References
- H. Brown, R. Bulow, J. Neubuser, H. Wondratschek, and H. Zassenhaus, Crystallo-graphic Groups of Four-Dimensional Space, A.M.S., Wiley Monographs in Crystallography, 1978.
- K. Brown, Cohomology of Groups, GTM 87, Springer-Verlag New York, 1982.
-
J. T. Campbell and E. C. Trouy, When are two elements of GL(2,
$\mathbb{Z}$ ) similar?, Linear Algebra Appl. 157 (1991), 175-184. https://doi.org/10.1016/0024-3795(91)90112-A - R. Cobb, Infrasolvmanifolds of Dimension Four, Ph.D. thesis, The University of Sydney, 1999.
- K. Dekimpe, Almost-Bieberbach Groups: Affine and Polynomial Structures, Lecture Notes in Mathematics, Springer-Verlag, 1996.
- K. Dekimpe, K. B. Lee, and F. Raymond, Bieberbach theorems for solvable Lie groups, Asian J. Math. 5 (2001), no. 3, 499-508. https://doi.org/10.4310/AJM.2001.v5.n3.a6
- K. Y. Ha and J. B. Lee, Crystallographic groups of Sol, Math. Nachr. 286 (2013), no. 16, 1614-667. https://doi.org/10.1002/mana.201200304
- J. A. Hillman, Four-Manifolds, Geometries, and Knots, GT Monographs 5, Geometry and Topology Publications, 2002.
- J. A. Hillman, Geometries and infra-solvmanifolds in dimension 4, Geom. Dedicata 129 (2007), 57-72. https://doi.org/10.1007/s10711-007-9193-1
-
J. A. Hillman,
$Sol^3{\times}{\mathbb{E}}^1$ -manifolds, arXiv:1304.2436v2[math.GT], 18 Apr 2013. - K. B. Lee and F. Raymond, Seifert Fiberings, A.M.S., Mathematical Surveys and Mono-graphs, vol 166, 2010.
- S. Mac Lane, Homology, Die Grundlehren der Math., Wissenschaften, vol. 114, Springer-Verlag Berlin Heidelberg New York, 1975.
- J. Milnor, On fundamental groups of complete affinely flat manifolds, Adv. Math. 25 (1977), no. 2, 178-187. https://doi.org/10.1016/0001-8708(77)90004-4
- G. D. Mostow, Self-adjoint groups, Ann. of Math. 62 (1955), 44-55. https://doi.org/10.2307/2007099
- M. S. Raghunathan, Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 68, Springer-Verlag, 1972.
- P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), no. 5, 401-487. https://doi.org/10.1112/blms/15.5.401
- Wolfram Research, Mathematica, version 9, 2013.
Cited by
- -MANIFOLDS pp.1446-8107, 2018, https://doi.org/10.1017/S1446788717000258
- Classification of closed manifolds with $${\mathrm{Sol}_1}^{4}$$Sol14-geometry pp.1572-9168, 2018, https://doi.org/10.1007/s10711-018-0354-1