; and the
group Soli has generically no lattice except for countably many values of ’s.

Proposition 2.1 ([12]). The group Sol% has a lattice if and only if there exist
integers m,n such that the equation 23 —ma? +nx — 1 = 0 has 3 distinct
positive real roots iy > g > ag (with A = 2 o). We call such Sol} as Solfn,n.
There are only countably many such \’s.

Proof. Recall G = Sol} = R3 x, R, where

e* 0 0
o(s) = 0 e 0 , (A>1).
0 0 e (FNs

Suppose I' is a lattice. Since R? is the nil-radical (i.e., the maximal connected
normal nilpotent subgroup) of G, T' NR3 = Z3 must be a lattice in R®. Thus
T is of the form Z3 x Z, where a generator of Z acts on Z* via A € GL(3,Z).
Let P be a matrix diagonalizing A. Then

¢(so) = PAP™L.
Let
3

xa(z) =z —ma® +nz — 1
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be the characteristic polynomial of A (so m,n € Z). Since A and ¢(so) have
the same characteristic polynomial, we have

2 1 m — e)\s() _|_680 +e—(1+)\)50,
( - ) n — e—>\80 +e—SO +e(1+>\)50.

Note that m,n > 0. For example, we know the companion matrix

0 0 1
1 0 —n
01 m

has the characteristic polynomial x 4 (z).
The function x4 (z) has two critical points

H{m =+ v/m? = 3n).

Then x (z) = 0 has 3 distinct positive real roots if and only if m? > 3n and
xa(k(m — v/m? —3n)) > 0,
xa(3(m+ vm? —3n)) <O0.

We need one more condition: 1 cannot be the root. Otherwise, the eigenvalues
will be e**, e=** and 1 so that the Lie group becomes Sol® x R. Since x4(1) =0
if and only if m = n, we need to exclude the cases m = n.

Thus, if the group Soli = R3 x, R has a lattice, then there exists a pair of
positive integers (m, n) for which 22 — mx? +nz — 1 = 0 has 3 distinct positive
real roots e**0, e%0 and e~(1*X)%_ [Then (m,n) lies in the region).

Conversely, suppose (m,n) lies in the shaded region minus the line n = m.
Then the equation z° — ma? + nz — 1 = 0 has 3 distinct positive real roots, say
a1 > ag > og. Then the equations (2-1) yields

= ;8o = Inas.
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For example, for the point (m,n) = (8,11), the equation xa(z) = 0 has 3
positive real roots. [All the integer points in the shaded region containing
(8,11) in the picture give rise to the same results]. The region contains only
countably infinite pairs (m,n) of integers. Consequently, for only countably
infinite values of \’s, the matrix ¢(s) can be conjugated to an integral matrix
for some s. This proves that Soli{ has generically no lattice except for countably
many values of \’s. O

Next, we look at the groups Solj and Sol’é.
Proposition 2.2. The groups Solé and Sol’ 3 do not admit any lattice.

Proof. Recall Solg and Sol’ 5 are of the form R® x, R,

e 0 0 e se* 0
pls)=| 0 e 0 or 0 e 0
0 0 e % 0 0 e

Suppose I' is a lattice. As before, TNR? 2 Z? must be a lattice in R*. Thus
T is of the form Z® x Z, where a generator of Z acts on Z* via A € GL(3,Z).
Let P be a matrix diagonalizing A. Then

@(so) = PAP™!,
Let
xa(x) =23 —mz® +nz -1

be the characteristic polynomial of A (so m,n € Z). Since A and ¢(sq) have
the same characteristic polynomial, we have

m = 2e° +e %
n=2e"° +e*.
The function x 4(z) has two critical points
1(m+ \/M)

Then x4(z) = 0 has 2 positive real roots (one of them is a double root) if and
only if

XA(%(m — \/M)) =0 and XA(%(WH— m2 —3n)) <0
or
xa(t(m — v/m? —3n)) > 0 and xa(}(m + v/m2 —3n)) = 0.
For the first, the equation
—27 — 2m® + 9mn 4 2(m? — 3n)>? = 0

must have integer solutions m,n. Clearly, v/m? — 3n must be an integer. Let

m2 —3n =r?
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with r > 0. Then the above equation yields the polynomial
g(m,r) = =27 +m® — 3mr? + 2r®
= (m —r)%(m + 2r) - 2T.
Suppose g(m,r) = 0. Then, for m > 26, we have 0 < |[r —m| < 1, which is
impossible since m and r are both integers. (In fact, this is true for m > 9).

By checking for 1 < m < 26, we conclude that g(m,r) = 0 has no integer
solutions. Consequently, the group does not admit a lattice.

For the second, the equation
—27 — 2m® 4+ 9mn — 2(m? — 3n)*/% = 0

must have integer solutions m, n. Clearly, vm? — 3n must be an integer. Let

m? —3n =r?

with 7 > 0. Then the above equation yields the polynomial
g(m,r) = =27+ m> — 3mr? - 2r°
= (m+71)%(m —2r) — 27.
Suppose g(m,r) = 0. Then, for m > 5, we have 0 < |m — 27| < 1, which
is impossible since m and r are both integers. By checking for 1 <m < 5, we

conclude that g(m,r) = 0 has no integer solutions. Consequently, the group
does not admit a lattice. O

3. Infra-homogeneous spaces
We shall need Gordon-Wilson's result:

Theorem 3.1 ([7]). Let G be a solvable Lie group which is of type (R) and is
unimodular. Then, with respect to any left-invariant Riemannian metric, the
group of left-translations £(G) is normal in Isomy(G), the connected component
of the group of isometries of G.

Consequently, with respect to any left-invariant Riemannian metric on a
unimodular Lie group G of type (R),

Isom(G) C 4(G) x K,

where K is a maximal compact subgroup of Aut(G). Conversely, for any max-
imal compact subgroup K of Aut(G), there exists a left-invariant Riemannian
metric on G for which Isom(G) = #(G) x K. Therefore, in order to understand
the isometry group Isom(G), it is enough to calculate Aut(G).

For the case when ¢(s) has all eigenvalues not equal to 1 (that is, Sol3, Sol'y,
Sol}), R? is the nil-radical in R® x,, R, and hence is a characteristic subgroup
of R3 x, R; every automorphism of R® x, R restricts to an automorphism of
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R3. Consequently an automorphism of R? x, R induces an automorphism on
the quotient group R. Thus there is a natural homomorphism
Aut(R3 x, R) — GL(3,R) x GL(1,R)
6 — (6,6).

By Gram-Schmidt, g is conjugate to a blocked _upper triangular matrix. We
need to look into the eigenvalues of the matrix ) Except for the case when 9
has complex eigenvalues, G is always of type (R). But in general, the trace of 8

will not be zero. Such G will not have any lattice, and the group of isometries
is hard to calculate.

Proposition 3.2. Let

— {(8,0) € GL(3,R) x GL(L,R) : p(8(s)) = o p(s) 0 67" }.
Then
Aut(R® x,R) =R® x C C R®x (GL(3,R) X GL(l,]R)).

Proof. Let 6 € Aut(R? x, R). Then (8,0) € Aut(R®) x Aut(R) and 0(x,0) =
(6(x),0). Define 7 : R — R by 8(0,s) = (—n(8(s)),0(s)). Thus,

8(x, 5) = 8((x,0)(0, 5)) = (B(x),0)(~n(B(s)), 8(s)) = (O(x) —n(8(s)),0(s))-
We write this 6 as (,0,6). Thus,

(n,6,0)(x,5) = (8(x) = n(8(s)), 6(s))-

For this to be an automorphism of R* x, R, it should satisfy

0(8(s)) =Bop(s) 0",
n(s +£) =1(s) + ¢(O(s))n(?)

for all s, € R, or equivalently (6 ) cCandn:R — R3 is a crossed homo-
morphism with respect to the action homomorphism ¢ o 6. Therefore, we have
a homomorphism Aut(R?® x, R) — C.

Conversely, suppose that (9 6) € C. For any crossed homomorphism 7 : R —
R3 with respect to the action homomorphism @ o8, we define 6 € Aut (R %, R)
by

0(x, 5) = (0(x) — n(8(s)),6(s))-
Then it is easy to check that @ is an automorphism of R? x, R. Moreover, this
with 7 = 0 defines a split homomorphism C' — Aut(R? x R)

In particular, we have observed that § € Aut(R® x, R) with 6,6) =
(idgs,idr) induces a crossed homomorphism with action homomorphism ex-
actly o8 = .

Observe that a crossed homomorphism 7 is completely determined by the

value (1), and hence the subgroup of all crossed homomorphisms is isomorphic
to R3. [
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A finite quotient of a homogeneous space I'\G (where T is a lattice of G)
is an infra-homogeneous space. We consider the infra-homogeneous spaces for
each of the groups.

(1) R*: There are 75 flat manifolds in dimension 4. See [3], for example.

(2) Nil® x R: There are 74 families of infra-nilmanifolds. For Nil?, roughly
speaking, there are 7 families some of which split into 2 or 3 subfamilies.
The only holonomy groups are 1, Zo and Zs x Zsy. See [4] and [5].

(3) Sol® x R: See Proposition 3.4 below.

(4) Sol? and Sol’y: No lattices, see Proposition 2.2.

(5) Sol}: Only Solfnm has a lattice. There are no other infra-solvmanifolds,
see Proposition 2.1.

Recall the embedding of G = R3 x,, R into Aff(4):

efs) 0 x
0 1 s
0 01

where ©(s) € GL(3,R), x € R? is a column vector, and s € R.

In general, the normalizer of G in Aff(4) is not enough to get all of automor-
phisms of G. But for our G = R3 x, R, the natural map Nag4)(G) — Aut(G)
is surjective. The normalizer of G is

f m u
a=10 6 w
0 0 1
with the conditions
(3-1) Bop(s)od" =p(b(s)
(3-2) (I - ¢(8(s)))m =0
for all s € R. For such a,
@ m u][e(s) 0 x] [0 m u i p6(s)) 0 X
(3-3) 0 8 wv 0 1 s{lo 8 w = 0 1 8(s)
0 0 1 0 0 1|fo o0 1 0 0 1

o~

where X’ = 6(x) + sm + (I — p(6(s)))u. This shows conjugation by 0,9) (ie.,
with m = u = 0 and v = 0) is an automorphism. Conversely, for any (1) € R3,
write it as

(1) =m+ (I - p(1)u,
where m € ker(I — ¢(1)). Then conjugation by (m,u,v) (with 9 =id, 8 = id)
is exactly the automorphism induced by 7.
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' The equation (3-3) shows also the centralizer of G in Aff(4). It consists of

I 0 o
01 w
0 0 1

where (I — ¢(1)Jug = 0. In case 1 is an eigenvalue of ¢(1), we denote the
“complementary eigenspace” (so that V is ¢(1)-invariant) by

ker(I — p(1))L.

Proposition 3.3. There is a one-one correspondence

Aut(R® x, R) =

oo )
o I 8
—_-o o

where 5, 9, m and u satisfy
Bop(s)o8" =p(8(s))
m € ker(I — p(0(s)))
u € ker(I — p(1))*+

Note that conjugations by the two matrices

p(s) 0 x p(s) 0 x
0 1 s and 0 1 0},
0 0 1 0 0 1

(where the latter is used in the Proposition 3.3) result in the same automor-
phism.

The isometry group of Sol® is not always Sol® x Ds. Sometimes, it is Sol® x
(Z2)?, depending on the left-invariant Riemannian metric. See Ha-Lee [8] and
[9, Theorem 3.3]. With the best left-invariant Riemannian metric, Sol® has
isometry group Sol® x Dg (see for example, [11]). None of these finite subgroups
of the isometry group can act freely. We denote by R* the multiplicative group
R — {0}. On Sol® x R, it is not too hard to see the following:

Theorem 3.4. The group of automorphisms of Sol® x R is R3 x ((R*)? x Z5),
and the mazimal group of isometries is
Tsom(Sol® x R) = (Sol® x R) x ((Z2)* x Zy)
= (Sol® x R) x (Dg x Zs).
Every infra-solvmanifold is the quotient by torsion free extension 7 of a lattice
T (= A x Z, where A is a lattice of Sol®) by a cyclic subgroup of Ds. The

possible holonomies are 1, Zy and Zs. The group w is again an extension of A
by Z.
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Proof. Recall

e 0 0]
ps)=1 0 e* 0
0 0 1|
The conditions on m and u in Proposition 3.3 yield
0 ’LblT
m= 0|, u= |u
m 0 |

Examining the first condition there, we find
Aut(Sol® x R) = R® x ((R*)? x Zy)

corresponds to the following matrices:

p1 0 0 0 1w 010 0 0
0 p 0 0 u 100 0 O
0 0 ps m 0], 001 0 0
0 0 0 1 0 000 -1 0
0 0 0 0 1 000 0 1

3. respectively. The maximal

~—

where (u1,u2,m) € R®, (p11,p22,p33) € (R*
compact subgroup is Dg X Z; generated by

41 0 0 0 O 010 0 0
0 1 0 0 0 100 0 0
0 0 1 0 of, 001 0 0
0 0 0 10 000 -1 0
0 0 0 01 000 0 1

The factor Z is generated by —1 on (3, 3)-slot. Every element of the dihedral
group has fixed point on Sol®. For a cyclic subgroup, one can resolve the fixed
point by advancing to the R-direction ((3, 5)-slot) so that finite power generates
a lattice of R. The cyclic subgroup ® is either trivial, Zs or Z4. The extended
group « fits the short exact sequence

15AXZ->71—-%—1
Note that /A = Z also. O

Theorem 3.5. (1) The group of isometries of Sol is Sol x (Z2)3. (2) The only
infra-solvmanifolds modeled on Solfnm are solvmanifolds I‘\Solfnm for some
lattice T'.

Proof. Recall

0 0 e—(l—i-)\)s
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The conditions on m and u in Proposition 3.3 yield

0 U1
m= (0|, u= |u
0 us

Examining the first condition there, we find
Aut(Sol*) = R? x (R*)?

corresponds to the following matrices:

pii 0 0 0 wu
0 p2 0 0 wup
0 0 p3z 0 wug
0 0 0 1 0
0 0 0 0 1

- where (u1,u2,u3) € R3, (p11,pe2,p33) € (R*)3, respectively. The maximal
compact subgroup is the diagonal matrices (Zz)® in (R*)3.

Clearly, then an element of Aut(R® x, R) is torsion if and only if it is of the
form

e 0 x 1 0 O
a=10 1 0|, where e=|0 £1 0
0 0 1 0 0 =1

satisfying
(I+ex=0.
Consequently, such a torsion element lies in (R® x, R) x (Z2)®.
Now we specialize to the case where Sol} = Solfn,n. We claim that o cannot

leave any lattice I' invariant. [Therefore, there cannot exist a finite extension
of T']. Since R? is a nil-radical of our group,

Z=InNR3

is a lattice of R?, and is a characteristic subgroup of I'. See, [10, Corollary 3.5].
Thus, o should leave Z invariant as well. Let

10

z= |0 €.
0

_ O W

1
0
Then

(aza )z = (¢ — Iz
Therefore, for z € Z, we must have

(e~Dz, (e+ Dz € Z.

Recall that ¢ was a diagonal matrix with entries £1’s. Unless € = I, at least
one axis contains a subgroup Z of Z. This is not possible because each of the
3 axes is an eigenspace of ¢(s); € should conjugate this Z onto itself, but ¢(s)



1132 JONG BUM LEE, KYUNG BAI LEE, JOONKOOK SHIN, AND SEUNGHUN YI

does not have eigenvalue 1. This completes the proof that any lattice I' does
not have an extension by a finite group. O

4. The first Bieberbach Theorem

Statement 4.1. Let G be a connected, simply connected Lie group and let
K be a compact subgroup of Aut(G). Suppose 7 C G x K is a lattice, then
I'=w NG is a lattice of G (and I" has finite index in ).

The first Bieberbach Theorem states that Statement 4.1 holds for G = R™.
This was generalized to nilpotent Lie groups by L. Auslander, [1] and [2].
Statement 4.1 was further generalized to some solvable Lie groups, see [6].
Using the results in [6], we can see easily that the first Bieberbach Theorem
holds for all the Lie groups R® x, R except for Solg.

Theorem 4.2. [6, Theorem B] Let G be a connected, simply connected solvable
Lie group of type (E) with nil-radical N, and let G/N = R". Let p: R" —
Out(N) be the canonical representation. Assume:

The centralizer of p(R™) in Out(N) has trivial mazimal torus.
Then Statement 4.1 holds for this G.

The condition (3-1) indicates that, unless ¢(s) has two dimensional eigen-

space, 6 cannot contain a circle. Thus, except for G = Solé, Statement 4.1
holds for all other solvable G’s. (Thus, if there is no lattice in G, then there is
no compact form in Isom(G) either).
Theorem 4.3. For the group G = Solé,

(1) The group of isometries is Isomp(G) = G x (0O(2) x O(1)).

(2) There is no laitice in G.

(3) There are countably infinite distinct lattices in Isomy(G). Consequently,

the first Bieberbach theorem does not hold for G.

(4) For any lattice IT of Isomy(G), there is no extension = C Isom(G) such
that the image of m under the natural map

Isom(G) — Isom(G)/Isomo(G) = Zo X Zs
s non-trivial.
Proof. With the conditions in Proposition 3.3, we get
Aut(Solg) = Solj x (GL(2,R) x GL(1,R))
-where GL(2,R) x GL(1,R) is generated by

puu piz 0 0 O
pa1 p2 0 0 0
0 0 ps3 0 O
0 0 0 1 0
0 0 0 0 1
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A maximal compact subgroup is O(2) x O(1) which is of the form

P11 P12
P21 P22

in the above matrix representation. Then with the best left-invariant Riemann-
ian metric on G, we have

Isom(G) = G x (0O(2) x O(1)) C Aut(G).

We shall find a lattice IT of Isomg(G) = G x SO(2). As noted before, R? is the
nil-radical of G, so IINR3 = Z3 must be a lattice in R3. Thus I7 is of the form
Z3 % 4 Z, where the generator 1 € Z acts on Z3 by A € GL(3,Z). Consider the
commutative diagram

] S 0(2), py3 ==x1 € 0(1)

1 z3 Z3 x4 L sz —1
1 R R? », (R x SO(2)) —— R x SO(2) —— 1

Since Z3 x4 Z — R? %, (R x SO(2)), there exists a matrix P € GL(3,R) so
that

e 0 0 cosf sing 0
A=PAP'=| 0 e 0 —sinB cosB 0
0 0 e 2@ 0 0 1

e*cosf e“sinf 0
= |—e%sinf8 e%cosfB O
| 0 0 e 2

for some «, 3 € R. The vertical maps are

z (z,n) n

! ! !

Pz (Pz, (an,e®™)) (am, ™)
and (an, ™) acts on Pz by PA"P~!. Let

xa(z) =2* —ma® +nz — 1

be the characteristic polynomial of A (so m,n € Z). Since A is conjugate to
A’, they have the same characteristic polynomial. Thus, x4(z) = 0 must have
only one (positive) real root.

Conversely, suppose 23 — ma? + nz — 1 = 0 has only one positive real root
so that

22 —mz® +nz—1=(z—a)((x —b)? +c%)
for some real @ > 0, b and ¢ # 0. Then
a(b®> +c%) = 1.
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Therefore, if we set a = e 2%, then

b=¢e%cosf
c=¢e%sin g
for some £.
Since x4(0) = —1 and limg_. = +00, by intermediate value theorem, the

condition having a positive real root is automatic. That is, there always exists
one positive real root. Therefore, the following are equivalent:

(1) xa(@) = xalz) (=2°-ma®+nz—1)

(2) xa(z) =0 has only one (positive) real root

(3) (a) m*>3n and xa(3(m+vm?—3n)) >0, or

(b) m? >3n and xa(3(m—+vm?—3n)) <O0.

(Observe that £(m + v/m? —3n) are the two critical points of xa(z)). All
the integer points in the region containing (7,15) in the picture satisfy the
first inequalities (3a). All the integer points in the region containing (1,~1)
surrounded by the 3 curves together with z > 0 in the picture satisfy the second
inequalities (3b). We can easily see that there are infinitely many pairs (m, n)

of integers which satisfy the above inequalities. Then
m = e 2* 4+ 2e* cos 3
n= e’ +2e “cosf3

which determines a and 3. For example, if (m,n) = (7,15), we get

=l () - 6]

where w = 25 — 3v/69. Thus, o =~ 0.702999 and 8 ~ 0.929517 (thus, the pair
(m,n) determines a and j3). Since we already know G does not have a lattice,
the intersection (Z3 x4/ Z) N G cannot be a lattice of G.
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Different values of (m,n) yield different lattices of G. There are countably
infinite distinct lattices in G. The Z-factor of the lattice IT = Z* x Z is
embedded as p(n), n € Z, where

e®® cos(Bs) €™ sin(Bs) 0 00
—e“sin(Bs) e cos(fs) 0 00

o(s) = 0 0 e”2@s 0 0
0 0 0 1 s

0 0 0 01

Suppose there exists 7 C Isom(G) so that the commutative diagram of exact
rows commute:

1 —— Isomp(G) —— Isom(G) —_ 500((_22)) x0(1) —— 1
G x S0(2) G x (0(2) x O(1)) Zy X Lo
The following are generators of Zg x Zo:
01 000 106 0 0O
1 00 0 0 01 0 0O
Bi=10 01 0 0|, Ba=|0 0 -1 00
0 0 010 00 0 1 O
0 0 0 01 0 0 0 01

The equality

1 0 e®® cos(Bs) e*®sin(fs) 0 0 10
0 0| | —e**sin{Bs) e cos(fs) 0 1 00
01 0 0 e [0 0 1

o O

e®® cos(fBs) —e*® sin(fs) 0
= {e*sin(Bs) e cos(fs) 0
0

0 e—2as

shows that B does not normalize IT. For Bs, suppose it normalized II. Then
it will normalize Z3 since it is a characteristic subgroup. Let

1 0 0 0 =
01 0 0 =z
z=1|0 0 1 0 z3| € PZ>.
0 0 01 O
0 0 00 1

We denote z by (z1, 22, 23). Then

Ba(z1,20,23)By " = (21,22, —23).
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This implies

(0,0,223) = (zl,Zz,Zg) (Bg(zl, 22,23)32_1)—1 e P73

This is impossible since the 3rd axis is an eigenspace of A’ with eigenvalue e~2e

with a > 0, (a lattice cannot be expanded or shrunk by its automorphism).
Consequently, there is no extension of IT by any subgroup of Zo x Zo. [

Remark 4.4. This is the lowest dimensional example of a solvable Lie group of
type (R) where the first Bieberbach theorem fails. There was a 5-dimensional
example in [6, Example 3.2]. In both cases, the existence of a compact subgroup
SO(2) of Aut(G) is essential, as it was a necessary condition for the failure. See
Theorem 4.2. There exists a 3-dimensional example which is not of type (E),
see below.

Since R? is the only 2-dimensional simply connected solvable Lie group, we
need to check only 3-dimensional Lie groups. Suppose G is a 3-dimensional
simply connected solvable Lie group. Obviously, the nil-radical of G cannot
be 1-dimensional. If it is 3-dimensional, G itself is nilpotent, and we know
Statement 4.1 holds for nilpotent groups. Now suppose the nil-radical of G is
2-dimensional. Then G is of the form R? x, R (and its Lie algebra must be of
the form R? x4 R). If G is of type (R), possible A’s are

A= A0 A ¢ A0
10 AT |0 Ay 0 Xof”

For this to have a lattice, the trace must be 0. Then the first case yields G
abelian, the second case yields G nilpotent, while the third case (A1 + A =
0) yields G the 3-dimensional Sol. Note that the first Bieberbach theorem
holds for all these cases. Thus the group G = Solg in Theorem 4.3 is the
lowest dimensional example of a solvable Lie group of type (R) where the first
Bieberbach theorem fails.

On the other hand, consider the universal covering group G of Ex(2) =

2 - . 2 | cos2mt  sin2nt
R2xS0(2). So, G is isomorphic to R? x, R, where ¢(t) = [_ sin2mt  cos2mt|’
{This is where the A = ¥(1) above is A = [_01 (1)] ). Aut(G) contains SO(2).

Now consider the subgroup of G x SO(2) = (R? x R) x SO(2) generated by

(1 02 (B02) (o)

where « is an irrational number. Clearly, this group I is isomorphic to Z*, but
I' N G is just Z?2, violating the first Bieberbach theorem. Note that this G is
not of type (£).

Acknowledgment. The authors would like to thank the referee for thorough
reading and valuable comments in their original version.
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