• Title/Summary/Keyword: 3-Lie derivation

Search Result 22, Processing Time 0.025 seconds

A Note on Derivations in prime rings

  • 왕문옥;황신철
    • Journal for History of Mathematics
    • /
    • v.10 no.2
    • /
    • pp.24-29
    • /
    • 1997
  • Derivation은 Lie group, Lie ring 그리고 Lie Algebra에서 정의되어 사용되며 발전하였으며 ring에서 일반화 되었다. 역시 prime ring에서 연구되어지는 derivation의 성질들은 prime near-ring에서 일반화 시키려고 하고 있다. 1957년 E. Posner는 prime ring에서 두 개의 derivation의 곱(함수합성)이 derivation이면 이들중 하나의 derivation이 0임을 밝혔다. 본 논문에서는 prime ring에서 derivation이 연구된 역사적인 배경을 소개하고 몇가지 성질을 찾는다. 즉, D. F를 prime ring R의 derivation들이라 할 때 정수 $n{\ge}1$에 대하여 $DF^n$=0이면 D=0이거나 또는 $F^{3n-1}$=0이고, $D^nF$=0이면 $D^{9n-7}$=0 이거나 또는 $F^2$=0 이다.

  • PDF

DERIVATIONS OF THE ODD CONTACT LIE ALGEBRAS IN PRIME CHARACTERISTIC

  • Cao, Yan;Sun, Xiumei;Yuan, Jixia
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.591-605
    • /
    • 2013
  • The underlying field is of characteristic $p$ > 2. In this paper, we first use the method of computing the homogeneous derivations to determine the first cohomology of the so-called odd contact Lie algebra with coefficients in the even part of the generalized Witt Lie superalgebra. In particular, we give a generating set for the Lie algebra under consideration. Finally, as an application, the derivation algebra and outer derivation algebra of the Lie algebra are completely determined.

NOTES ON GENERALIZED DERIVATIONS ON LIE IDEALS IN PRIME RINGS

  • Dhara, Basudeb;Filippis, Vincenzo De
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.599-605
    • /
    • 2009
  • Let R be a prime ring, H a generalized derivation of R and L a noncommutative Lie ideal of R. Suppose that $u^sH(u)u^t$ = 0 for all u $\in$ L, where s $\geq$ 0, t $\geq$ 0 are fixed integers. Then H(x) = 0 for all x $\in$ R unless char R = 2 and R satisfies $S_4$, the standard identity in four variables.

JORDAN DERIVATIONS ON A LIE IDEAL OF A SEMIPRIME RING AND THEIR APPLICATIONS IN BANACH ALGEBRAS

  • Kim, Byung-Do
    • The Pure and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.347-375
    • /
    • 2016
  • Let R be a 3!-torsion free noncommutative semiprime ring, U a Lie ideal of R, and let $D:R{\rightarrow}R$ be a Jordan derivation. If [D(x), x]D(x) = 0 for all $x{\in}U$, then D(x)[D(x), x]y - yD(x)[D(x), x] = 0 for all $x,y{\in}U$. And also, if D(x)[D(x), x] = 0 for all $x{\in}U$, then [D(x), x]D(x)y - y[D(x), x]D(x) = 0 for all $x,y{\in}U$. And we shall give their applications in Banach algebras.

A NOTE ON LIE IDEALS OF PRIME RINGS

  • Shuliang, Huang
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.327-333
    • /
    • 2010
  • Let R be a 2-torsion free prime ring, U a nonzero Lie ideal of R such that $u^2\;{\in}\;U$ for all $u\;{\in}\;U$. In the present paper, it is proved that if d is a nonzero derivation and [[d(u), u], u] = 0 for all $u\;{\in}\;U$, then $U\;{\subseteq}\;Z(R)$. Moreover, suppose that $d_1$, $d_2$, $d_3$ are nonzero derivations of R such that $d_3(y)d_1(x)\;=\;d_2(x)d_3(y)$ for all x, $y\;{\in}\;U$, then $U\;{\subseteq}\;Z(R)$. Finally, some examples are given to demonstrate that the restrictions imposed on the hypothesis of the above results are not superfluous.

SOME RESULTS ON GENERALIZED LIE IDEALS WITH DERIVATION

  • Aydin, Neset;Kaya, Kazim;Golbasi, Oznur
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.225-232
    • /
    • 2001
  • Let R be a prime ring with characteristic not two. U a (${\sigma},{\tau}$)-left Lie ideal of R and d : R$\rightarrow$R a non-zero derivation. The purpose of this paper is to invesitigate identities satisfied on prime rings. We prove the following results: (1) [d(R),a]=0$\Leftrightarrow$d([R,a])=0. (2) if $(R,a)_{{\sigma},{\tau}}$=0 then $a{\in}Z$. (3) if $(R,a)_{{\sigma},{\tau}}{\subset}C_{{\sigma},{\tau}}$ then $a{\in}Z$. (4) if $(U,a){\subset}Z$ then $a^2{\in}Z\;or\;{\sigma}(u)+{\tau}(u){\in}Z$, for all $u{\in}U$. (5) if $(U,R)_{{\sigma},{\tau}}{\subset}C_{{\sigma},{\tau}}$ then $U{\subset}Z$.

  • PDF

DERIVATIONS OF A COMBINATORIAL LIE ALGEBRA

  • Choi, Seul Hee
    • Honam Mathematical Journal
    • /
    • v.36 no.3
    • /
    • pp.493-503
    • /
    • 2014
  • We consider the simple antisymmetrized algebra $N(e^{A_P},n,t)_1^-$. The simple non-associative algebra and its simple subalgebras are defined in the papers [1], [3], [4], [5], [6], [8], [13]. Some authors found all the derivations of an associative algebra, a Lie algebra, and a non-associative algebra in their papers [2], [3], [5], [7], [9], [10], [13], [15], [16]. We find all the derivations of the Lie subalgebra $N(e^{{\pm}x_1x_2x_3},0,3)_{[1]}{^-}$ of $N(e^{A_p},n,t)_k{^-}$ in this paper.