DOI QR코드

DOI QR Code

MAXIMAL HOLONOMY OF INFRA-NILMANIFOLDS WITH so(3)×ℝ3-GEOMETRY

  • Published : 2006.09.30

Abstract

Let $so(3)\tilde{\times}R^3$ be the 6-dimensional nilpotent Lie group with group operation (s, x)(t, y) = $(s+t+xy^t-yx^t,\;x+y)$. We prove that the maximal order of the holonomy groups of all infra-nilmanifolds with $so(3)\tilde{\times}R^3$-geometry is 16.

Keywords

References

  1. H. Brown, R. Bulow, J. Neubuser, H. Wondratschek, and H. Zassenhaus, Crys- tallographic Groups of Four-Dimensional Spaces, John Wiley & Sons, Inc., New York, 1978
  2. K. Y. Ha, J. B. Lee, and K. B. Lee, Maximal holonomy of infra-nilmanifolds with 2-dimensional Quaternionic Heisenberg Geometry, Trans. Amer. Math. Soc. 357 (2005), no. 1, 355-383 https://doi.org/10.1090/S0002-9947-04-03511-1
  3. I. Kim and J. R. Parker, Geometry of quaternionic hyperbolic manifolds, Math. Proc. Cambridge Philos. Soc. 135 (2003), no. 2, 291-320
  4. K. B. Lee and F. Raymond, Topological, affine and isometric actions on flat Riemannian manifolds, J. Differential Geom. 16 (1981), no. 2, 255-269 https://doi.org/10.4310/jdg/1214436102
  5. K. B. Lee, J. K. Shin, and S. Yokura, Free actions of finite abelian groups on the 3-torus, Topology Appl. 53 (1993), no. 2, 153-175 https://doi.org/10.1016/0166-8641(93)90134-Y
  6. K. B. Lee and A. Szczepanski, Maximal holonomy of almost Bieberbach groups for $Heis_5$, Geom. Dedicata 87 (2001), no. 1-3, 167-180 https://doi.org/10.1023/A:1012032913680
  7. S. Wolfram, Mathematica, Wolfram Research, 1993

Cited by

  1. Maximal holonomy of infra-nilmanifolds with 3-dimensional Iwasawa geometry vol.23, pp.3, 2011, https://doi.org/10.1515/form.2011.022