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JORDAN θ-DERIVATIONS ON LIE TRIPLE SYSTEMS

Abbas Najati

Abstract. In this paper we prove that every Jordan θ-derivation on a
Lie triple system is a θ-derivation. Specially, we conclude that every
Jordan derivation on a Lie triple system is a derivation.

1. Introduction

The concept of Lie triple system was first introduced by N. Jacobson [2, 3]
(see also [4]). We recall that a Lie triple system is a vector space J over a field
K with a trilinear mapping J × J × J 3 (x, y, z) 7→ [x, y, z] ∈ J satisfying
the following axioms

(i) [x, y, z] = −[y, x, z],
(ii) [x, y, z] + [y, z, x] + [z, x, y] = 0,
(iii) [u, v, [x, y, z]] = [[u, v, x], y, z] + [x, [u, v, y], z] + [x, y, [u, v, z]]

for all u, v, x, y, z ∈ J . It follows from (i) that [x, x, y] = 0 for all x, y ∈ J .
It is clear that every Lie algebra with product [., .] is a Lie triple system

with respect to [x, y, z] := [[x, y], z]. Conversely, any Lie triple system J can
be considered as a subspace of a Lie algebra (Bertram [1], Jacobson [3]).

Throughout this paper, let C be the complex filed and J be a Lie triple
system over C.

Definition 1.1. Let θ : J → J be a C-linear mapping. A C-linear mapping
D : J → J is called a θ-derivation on J if

D([x, y, z]) = [D(x), θ(y), θ(z)] + [θ(x), D(y), θ(z)] + [θ(x), θ(y), D(z)]

for all x, y, z ∈ J . If θ = IJ , a θ-derivation is called a derivation.

Let u, v ∈ J and Du,v : J → J be a mapping defined by

Du,v(x) := [u, v, x]

for all x ∈ J . It is clear that Du,v is C-linear and we get from (iii) that the
mapping Du,v is a derivation on J .
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Definition 1.2. Let θ : J → J be a C-linear mapping. A C-linear mapping
D : J → J is called a Jordan θ-derivation on J if

D([x, y, x]) = [D(x), θ(y), θ(x)] + [θ(x), D(y), θ(x)] + [θ(x), θ(y), D(x)]

for all x, y ∈ J . If θ = IJ , a Jordan θ-derivation is called a Jordan derivation.

In [5], M. Sal Moslehian and Th. M. Rassias have studied the stability of
derivations in normed Lie triple systems associated with a Cauchy–Jensen ad-
ditive mapping.

2. Main results

It is clear that every θ-derivation on a Lie triple system J is a Jordan θ-
derivation. In this section we prove that every Jordan θ-derivation on a Lie
triple system J is a θ-derivation. So we conclude that every Jordan derivation
on J is a derivation.

Throughout this section D, θ : J → J are C-linear mappings and AD,θ :
J × J × J → J is a mapping defined by

AD,θ(x, y, z) := [D(x), θ(y), θ(z)] + [θ(x), D(y), θ(z)] + [θ(x), θ(y), D(z)]

for all x, y, z ∈ J . It is clear that the mapping AD,θ is trilinear and AD,θ(x, x,
y) = 0 for all x, y ∈ J .

Theorem 2.1. Let D : J → J be a Jordan θ-derivation. Then D is a θ-
derivation.

Proof. Since D : J → J is a Jordan θ-derivation, AD,θ(x, y, x) = D([x, y, x])
for all x, y ∈ J . Therefore we have

(2.1)

D([x + z, y, x + z]) = [D(x) + D(z), θ(y), θ(x) + θ(z)]

+ [θ(x) + θ(z), D(y), θ(x) + θ(z)]

+ [θ(x) + θ(z), θ(y), D(x) + D(z)]

= D([x, y, x]) + D([z, y, z])

+ AD,θ(x, y, z) + AD,θ(z, y, x)

for all x, y, z ∈ J . On the other hand, we have

[x + z, y, x + z] = [x, y, x] + [z, y, z] + [x, y, z] + [z, y, x]

for all x, y, z ∈ J . Therefore

(2.2)
D([x + z, y, x + z]) = D([x, y, x]) + D([z, y, z])

+ D([x, y, z]) + D([z, y, x])

for all x, y, z ∈ J . It follows from (2.1) and (2.2) that

(2.3) D([x, y, z]) + D([z, y, x]) = AD,θ(x, y, z) + AD,θ(z, y, x)

for all x, y, z ∈ J . Since [z, y, x] = [x, y, z]− [x, z, y], we get that

(2.4) D([x, y, z]) + D([z, y, x]) = 2D([x, y, z])−D([x, z, y])
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for all x, y, z ∈ J . Also

AD,θ(x, y, z)−AD,θ(x, z, y)

= [D(x), θ(y), θ(z)] + [θ(x), D(y), θ(z)] + [θ(x), θ(y), D(z)]

− [D(x), θ(z), θ(y)]− [θ(x), D(z), θ(y)]− [θ(x), θ(z), D(y)]

= ([D(x), θ(y), θ(z)] + [θ(z), D(x), θ(y)])

+ ([θ(x), D(y), θ(z)] + [θ(z), θ(x), D(y)])

+ ([θ(x), θ(y), D(z)] + [D(z), θ(x), θ(y)])

= [θ(z), θ(y), D(x)] + [θ(z), D(y), θ(x)] + [D(z), θ(y), θ(x)]

= AD,θ(z, y, x)

for all x, y, z ∈ J . So

(2.5) AD,θ(x, y, z) + AD,θ(z, y, x) = 2AD,θ(x, y, z)−AD,θ(x, z, y)

for all x, y, z ∈ J . We get from (2.3), (2.4) and (2.5) that

(2.6) 2D([x, y, z])−D([x, z, y]) = 2AD,θ(x, y, z)−AD,θ(x, z, y)

for all x, y, z ∈ J . Letting y = z in (2.6), we get D([x, y, y]) = AD,θ(x, y, y) for
all x, y ∈ J . Since D([x, y + z, y + z]) = AD,θ(x, y + z, y + z) and [., ., .], AD,θ

are trilinear, we have

(2.7) D([x, y, z]) + D([x, z, y]) = AD,θ(x, y, z) + AD,θ(x, z, y)

for all x, y, z ∈ J . Adding (2.6) to (2.7), we infer that D([x, y, z]) = AD,θ(x, y, z)
for all x, y, z ∈ J . So the proof is completed. ¤
Corollary 2.2. Every Jordan derivation on a Lie triple system is a derivation.
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