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LEFT-INVARIANT MINIMAL UNIT VECTOR FIELDS ON
THE SEMI-DIRECT PRODUCT Rn o

P
R

Seunghun Yi

Abstract. We provide the set of left-invariant minimal unit vector fields
on the semi-direct product Rn oP R, where P is a nonsingular diagonal
matrix and on the 7 classes of 4-dimensional solvable Lie groups of the
form R3 oP R which are unimodular and of type (R).

1. Introduction

Let (M, g) be a closed oriented Riemannian manifold and χ1(M) be the set
of all unit vector fields on M which is assumed to be non-empty. Then an
element V ∈ χ1(M) can be viewed as a submanifold of the unit tangent sphere
bundle T 1(M) equipped with the Sasaki metric gs and the volume of the unit
vector field is defined as the volume of this submanifold ([5]).

It is natural to try to find the unit vector fields of minimum volume among all
unit vector fields on M . On the odd dimensional spheres, Gluck and Ziller ([5])
showed that the unit vector fields of minimum volume on S3 are precisely the
Hopf vector fields and no others ([5]). But on the higher dimensional spheres,
S2n+1, n ≥ 2, this is not the case ([4], [9], [13]).

The problem of finding unit vector fields which realize the minimum volume
turns out to be very difficult, even for the spheres S2n+1. It leads to the
consideration of the critical points of the volume functional restricted to χ1(M).

Gil-Medriano and Llinares-Fuster proved that a unit vector field is a critical
point of the volume functional if and only if the corresponding immersion in
(T 1M, gs) is minimal ([3]). So we call such unit vector fields minimal even
though the manifold is not compact.

A lot of examples of Riemannian manifolds and Lie groups equipped with
minimal unit vector fields are provided ([1], [2], [3], [6], [7], [8], [15], [16], [17]).
For the three dimensional Lie groups, Tsukada and Vanhecke provided the set
of left-invariant minimal unit vector fields ([16]). But in most examples, the
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set of left-invariant minimal unit vector fields on Lie groups are not given, just
some special left-invariant unit vector fields are shown to be minimal.

The aim of this paper is to provide the set of left-invariant minimal unit
vector fields on some Lie groups. More precisely, we find the set of all left-
invariant minimal unit vector fields on the semi-direct product Rno

P
R and on

the 7 classes of 4-dimensional solvable Lie groups of the form R3 o
P
R which

are unimodular and of type (R).
The following is the main result.

Theorem 1.1. Let P be a non-singular diagonal matrix diag{p1, p2, . . . , pn}.
Then the set of left-invariant minimal unit vector fields on the semi-direct prod-
uct Rn o

P
R is

{En+1} ∪ (S ∩ {Eα|α ∈ A1}R) ∪ · · · ∪ (S ∩ {Eα|α ∈ Ak}R) ,

where S is the unit sphere of the Lie algebra of the Lie group Rn o
P
R.

The definitions of the sets A1, A2, . . . , Ak and {Eα|α ∈ Ai}R in the above
theorem will be given in Section 3.

In Section 2, we give some basic notions and facts about minimal unit vector
fields. In Section 3, we prove the main theorem. In Section 4, we provide the
set of all left-invariant minimal unit vector fields on the Lie groups associated
with the 4-dimensional solvable unimodular type (R) Lie algebra of the form
R3 ⊕

P
R.

The author would like to express deep gratitude to the anonymous referee
for valuable comments.

2. Left-invariant minimal unit vector fields on a Lie group

Let (M, g) be a smooth Riemannian manifold, ∇ be the Levi-Civita connec-
tion on (M, g) and R be the associated Riemannian curvature tensor with the
sign convention RXY = ∇[X,Y ] − [∇X ,∇Y ].

We assume that the set χ1(M) of unit vector fields on M is non-empty. For
V ∈ χ1(M) we define the positive definite symmetric tensor field LV by

LV := I + (∇V )∗∇V,

where I is the identity map and (∇V )∗ is the adjoint. Put f(V ) = (det LV )
1
2 .

Then the volume functional F : χ1(M) −→ R is defined by

F (V ) :=
∫

M

f(V )dv,

where dv is the volume form on (M, g).
Define a (1, 1)-tensor field KV and a 1-form ωV associated to V as follows:

KV = f(V ) · L−1
V ◦ (∇V )∗,

ωV (X) = tr(Z 7−→ ∇ZKV )(X).
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Definition 2.1. A unit vector field V on a Riemannian manifold (M, g) is
called minimal if ωV (X) = 0 for all X ∈ HV .

Remark 2.1. In [3] it is proved that a unit vector field V is a critical point for
the volume functional F if and only if the 1-form ωV annihilates the distribution
HV consisting of tangent vectors orthogonal to V .

From now on we consider left-invariant unit vector fields on a Lie group G
equipped with a left-invariant metric. Then by the invariance with respect to
the left translation, the function f can be viewed as a function on the unit
sphere S of the Lie algebra g. The distribution HV can be identified with the
orthogonal complement V ⊥ of V in g so V ⊥ is naturally identified with the
tangent space TV S of the unit sphere S at V . Thus a left-invariant unit vector
field V is minimal if and only if the 1-form ωV on g vanishes on V ⊥ ∼= TV S
([16]). In [16] it is shown that

ωV (X) = −dfV (X)− tr adKV X .

So V is minimal if and only if dfV (X) = −tr adKV X for all X ∈ TV S. Thus
on a unimodular Lie group G, i.e., tr adX = 0 for all X ∈ g, a left-invariant
unit vector field V is minimal if and only if V is a critical point of the function
f on S.

For a non-unimodular Lie group G, we consider its unimodular kernel U
defined by

U = {X ∈ g | tr adX = 0}.
Then U is an ideal of codimension 1 since tr adX is a linear functional. For a
unit vector H orthogonal to U , the linear transformation adH restricted to U
is a derivation of U . We have the following.

Proposition 2.2 ([16, Proposition 2.5]). Let U be the unimodular kernel of a
non-unimodular Lie group such that adH |U is a symmetric endomorphism of U
with respect to 〈, 〉. Then a left-invariant unit vector field V is minimal if and
only if it is a critical point of the function f on S.

3. The semi-direct product Rn oP R

Let P = (pij) ∈ GL(n,R) be a real (n × n)-matrix. A homomorphism
ϕ : R→ End(Rn) is defined by

ϕ(α)(x) = αPx

for α ∈ R and x ∈ Rn.
One can form a semi-direct product of the Lie algebra R by Rn as follows:

The underlying linear space is the direct sum Rn⊕R, and the bracket operation
is given by

[(a, α), (b, β)] = (ϕ(α)b− ϕ(β)a, [α, β]) = (ϕ(α)b− ϕ(β)a, 0).
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It is trivial to see that this does satisfy the skew-symmetry and the Jacobi iden-
tity. Denote the Lie algebra by Rn ⊕P R and the associated simply connected
Lie group by Rn o

P
R.

Put Ei = (0, . . . , 1, . . . , 0) ∈ Rn+1. Let {E1, . . . , En+1} be an orthonormal
basis for g = Rn ⊕

P
R and equip the left-invariant metric on the associated Lie

group.
For X =

∑n+1
i=1 aiEi, we have

tr adX =
n+1∑

j=1

〈adXEj , Ej〉 = (trP )an+1.

So Rno
P
R is unimodular if and only if trP = 0. If trP 6= 0, then the unimodular

kernel is U = {X ∈ g | X =
∑n

i=1 aiEi} and a unit vector field orthogonal to
U is En+1.

For an element X ∈ U we have adH(X) = X and thus adH |U = Id|U .
Therefore adH |U is a symmetric endomorphism of U with respect to 〈, 〉. So by
the Proposition 2.2, a left-invariant unit vector field V is minimal if and only
if V is a critical point of f on S.

For a matrix P = (pij) we have the following.

Proposition 3.1. For 1 ≤ i, j ≤ n, we have
(i) ∇EiEj = 1

2 (pij + pji)En+1;
(ii) ∇EiEn+1 = − 1

2

∑n
k=1(pki + pik)Ek;

(iii) ∇En+1Ei = 1
2

∑n
k=1(pki − pik)Ek;

(iv) ∇En+1En+1 = 0.

Thus we have

∇Ei =
1
2

n∑

j=1

(pij + pji)En+1 ⊗ θj +
1
2

n∑

j=1

(pji − pij)Ej ⊗ θn+1,

∇En+1 = −1
2

n∑

j=1

(
n∑

i=1

(pij + pji)Ei

)
⊗ θj .

Proof of Theorem 1.1. Assume that the matrix P is a non-singular diagonal
matrix diag{p1, p2, . . . , pn}. Then for V =

∑n+1
i=1 aiEi we have

∇V =




−p1an+1 0 · · · 0 0
0 −p2an+1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −pnan+1 0
p1a1 p2a2 · · · pnan 0




.

So we have

det(I + (∇V )∗∇V )
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=




1 + (a2
1 + a2

n+1)p
2
1 a1a2p1p2 · · · a1anp1pn 0

a1a2p1p2 1 + (a2
2 + a2

n+1)p
2
2 · · · a2anp2pn 0

...
...

. . .
...

...
a1anp1pn a2anp2pn · · · 1 + (a2

n + a2
n+1)p

2
n 0

0 0 · · · 0 1




.

Put H(a1, a2, . . . , an+1) := det(I +(∇V )∗∇V ). Then we have the following.

Lemma 3.2.

H(a1, a2, . . . , an+1)

= (1 + a2
n+1p

2
1) · · · (1 + a2

n+1p
2
n) +

n∑

i=1

a2
i p

2
i ·

Πn
j=1(1 + a2

n+1p
2
j )

1 + a2
n+1p

2
i

.

Proof. By the properties of determinant we have

H(a1, a2, . . . , an+1)

= det




1 + a2
n+1p

2
1 0 · · · 0

a1a2p1p2 1 + (a2
2 + a2

n+1)p
2
2 · · · a2anp2pn

...
...

. . .
...

a1anp1pn a2anp2pn · · · 1 + (a2
n + a2

n+1)p
2
n




+ det




a2
1p

2
1 a1a2p1p2 · · · a1anp1pn

a1a2p1p2 1 + (a2
2 + a2

n+1)p
2
2 · · · a2anp2pn

...
...

. . .
...

a1anp1pn a2anp2pn · · · 1 + (a2
n + a2

n+1)p
2
n




= (1 + a2
n+1p

2
1)H(a2, a3, . . . , an+1)

+ a2
1p

2
1det




1 a2p2 a3p3 · · · anpn

0 1 + a2
n+1p

2
2 0 · · · 0

0 0 1 + a2
n+1p

2
3 · · · 0

...
...

...
. . .

...
0 0 0 · · · 1 + a2

n+1p
2
n




= (1 + a2
n+1p

2
1)H(a2, . . . , an+1) + a2

1p
2
1(1 + a2

n+1p
2
2) · · · (1 + a2

n+1p
2
n)

= (1 + a2
n+1p

2
1)[(1 + a2

n+1p
2
2)H(a3, . . . , an+1)

+ a2
2p

2
2(1 + a2

n+1p
2
3) · · · (1 + a2

n+1p
2
n)]

+ a2
1p

2
1(1 + a2

n+1p
2
2) · · · (1 + a2

n+1p
2
n)

= (1 +a2
n+1p

2
1) · · · (1 +a2

n+1p
2
n−2)H(an−1, an, an+1)+

n−2∑

i=1

a2
i p

2
i ·

Πn
j=1(1 + a2

n+1p
2
j )

1 + a2
n+1p

2
i

= (1 + a2
n+1p

2
1) · · · (1 + a2

n+1p
2
n) +

n∑

i=1

a2
i p

2
i ·

Πn
j=1(1 + a2

n+1p
2
j )

1 + a2
n+1p

2
i

.
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In the last equality of the above equations, we used the following identity.

H(an−1, an, an+1) = a2
n−1p

2
n−1(1+a2

n+1p
2
n)+(1+a2

n+1p
2
n−1)(1+(a2

n+a2
n+1)p

2
n).

¤

Moreover, for 1 ≤ i ≤ n, we have

∂

∂ai
H(a1, . . . , an+1) = 2aip

2
i ·

Πn
j=1(1 + a2

n+1p
2
j )

1 + a2
n+1p

2
i

.

Since the sets of critical points of the functionals H and F =
√

H are equal,
we will find the set of critical points of the function H(a1, . . . , an+1) with con-
straint g(a1, a2, . . . , an+1) := a2

1+a2
2+· · ·+a2

n+1−1 = 0 by using the Lagrangian
multiplier method. Thus we have to solve the following simultaneous equation.{

∇H = λ∇g

g = 0.

More precisely,

2aip
2
i ·

Πn
j=1(1+a2

n+1p2
j )

1+a2
n+1p2

i
= 2λai, 1 ≤ i ≤ n,(3-1)

∂H
∂an+1

= 2λan+1,(3-2)

a2
1 + a2

2 + · · ·+ a2
n+1 − 1 = 0.(3-3)

Since P is non-singular, we have pi 6= 0, 1 ≤ i ≤ n.

Claim 3.3. λ 6= 0.

Proof. If λ = 0, then by the equation (3-1) we have ai = 0, 1 ≤ i ≤ n. By the
Lemma 3.2 we have

H(0, 0, . . . , 0, an+1) = (1 + a2
n+1p

2
1)(1 + a2

n+1p
2
2) · · · (1 + a2

n+1p
2
n).

Thus we have
∂H

∂an+1
(0, 0, . . . , 0, an+1)

= 2an+1 × {p2
1(1 + â2

n+1p
2
1)(1 + a2

n+1p
2
2) · · · (1 + a2

n+1p
2
n)

+ p2
2(1 + a2

n+1p
2
1)(1 + â2

n+1p
2
2) · · · (1 + a2

n+1p
2
n)

+ · · ·+ p2
n(1 + a2

n+1p
2
1)(1 + a2

n+1p
2
2) · · · (1 + â2

n+1p
2
n)},

where the symbol ̂ over a2
n+1p

2
i indicates that it is omitted.

Thus by the equation (3-2) we have an+1 = 0. This contradicts to the
equation (3-3). Thus we have λ 6= 0. ¤

Now consider the case an+1 6= 0.
Assume that ai 6= 0, 1 ≤ i ≤ n. Then by the equation (3-1) we have

(3-4) λ = p2
i (1 + a2

n+1p
2
1) · · · (1 + â2

n+1p
2
i ) · · · (1 + a2

n+1p
2
n).
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But by Lemma 3.2, we have

∂H

∂an+1
=

n∑

i=1

2an+1p
2
i ·

Πn
j=1(1 + a2

n+1p
2
j )

1 + a2
n+1p

2
i

+
n∑

i=1

a2
i p

2
i ·


 ∑

1≤j≤n,j 6=i

2an+1p
2
j ·

Πn
j=1(1 + a2

n+1p
2
j )

(1 + a2
n+1p

2
i )(1 + a2

n+1p
2
j )


 .

So by the equation (3-2), we have

λ =
n∑

i=1

p2
i ·

Πn
j=1(1 + a2

n+1p
2
j )

1 + a2
n+1p

2
i

(3-5)

+
n∑

i=1

a2
i p

2
i ·


 ∑

1≤j≤n,j 6=i

p2
j ·

Πn
j=1(1 + a2

n+1p
2
j )

(1 + a2
n+1p

2
i )(1 + a2

n+1p
2
j )


 .

Comparing two equations (3-4) and (3-5) above, we get a contradiction. Thus
we have ai = 0, i = 1, 2, . . . , n. So we have an+1 = ±1 and thus ±En+1 are
minimal unit vectors.

Let’s consider the case an+1 = 0.
Partition the set {1, 2, . . . , n} into relatively disjoint sets A1, A2, . . . , Ak

which satisfy the following properties.

(i) For α ∈ Ai, β ∈ Aj , i 6= j, we have p2
α 6= p2

β .
(ii) For α1, α2 ∈ Ai, we have p2

α1
= p2

α2
.

Now let αi ∈ Ai, 1 ≤ i ≤ k, and consider the following set of reduced
simultaneous equation

2aαip
2
αi

= 2λaαi , 1 ≤ i ≤ k.

For α ∈ Ai, β ∈ Aj , i 6= j, we have p2
α 6= p2

β . So if aβ 6= 0 then aα = 0 for
all i 6= j.

Thus the set of minimal unit vector fields are as follows.

(S ∩ {Eα|α ∈ A1}R) ∪ · · · ∪ (S ∩ {Eβ |β ∈ Ak}R) ,

where S is the unit sphere of the Lie algebra of the Lie group Rn o
P
R and

{Eα|α ∈ Ai}R is the subspace spanned by {Eα|α ∈ Ai}. This completes the
proof. ¤

Corollary 3.4. Let P be a diagonal matrix diag{p1, p2, . . . , pn} such that all
pi’s are non-zero and relatively distinct. Then the set of left-invariant minimal
unit vector fields on the semi-direct product Rn o

P
R is as follows:

{±E1,±E2, . . . ,±En+1}.
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Corollary 3.5. Let P be a matrix of the form cIn, where c is a nonzero
constant and In is the n × n identity matrix. Then the set of left-invariant
minimal unit vector fields on the semi-direct product Rn o

P
R is

(S ∩ En+1
⊥) ∪ {±En+1}.

4. The 4-dimensional solvable unimodular type (R) Lie groups

A connected Lie group G is of type (R) if ad(X) : g → g has only real
eigenvalues for every X ∈ g. And it is unimodular if ad(X) has trace 0 for
every X ∈ g. For R3 o

P
R, there are 7 classes of solvable unimodular Lie

groups of type (R), up to conjugation and scalar multiple. The following table
is the list of 7 isomorphism classes of 4-dimensional solvable unimodular type
(R) Lie algebras of the form R3 ⊕P R and the associated simply connected Lie
groups R3 o

P
R([11]):

Lie algebra R3 ⊕P R Associated simply connected Lie group R3 o
P
R

case 1)

2
4

0 0 0
0 0 0
0 0 0

3
5 R4;

2
4

1 0 0
0 1 0
0 0 1

3
5

case 2)

2
4

0 1 0
0 0 0
0 0 0

3
5 Nil3 × R;

2
4

1 s 0
0 1 0
0 0 1

3
5

case 3)

2
4

0 1 0
0 0 1
0 0 0

3
5 Nil4;

2
4

1 s 1
2 s2

0 1 s
0 0 1

3
5

case 4)

2
4

1 0 0
0 −1 0
0 0 0

3
5 Sol3 × R;

2
4

es 0 0

0 e−s 0
0 0 1

3
5

case 5)

2
4

1 0 0
0 1 0
0 0 −2

3
5 Sol40;

2
4

es 0 0
0 es 0

0 0 e−2s

3
5

case 6)

2
4

λ 0 0
0 1 0
0 0 −1− λ

3
5 (λ > 1) Sol4λ;

2
4

eλs 0 0
0 es 0

0 0 e−(1+λ)s

3
5 (λ > 1)

case 7)

2
4

1 1 0
0 1 0
0 0 −2

3
5 Sol′40 ;

2
4

es ses 0
0 es 0

0 0 e−2s

3
5

It is straightforward to determine the left-invariant minimal unit vector fields
on the Lie groups above. But as an example we show the calculations for the
case 4.

For V =
∑4

i=1 aiEi, a2
1 + a2

2 + a2
3 + a2

4 = 1, we have

∇V =




−a4 0 0 0
0 a4 0 0
0 0 0 0
a1 −a2 0 0




and

LV := I + (∇V )∗∇V =




1 + a2
1 + a2

4 −a1a2 0 0
−a1a2 1 + a2

2 + a2
4 0 0

0 0 1 0
0 0 0 1


 .
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So we have

f(V ) := (detLV )1/2 =
√

(1 + a2
4)(1 + a2

1 + a2
2 + a2

4).

By the Lagrangian multiplier method, we have to solve the following simul-
taneous equation.

a1(1 + a2
4)√

(1 + a2
4)(1 + a2

1 + a2
2 + a2

4)
= 2λa1,(4-1)

a2(1 + a2
4)√

(1 + a2
4)(1 + a2

1 + a2
2 + a2

4)
= 2λa2,(4-2)

0 = 2λa3,(4-3)
a4(2 + a2

1 + a2
2 + 2a2

4)√
(1 + a2

4)(1 + a2
1 + a2

2 + a2
4)

= 2λa4.(4-4)

If λ = 0, then we have a1 = a2 = a4 = 0 by the equations (4-1), (4-2), and
(4-4). So we have a3 = ±1 and thus ±E3 is minimal.

Now assume that λ 6= 0. By the equation (4-3) we have a3 = 0. If a4 6= 0,
then we have a1 = a2 = 0 and thus ±E4 is minimal. If a4 = 0, then we have
a2
1 + a2

2 = 1 and thus {a1E1 + a2E2 | a2
1 + a2

2 = 1} is the set of minimal unit
vector fields.

Therefore the set of left-invariant minimal unit vector fields is

{a1E1 + a2E2 | a2
1 + a2

2 = 1} ∪ {±E3} ∪ {±E4}.
Similarly we can determine the set of left-invariant minimal unit vector fields

in the other cases.

Theorem 4.1. The sets of left-invariant minimal unit vector fields on the
Lie groups associated with the 4-dimensional solvable unimodular type (R) Lie
algebra of the form Rn o

P
R are as follows:

Case 1) Every left-invariant unit vector fields are minimal;

Case 2) {a1E1 + a2E2 + a4E4|a2
1 + a2

2 + a2
4 = 1} ∪ {±E3};

Case 3) {± 1
2

√
2±√2

(
(−1±√2)E1 + E2

)} ∪ {±E3} ∪ {±E4};

Case 4) {a1E1 + a2E2 | a2
1 + a2

2 = 1} ∪ {±E3} ∪ {±E4};
Case 5) {a1E1 + a2E2 | a2

1 + a2
2 = 1} ∪ {±E3} ∪ {±E4};

Case 6) {±E1, ±E2, ±E3, ±E4};
Case 7) {± 1√

2
(E1 + E2)} ∪ {± 1√

2
(E1 − E2)} ∪ {±E3} ∪ {±E4}.
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