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MAXIMAL HOLONOMY OF
INFRA-NILMANIFOLDS WITH so0(3)xR3-GEOMETRY

KyunG BAl LEE AND JOONKOOK SHIN

ABSTRACT. Let 50(3)XR® be the 6-dimensional nilpotent Lie group
with group operation (s,x)(t,y) = (s + ¢ +xy’ —yx’, x+y). We
prove that the maximal order of the holonomy groups of all infra-
nilmanifolds with 50(3) X R®-geometry is 16.

1. Introduction

Let so(n) be the additive group of skew-symmetric matrices. This
is the Lie algebra of the special orthogonal group SO(n). There is a
bilinear map
I:R"xR" — so(n)

defined as follows: For

T U1
T2 Y2
X: ) y: b]
| In | | Yn |

I(X, y) = xyt - yxta
where ()! denotes transpose of the matrix (). With this Z, the set so(n) x
R™ gets a group structure given by

(s, x)(t,y) = (s +t+I(x,y), x+Yy).
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This group is denoted by

R™ = so(n)xR™.
Then R™ is a simply connected nilpotent Lie group, of nilpotency class
2, with the center so(n). Note that so(n) is viewed as a commutative

n{n—1) .
Lie group isomorphic to R™ 2 (not as a Lie algebra). It fits the short
exact sequences of Lie groups

0 —so(n) > R* > R" — 1.

Let M be an infra-nilmanifold with R"-geometry; that is, M =
IT\R™, where [T is a torsion free, discrete, cocompact subgroup of R"* xC
for some compact subgroup C of Aut(R"). Such a subgroup IT is called
an almost Bieberbach group (=AB group). It is well known that I con-
tains a cocompact lattice I' of R™ of finite index, and the quotient group
II/T is called the holonomy group of M.

Our aim is to understand those infra-nilmanifolds modelled on the
6-dimensional nilpotent Lie group

M3 = 50(3)XR3.
In particular, we are interested in finding the possible maximal order

for the holonomy groups. We shall prove that the holonomy group of
mazximal order is Dg X Zy, of order 16.

2. The automorphism group of R™

Since the center, Z(R"™) = so(n), is a characteristic subgroup of R",
every automorphism of R™ restricts to an automorphism of so(n). Con-
sequently an automorphism of 8™ induces an automorphism on the quo-
tient group R™. Thus there is a natural homomorphism Aut(R") —
Aut(so(n)) x Aut(R™), 8 — (6,6). Here Aut(so(n)) is the group of
linear automorphisms of the R-vector space so(n), not the Lie algebra
automorphisms.

LEMMA 2.1. Aut(R") — Aut(R™) = GL(n,R) is surjective. More-
over, the exact sequence Aut(R") — GL(n,R) — 1 splits.

Proof. First we define
J : GL(n,R) — Aut(so(n))
by
(2.1) J(C)(s) = CsC*
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for C € GL(n,R) and s € so(n). Then clearly, J is a homomorphism.
We denote J(C) by C.
We claim that, for any C € GL(n,R),

(2.2) (s,%x) — (C's, Cx)
is an automorphism of R™. From

(Cs,Cx) - (Ct,Cy) = (C:’s +Ct +I(Cx, Cy),Cx + Cy)
~ = (g(s+t)+{(Cx,Cy),C(x+y))
(Cs+t+I(x+y),Cx+y) =(C(s+t)+CI(x+y),Cx+Yy)),

)

for the assignment (2.2
sufficient that

(2.3) C(Z(xy)) =Z(Cx,Cy)
holds for all x,y € R*. Now this follows from
C(xy* - yx)C* = Cx(Cy)' — Cy(Cx)*
for all x,y € R™. a
THEOREM 2.2 (Structure of Aut(R")).
Aut(R") = Hom(R",s0(n)) x GL(n,R),

to be an automorphism, it is necessary and

where Hom(R", so(n)) is the additive group of linear transformations of
vector spaces, and an element (n,C) € Hom(R",so0(n)) x GL(n,R) acts
by

(n, C)(s,%) = (Cs + n(x), Cx).

Proof. Let 6 € Aut(R™). Then we have the following commutative
diagram of exact sequences

1 —— so(n) R R™ 1
L
1 —— so(n) R™ R™ 1

Thus 6(s,x) = (8(s) + n(s,x),0(x)) for (s,x) € R", where 5 : R"* —
so(n). Since @ is a homomorphism, one can show that 7 is a homomor-
phism, i.e.,

n((s,x)(t,y)) = n(s,x) + n(t, y).
In particular, (8(s),0) = 6(s,0) = (6(s) +n(s, 0),0) implies that 7(s,0)
= 0 for all s € so(n), and thus n(s,x) = n((s,0)(0,x)) = n(s,0) +
n(0,x) = n(0,x). Hence n € Hom(R"™, so(n)).
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Let’s find out the kernel of the surjective homomorphism of Lemma
2.1:

Aut(R") — GL(n,R), 6+ 6.
Suppose that # € Aut(R") with § = idgs. Then § = idgo(n) (see the
equality (2.1)) and thus 6(s,x) = (s + n(x),x) for some n € Hom(R",
so(n)). Conversely given n € Hom(R", so(n)), define 6 € Aut(R™) by

0(s,x) = (s +n(x),x). Clearly this 0 lies in the kernel of the homomor-
phism. Hence we have a short exact sequence

1 — Hom(R", 50(n)) — Aut(R") — GL(n,R) — 1.

By Lemma 2.1, this sequence is split. U

Note that

Hom(R"™,s0(n)) x GL(n,R) C Hom(R", s0(n)) x (Aut(se(n)) x GL(n,R))
(m,4) = (1, (4, 4))

and the action of GL(n, R) on Hom(R™, s0(n)) is 4n(x) = A-n(4A~x).
The group operation on R"™ x GL(n,R) is given by

3. The structure of AB-groups for k™

Let IT C R™ x Aut(R"™) be an AB-group. Then it is well known that
I' = IINR™, the pure translations in 17, is the maximal normal nilpotent
subgroup, and ® = II/T’, the holonomy group of I1, is finite. Since T is
a lattice of "™, Z =T'N Z(R") is a lattice of Z(R™) = so(n), and I'/Z

n(n—1)

is a lattice of R"/Z(R") = R™ Thus Z =TNZ(R") X Z~ 2z and
/T N Z(R") = 2"
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Consider the following natural commutative diagram:

1 1
so(n) — s0(n)
1 R A" 3 Aut(R") —— Aut(R") —— 1
1 R™ R™ x Aut(R") —— Aut%;") —1
1 1

Recall from Theorem 2.2 that an element
(n,A) € Aut(R"™) = Hom(R",s0(n)) x GL(n,R)
acts on (s,x) € R" by '
(1, 4)(5,%) = (As +n(x), Ax).

Thus GL(n,R) acts on so(n) via the homomorphism ~: GL(n,R) —
Aut(so(n)), and GL(n,R) acts on R™ by matrix multiplication GL(n, R)
xR" — R",

Let Q = II/Z. Then the above diagram induces the following com-
mutative diagram:

I

w
=
—

—
H— Q — I — N — =
L=
s
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Here an element (n, A) € @ C Aut(R™) = Hom(R",s0(n)) x GL(n,R)
acts on Z™ by 4, and on Z by A.

Recall from [4, Proposition 2| that a virtually free abelian group
1—-72"— Q@ — & — 1is a crystallographic group if and only if the
centralizer of Z™ in ¢ has no torsion elements. Suppose an element
of ® acts trivially on Z". Then it is of the form (n, A) € Aut(R"),
where A = I € GL(n,R). Then A = I also, see equation (2.1). Since

n(n—1)
2

Hom(R™, so(n)) is isomorphic to the additive group of nx matrices

n(n+1
(= R—(2+—)), it has no elements of finite order. Consequently, (1, A) €
Aut(R"™) is trivial. This shows that ® acts effectively on Z™. It follows
that @ is naturally an n-dimensional crystallographic group.
The finite group ® must be in a maximal compact subgroup O(n) of
Aut(R™) = Hom(R"™,s0(n)) x GL(n,R).

PRrROPOSITION 3.1. Let @ C R™ x O(n) be a crystallographic group,
and Q' C R™ x GL(n,R) be an affine crystallographic group isomorphic
to Q. Then there exists an AB-group II obtained from Q) if and only if
there exists an AB-group II' obtained from Q'.

Proof. Let
Q ={(vi1,I),(va,I),...,(vpn,I), (a1, A1), (ag, Aa),...,
Q" =((v1, D), (v, D), (vy, 1), (a), AY), (a3, A3), . - -, (a), Ap))
and (d, D) € R™ x GL(n,R) with
(vi,I) = (d, D)"Y v;, I)(d, D), i=1,2,...,n
(a;,A;-) = (d,D)_l(aj,Aj)(d, D), 7=12,...,p.
Suppose there exist t1,t2,...,tn, S1,52,...,5p € s6(n) such that
I = {(t1,v1,1),(t2, v, 1), ..., (tn, Vn, 1),
(s1,a1, A1), (82,82, A2), ..., (Sp,ap, Ap))

is an AB-group. Then clearly, conjugate of II by (0,d,D) € R" x
Aut(R"™) is an AB-group IT’ obtained from @'. The converse is similar.
O

From this Proposition, we need not put our abstract crystallographic
group into R™ x O(n), but it is enough to use any convenient affine
embedding.

LEMMA 3.2. Let v1,Va,...,Vy be a basis of R". Then the set {Z(v;,
v;) | i < j} forms a lattice of so(n).
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Proof. First we set notation. Let E;; be the skew-symmetric matrix
whose (4,j) entry is 1, (4,4) entry is —1, and O elsewhere. Suppose
v; = e; for all i = 1,2,...,n. Then I(e;e;) = e;e’ — ejel = E;;.

7
Therefore {Z(e;,e;) | i < j} ={F;; | i < j}isa basijs for the vector
space so(n). For a general basis {vi,va,...,V,}, let C be the matrix
whose jth column is v;. Then Z(v;,v;) = J(C)(E;;), and hence the set
{Z(v;,v;) | i < j} forms a basis of so(n). O

This lemma tells us that the lattice Z" of R” generated by {v1,ve,...,
vp} yields a lattice generated by {Z(vs,v;) | ¢ < j}, which must be
contained in Z in the above diagram. However, the Z in the diagram
can be finer than the lattice generated by {Z(v;,v;) | i < j}.

PROPOSITION 3.3. Let Q@ C R™ x SO(n) be a crystallographic group
generated by

(Vl,I), (V2,I), ey (Vn,f), (al,Al), (az,Ag), ceey (ap,Ap),

where the subgroup ((v1,1),(va,I),...,(vn,I)) is the maximal normal
free abelian subgroup of Q. If there exists an AB-group obtained from
Q, then there is an AB-group II s,) generated by

1,52,
(0,vy,1),(0,ve,I),...,(0,vp, I),
(s1,a1, A1), (s2,a2, A2), ..., (sp,ap, Ap),

for some s1, S2,...,8p € so(n).

Proof. Let IT C R™ x Aut(R") be an AB-group obtained from Q.
Then

II Nso(n) = {(v1,0,I),(v2,0,1),..., (Vnwm-1y,0,I))
2

for some v1,v2, ..., Unm_1) € s0(n). Let us take any pre-images in IT as
follows: ’

(w1,v1, 1), (we,ve,I), ..., (wn,vn,I),

(t1, a, Al), (tg, as, Az), e (tp, ay, Ap)
for some wy,ws, ..., wy, t1,t2,...,tp € s6(n). Since [(w;, vi, I), (wy, vj,

I)] = (2Z(v4,v;),0,1), the group generated by
(wlavlaI)a(w%V%I))'"a(wn’vn;I)

becomes a lattice of R™ already (see Lemma 3.2), and hence the group
generated by

(’lUl,Vl,I), (wg,Vg,I), R (wnavna-[)a
(tlaa].)Al)) (t2;a2aA2)7 ey (tpaap7Ap)
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(without (v1,0, ), (v2,0,1),...,(Vnwn-1),0,I)) will be a subgroup of IT
2

of finite index, and is an AB-group (since it is torsion free). Let us call
this smaller group IT'.
Let 7 € Hom(R"™,s0(n)). Consider the product in 8™ x Aut(R"):

((0’ 0)7 n)_l((wia Vi)7 I)((Oa O)a 77) = ((wz - 77(Vi), Vi)7 I)
Certainly, there exists 7 € Hom(R", so(n)) such that
n(vi) = w;
forallt=1,2,...,n.
Consequently, the group IT” obtained by conjugating II’ by (0,0,7)
is another AB-group, satisfying the condition w1 = wy =--- = w, =0

(without changing the second and third slots). Thus we have obtained
an AB-group IT" = Il 4, . 5,) C R" x Aut(R") generated by

(O,Vl,I), (05V271)a RS (O,Vn,.[),
(817 ap, Al)a (827 ag, A2)7 ceey (sp, ap, Ap)
for some s1, s2,...,sp € s0(n). O
The Proposition says that: If there is an AB-group II constructed
from Q, then Il ,, . ) is conjugate to a subgroup of IT of finite in-
dex, which is another AB-group constructed from @. Conversely, if
I, s,...5,) is an AB-group (i.e., is torsion free), then we are done.
Therefore, the existence/non-existence of construction is solely deter-

mined by the group of the form Il g, . ,,); that is, whether there exist
81,82, ., Sp for which II(s, 5, . o) is torsion free.

4. The group R3

Our group R = 50(3)xR3 has group law
(5, x)(t,y) = (s +t+I(x,y),x+y),
where
I(x,y) =xy' —yx'

0 T1Ye — TaY1 T1Y3 — T3Y1
= | zoy1 — x1y2 0 Toys — T3Y2
T3Y1 — T1Y3  T3Y2 — T2Y3 0
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If we identify so(3) with R® by

0 z —y x
-z 0 z|+— |y,
Yy - 0 z

then clearly,
I(x,y) = x x y (cross product)

so that |3 = 50(3) x R3 = R? x R3 has the group operation
(5,x)(t, y) =(s+t+x Xy, x+y)

In our case, C = J (C) has a very simple description. Let e; € R"
whose ith component is 1 and 0 elsewhere. From the condition (2.3), we
have

C(Z(ei,e;)) = I(Ce, Ce;)
=T (Ci, Cj)
for all ¢, j, where c; is the sth column of the matrix C. Note that Z(e;, ;)
is the skew-symmetric matrix whose (4, ) entry is 1, (4,7) entry is —1,
and 0 elsewhere.

By the identification of so(3) with R? as above, the above equality
becomes

6(91) = Cg2 X C3
6(e2) =c3 X €1
6(63) =C1 X C2

so that R
C = det(C)(C™1.
For each 3-dimensional crystallographic group (), we shall check if

there exists an AB-group I/ constructed from @); that is, a torsion free
II € R % O(3) ¢ K3 x Aut(R?) fitting the short exact sequence

1—Z —10—Q—1.

This is the key notion for our arguments and construction. We have
a complete classification of 3-dimensional crystallographic groups (Q’s
in the above statement). We shall use the representations of the 3-
dimensional crystallographic groups given in the book [1].

Every @ has an explicit representation @ — R3 x GL(3,Z) (not into
R3 % O(3)) in this book.

Our goal is to determine which @ will give rise to a torsion free IT
that fits the diagram (3.1). When @Q is torsion free, then IT will be
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automatically torsion free, but when @ contains a torsion subgroup Qq,
we need to check whether the lift Qg to II will be torsion free.
Let Iy be the lift of )y to II. Thus

(4.1) 1 Z 1 Qo 1

is exact. If II is torsion free, then so is ITy, and is a 3-dimensional
Bieberbach group. Therefore,

PROPOSITION 4.1. Any finite subgroup of @ is one of the holonomy
groups 1,73, 73,74, Z¢ or Za x Zy of 3-dimensional crystallographic gro-

ups. ’

PROPOSITION 4.2. There is no AB-group IT C R3 x Aut(R3) con-
structed from @ given in7/4/3/02,7/3/2/02,7/2/1/03,7/2/3/02,
(all holonomy group of order 24).

Proof. Let
Q= <(81,I), (82,1), (63,1), (aa A): (ba B)> (C, C)a (daD»:

and let, for some s,t,u,v € s0(3),
tl = (0,81,]), t2 = (07 e27I)7 t3 = (0;e371)7

a=(saA), B=(b,B), v=(ur¢cC), b6=(v,d,D).

By Proposition 3.3, there is no AB-group from Q, if and only if, for any
s,t,u,v € 50(3), the group II generated by t1,t2,t3,, 3,7, 6

(42) H(s,t,u,v) = <t1,t2,t3,0[,3,’)’,(5>

has a nontrivial torsion element. Now let Z = IT Ns0(3). Then there is
no AB-group from @ if and only if the following holds: for any s,t,u,v €
50(3), there exists a nontrivial torsion element of the form

2t71 52453 aP 3147 6°

where 2 € Z and n4,p,q,7,0,k € Z with 0 < p < order of A, etc.
(7/4/3/02). For any choice of s,t,u,v € 50(3), a~v3ay is a torsion
element of order 3. '
(7/3/2/02). Let z = (16(1,—1,—1),0,I). Then 2z € Z. For any
choice of s,t,u,v € 50(3), za~1y3ary is a torsion element of order 3.
(7/2/1/083). For any choice of s,t,u,v € 50(3), o y3ary is a torsion
element of order 3.
(7/2/3/02). For any choice of s,t,u,v € 50(3), a~'y3ay is a torsion
element of order 3. ]
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5. A construction of an AB-group with holonomy order 16
THEOREM 5.1 (Existence). There exists an almost Bieberbach group

IT C M3 x Aut(R3) whose holonomy group is Dg x Zs, of order 16.

Proof. Consider the 3-dimensional crystallographic group @ (Case
4/7/1/10) generated by the following elements:

(el,I)a (e27I)’ (9371)’ (aaA)a (baB)a (c, 0)7 (da D),

where I is the identity matrix, e; is the unit vector with 1 in the ith
coordinate, and

1 -1 0 o0
(@ad)y={ 31/, 0 -1 o0]l],
| 0 | | 0 0 1|
[ 1] [ 0 -1 0]
®,B)=| 3|0, 1 0 o],
| 0 | | 0 0 1
[0 ] [ -1 0 0]
c,O)=1| 3|1], 0 1 0 ,
| 1] | 0 0 -1
[ 0 ] [ -1 0 0]
@D)=1| 3|0, 0 -1 0
| 0| 0 0 -1 |

Note that
A>=1, B*=A,C?>=1,D?>=1, [B,C]=1I, [B,D]=1, [C,D]|=1

and that ¢} has the holonomy group @ of order 16.
We consider the subgroup IT of (s0(3)xR3) x SO(3) = (R¥*XR3) x
SO(3) generated by
t1 :(07917[)7 t2:(0ae271)a t3:(07e3aI)7

0 0
a: 0 ?aﬂA ? ﬂ: 0 7b’B b
K g
[17] 1
4 i
1 1
L4 1
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Let Z = II Ns0(3). We know Z is a lattice of s0(3) from Lemma 3.2.
By calculation, we see that Z is actually generated by the vectors

1 1

] i X
n=|31, 22=| 7|, z3=]0

0 0 3

In particular, Z is discrete and hence IT is discrete. [Notice that we are
abusing the notation: z; = (2;,0,I) € (s0(3)xR3) x SO(3)].

Next we claim that IT is torsion free. Every element of IT can be
written as

zf122 33t71“t"2t”3a”ﬂq 6%,
where ¢y, 02, ¢3, ni,no,ns3, p,q,, s are integers such that 0 <p <2, 0 <

g<4,0<r<2and0<s <2 By calculation, it can be shown that
the equation

(21 22 22 4 122433 0P 3997 6°)¢ = (0,0, I)

has no integral solution for £, £, ¢35, n1,n2,n3,p,q,7,s with d > 0. This
proves that IT is indeed torsion free, and thus is an AB-group. O

6. Non-existence

Using notations from [1], we list all three-dimensional crystallographic
groups with holonomy order greater than 16 below. Most of these groups
are eliminated by the fact that they contain torsion subgroups which
are not in the list 1,7Z9,Zs3,Z4,7Zg or Zo X Zs. See Proposition 4.1.
The remaining 4 cases where this proposition does not apply are proved
in Proposition 4.2. All the calculations were done using the program
MATHEMATICA [7] and hand-checked.

e 48:

7/5/1/02: ((a, A), (b, B), (e, E)) = (Z2)?.

7/5/1/03:  {(a, A), (¢, C)) non-commutative group of order 12.
7/5/1/04:  {(a, A}, (c,C)) non-commutative group of order 12
7/5/2/02:  {(a, A)(d, D), (c,C)) non-commutative group of order 6
7/5/2/03:  {(a,A), (c,C)) non-commutative group of order 12
7/5/2/04:  {(a, A), (c,C)) non-commutative group of order 12
7/5/3/02:  {((a,A)(d, D), (c,C)) non-commutative group of order 6
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7/4/1/02:  {(a, A), (c,C)) non-commutative group of order 12.
7/4/2/02:  {((a,A),(c,C)) non-commutative group of order 12.
7/4/3/02: Proposition 4.2.

7/3/1/02:  {(a, A)(d, D), (b, B)(c,C)) non-commutative group of order 6.
7/3/1/03:  {(a,A)(b, B), (a, A)(c, C)) non-commutative group of order 12.
7/3/2/02: Proposition 4.2.

7/3/3/02:  {{a, A)(d, D}, (c,C)) non-commutative group of order 6.

7/2/1/02:  {(a, A), (¢, C)) non-commutative group of order 12.
7/2/1/03: Proposition 4.2.

7/2/2/02:  {(a, A), (c,C)?) non-commutative group of order 12.
7/2/3/02: Proposition 4.2.

6/7/1/02: {(a,A),(c,C)) non-commutative group of order 6.

6/7/1/03:  {((a, A),(c,C)) non-commutative group of order 6.

6/7/1/04: {(a, A),(c,C)) non-commutative group of order 6.
e 16:

4/7/1/10: CONSTRUCTION! (Theorem 5.1)
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