DOI QR코드

DOI QR Code

INFRA-SOLVMANIFOLDS OF Sol14

  • Received : 2014.12.27
  • Published : 2015.11.01

Abstract

The purpose of this paper is to classify all compact manifolds modeled on the 4-dimensional solvable Lie group $Sol_1^4$, and more generally, the crystallographic groups of $Sol_1^4$. The maximal compact subgroup of Isom($Sol_1^4$) is $D_4={\mathbb{Z}}_4{\rtimes}{\mathbb{Z}}_2$. We shall exhibit an infra-solvmanifold of $Sol_1^4$ whose holonomy is $D_4$. This implies that all possible holonomy groups do occur; the trivial group, ${\mathbb{Z}}_2$ (5 families), ${\mathbb{Z}}_4$, ${\mathbb{Z}}_2{\times}{\mathbb{Z}}_2$ (5 families), and ${\mathbb{Z}}_4{\rtimes}{\mathbb{Z}}_2$ (2 families).

Keywords

References

  1. H. Brown, R. Bulow, J. Neubuser, H. Wondratschek, and H. Zassenhaus, Crystallo-graphic Groups of Four-Dimensional Space, A.M.S., Wiley Monographs in Crystallography, 1978.
  2. K. Brown, Cohomology of Groups, GTM 87, Springer-Verlag New York, 1982.
  3. J. T. Campbell and E. C. Trouy, When are two elements of GL(2, $\mathbb{Z}$) similar?, Linear Algebra Appl. 157 (1991), 175-184. https://doi.org/10.1016/0024-3795(91)90112-A
  4. R. Cobb, Infrasolvmanifolds of Dimension Four, Ph.D. thesis, The University of Sydney, 1999.
  5. K. Dekimpe, Almost-Bieberbach Groups: Affine and Polynomial Structures, Lecture Notes in Mathematics, Springer-Verlag, 1996.
  6. K. Dekimpe, K. B. Lee, and F. Raymond, Bieberbach theorems for solvable Lie groups, Asian J. Math. 5 (2001), no. 3, 499-508. https://doi.org/10.4310/AJM.2001.v5.n3.a6
  7. K. Y. Ha and J. B. Lee, Crystallographic groups of Sol, Math. Nachr. 286 (2013), no. 16, 1614-667. https://doi.org/10.1002/mana.201200304
  8. J. A. Hillman, Four-Manifolds, Geometries, and Knots, GT Monographs 5, Geometry and Topology Publications, 2002.
  9. J. A. Hillman, Geometries and infra-solvmanifolds in dimension 4, Geom. Dedicata 129 (2007), 57-72. https://doi.org/10.1007/s10711-007-9193-1
  10. J. A. Hillman, $Sol^3{\times}{\mathbb{E}}^1$-manifolds, arXiv:1304.2436v2[math.GT], 18 Apr 2013.
  11. K. B. Lee and F. Raymond, Seifert Fiberings, A.M.S., Mathematical Surveys and Mono-graphs, vol 166, 2010.
  12. S. Mac Lane, Homology, Die Grundlehren der Math., Wissenschaften, vol. 114, Springer-Verlag Berlin Heidelberg New York, 1975.
  13. J. Milnor, On fundamental groups of complete affinely flat manifolds, Adv. Math. 25 (1977), no. 2, 178-187. https://doi.org/10.1016/0001-8708(77)90004-4
  14. G. D. Mostow, Self-adjoint groups, Ann. of Math. 62 (1955), 44-55. https://doi.org/10.2307/2007099
  15. M. S. Raghunathan, Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 68, Springer-Verlag, 1972.
  16. P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), no. 5, 401-487. https://doi.org/10.1112/blms/15.5.401
  17. Wolfram Research, Mathematica, version 9, 2013.

Cited by

  1. -MANIFOLDS pp.1446-8107, 2018, https://doi.org/10.1017/S1446788717000258
  2. Classification of closed manifolds with $${\mathrm{Sol}_1}^{4}$$Sol14-geometry pp.1572-9168, 2018, https://doi.org/10.1007/s10711-018-0354-1